CN101145561A - TFT matrix structure and making method thereof - Google Patents

TFT matrix structure and making method thereof Download PDF

Info

Publication number
CN101145561A
CN101145561A CNA2006101520225A CN200610152022A CN101145561A CN 101145561 A CN101145561 A CN 101145561A CN A2006101520225 A CNA2006101520225 A CN A2006101520225A CN 200610152022 A CN200610152022 A CN 200610152022A CN 101145561 A CN101145561 A CN 101145561A
Authority
CN
China
Prior art keywords
layer
ohmic contact
insulating barrier
electrode
contact layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006101520225A
Other languages
Chinese (zh)
Other versions
CN100454558C (en
Inventor
王章涛
邱海军
闵泰烨
林承武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Beijing BOE Optoelectronics Technology Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Beijing BOE Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd, Beijing BOE Optoelectronics Technology Co Ltd filed Critical BOE Technology Group Co Ltd
Priority to CNB2006101520225A priority Critical patent/CN100454558C/en
Priority to KR1020070091891A priority patent/KR100867866B1/en
Priority to US11/853,297 priority patent/US7636135B2/en
Priority to JP2007235757A priority patent/JP4823989B2/en
Publication of CN101145561A publication Critical patent/CN101145561A/en
Application granted granted Critical
Publication of CN100454558C publication Critical patent/CN100454558C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention discloses a TFT array structure, which comprises a substrate; a gate line and a gate electrode; a first insulating layer, a semi-conductive layer and an ohmic contact layer which are covered in order on the gate line and the gate electrode; a thin film transistor (TFT) groove; a second insulating layer formed on the ohmic contact layer; a source/drain electrode through hole formed on the second insulating layer; data lines and a source electrode integrated with the data lines and connected with the ohmic contact layer on the gate electrode; a drain electrode connected with the ohmic contact layer on the gate electrode; a passivation layer formed on the data lines, the source electrode and the drain electrode; a pixel electrode formed on the second insulating layer and partially lapped on the drain electrode; and a groove formed on the gate line between the data lines to cut off the ohmic contact layer on the gate line. The invention also discloses a fabrication method of the array structure. The inventive array structure and the fabrication method thereof shorten the production cycle of the TFT array and reduce the production cost.

Description

A kind of TFT matrix structure and manufacture method thereof
Technical field
The present invention relates to a kind of thin-film transistor (TFT) matrix structure and manufacture method thereof, particularly a kind of TFT matrix structure and manufacture method thereof by four photoetching preparation.
Background technology
The liquid crystal display mode is the main flow of present flat panel display, and active driving TFT LCD (Thin Film Transistor-LCD) then is the leading display mode in the field of liquid crystal display.The manufacturing process of TFT LCD is compatible mutually with traditional IC circuit, the display quality excellence, low in energy consumption, in light weight, radiationless, be a kind of very friendly man-machine communication interface, its main application fields has notebook computer, desktop computer monitor, work station, industry monitoring device, GPS (Global Position System) (GPS), personal data processing, game machine, video telephone, portable V CD, DVD and some other portable units.
For price and its rate of finished products of raising of reducing TFT LCD effectively, the manufacturing process of active drive thin film transistors (TFT) matrix progressively obtains simplifying, from seven times or six photoetching generally five photoetching of employing till now of beginning.Recently, four photoetching processes based on gray mask version photoetching " Gray Tone Mask " technology begin to set foot in the manufacturing field of TFT LCD and progressively be applied, and its core process is used active layer photoetching (Active Mask) and the source-drain electrode photoetching (S/D Mask) in five photoetching processes of source-drain electrode (S/D) Gray Tone Mask replacement tradition exactly.Its specific embodiment is as follows: at first, form gate electrode by the photoetching first time, then metal level is leaked in successive sedimentation one deck gate insulation layer, active layer, ohmic contact layer and source on gate electrode.Then after the photoetching second time, form data wire, active area, source-drain electrode and TFT raceway groove figure by S/D wet etching, multistep etching (active layer etching → ashing (Ashing) → Mo dry etching → n+ etching).Deposit one deck passivation layer then, on passivation layer, form connecting hole by photoetching for the third time.Deposit the pixel electrode layer of layer of transparent at last and form pixel electrode by the 4th photoetching.
Although these four photoetching processes have obtained some progress with respect to five photoetching processes of tradition, but still there are several main shortcomings: the one, multistep etching technics complexity, development difficulty is big, and can produce some defectives inevitably, and is residual as metal M o, channel surface is coarse etc.The 2nd, the side direction etching that produces in the Mo dry etching will influence the breadth length ratio of raceway groove, cause the change of TFT electrology characteristic, and will be on the low side etc. as ON state current.
Summary of the invention
The present invention is directed to the defective of prior art, proposed a kind ofly to be equipped with active driving TFT matrix construction and manufacture method thereof, thereby shortened the production cycle of TFT matrix, reduced its production cost by four optical gravings.
To achieve these goals, the invention provides a kind of TFT matrix structure, comprising:
One substrate;
One grid line and with the gate electrode of its one, be formed on the described substrate, the top of grid line and gate electrode is coated with ground floor insulating barrier, semiconductor layer, ohmic contact layer successively;
One thin film transistor channel is formed on the ohmic contact layer on the described gate electrode;
One second layer insulating barrier is formed on the described ohmic contact layer;
One source-drain electrode via hole is formed on the second layer insulating barrier of described thin film transistor channel both sides;
One data wire and with the source electrode of its one, be formed on the top of described second layer insulating barrier, and be connected with ohmic contact layer on the described gate electrode by described source-drain electrode via hole;
One drain electrode is formed on the top of described second layer insulating barrier, and is connected with ohmic contact layer on the described gate electrode by described source-drain electrode via hole;
One passivation layer is formed on the top of described data wire, source electrode and drain electrode;
One pixel electrode is formed on described second insulating barrier, and partly overlaps with described drain electrode;
One groove is formed on the grid line between the described data wire, and described groove blocks the ohmic contact layer of grid line top and exposes the ground floor insulating barrier, and the top that described groove exposes first insulating barrier covers one deck pixel electrode material layer.
In the such scheme, described grid line, gate electrode, source electrode, data wire or the very monofilm of Cr, W, Ti, Ta, Mo, Al or Cu that leaks electricity perhaps are one of Cr, W, Ti, Ta, Mo, Al or Cu or composite membrane that combination in any constituted.Described ground floor insulating barrier, second layer gate insulation layer or passivation layer are oxide, nitride or oxynitrides.
To achieve these goals, the present invention provides a kind of manufacture method of TFT matrix structure simultaneously, comprising:
Step 1 on substrate, deposits grid metal level, ground floor insulating barrier, semiconductor layer and ohmic contact layer successively, adopts first mask, carries out mask, exposure and etching, forms grid line, gate electrode and thin film transistor channel part;
Step 2, deposition second layer gate insulation layer adopts second mask on the substrate of completing steps 1, carry out mask, exposure and etching after, the part second layer gate insulation layer on the ohmic contact layer of gate electrode top is etched away formation source-drain electrode via hole; Simultaneously the part second layer insulating barrier on the grid line between neighbor is etched away, form a recess;
Step 3, sedimentary origin leaks metal level on the substrate of completing steps 2, adopts the 3rd mask, carries out forming source electrode and drain electrode after mask, exposure and the etching, and wherein the source electrode is connected with ohmic contact layer by the source-drain electrode via hole respectively with drain electrode;
Step 4, deposit passivation layer on the substrate of completing steps 3, adopt the 4th mask, carry out forming the passivation layer figure after mask, exposure and the etching, wherein etching will etch away the passivation layer above the recess in the step 2 in this step, and continue the ohmic contact layer and the semiconductor layer of etching recess below, form the groove on the grid line; Keep the photoresist on the passivation layer after etching is finished, then pixel deposition electrode material layer on passivation layer peels off photoresist and the pixel electrode material layer above the photoresist by chemical solution at last, forms pixel electrode.
In the such scheme, depositing grid metal level, ground floor insulating barrier, semiconductor layer and ohmic contact layer in the described step 1 successively is successive sedimentation.The mask that adopts in the described step 1 is the gray mask version, after the described gray mask version exposure, obtain photoresist unexposed area, photoresist partial exposure area and photoresist complete exposure area, wherein corresponding grid line and the gate electrode position of forming of photoresist unexposed area; The corresponding thin film transistor channel position that forms of photoresist partial exposure area; The corresponding other parts of photoresist complete exposure area.The etching of described step 1 is that grid metal level, ground floor insulating barrier, semiconductor layer and ohmic contact layer once form in the multistep etching.To carry out quarter when forming thin film transistor channel in the described step 1, the ohmic contact layer of channel region was etched away fully.
Compare with prior art, the dielectric layers structure that the present invention proposes has increased the distance between source-drain electrode and the gate electrode, reduces the generation of short circuit between source-drain electrode and the gate electrode effectively, has improved the rate of finished products of TFT matrix.
Simultaneously, among the preparation method of the TFT matrix that the present invention proposes, the formation of raceway groove only can be finished by ashing (Ashing) → ohmic contact layer etching, simplified the preparation process of TFT raceway groove greatly, simultaneously can obviously reduce various defectives such as raceway groove is residual, raceway groove short circuit, channel surface roughening, ESD etc., improve the rate of finished products of TFT matrix.
Moreover what the present invention proposed forms the process of passivation layer and pixel electrode by a photoetching and stripping technology, simple and practical, has saved a large amount of chemical liquids simultaneously.
Below by drawings and Examples, technical scheme of the present invention is described in further detail.
Description of drawings
Fig. 1 is the vertical view of TFT matrix unit structure of the present invention;
Fig. 2 is Figure 1A-A partial cross section figure;
Fig. 3 is Figure 1B-B partial cross section figure;
Fig. 4 is the sectional view of the present invention after carrying out successive sedimentation grid metal level, ground floor insulating barrier, semiconductor layer, ohmic contact layer on the substrate;
Fig. 5 is that the present invention adopts expose fully sectional view behind the grid metal level, ground floor insulating barrier, semiconductor layer, ohmic contact layer etching of corresponding region of photoresist in the gray mask version photoetching process;
Fig. 6 is that the present invention adopts partly expose sectional view after the ohmic contact layer etching of corresponding region of photoresist in the gray mask version photoetching process;
Fig. 7 is the present invention's sectional view of the present invention behind deposition second layer gate insulation layer on substrate, semiconductor layer, the ohmic contact layer;
Fig. 8 be the present invention by the second time chemical wet etching fall sectional view behind the second layer gate insulation layer on the part ohmic contact layer;
Fig. 9 is the sectional view after the present invention's photoetching for the third time forms source-drain electrode.
Mark among the figure: 21, substrate; 22, grid metal level; 22a, grid line; 22b, gate electrode; 23, ground floor insulating barrier; 24, semiconductor layer; 25, ohmic contact layer; 26, second layer insulating barrier; 27, metal level is leaked in the source; 27a, source electrode; 27 b, drain electrode; 27c, source-drain electrode via hole; 27d, data wire; 28, passivation layer; 29, pixel electrode material layer; 30, groove; 31, pixel electrode.
Embodiment
Fig. 1, Fig. 2 and Figure 3 shows that the structure of TFT matrix of the present invention.
As Fig. 1, Fig. 2 and shown in Figure 3, TFT matrix structure of the present invention comprises: substrate 21; Grid line 22a and with the gate electrode 22b of its one, be formed on the substrate 21; The top of grid line 22a and gate electrode 22b is coated with ground floor insulating barrier 23, semiconductor layer 24 and ohmic contact layer 25 successively; Thin film transistor channel is formed on the ohmic contact layer 25 on the gate electrode 22b; Second layer gate insulation layer 26 is formed on the ohmic contact layer 25; Source-drain electrode via hole 27c is formed on the thin film transistor channel both sides; Data wire 27d and with the source electrode 27a of its one, be formed on the top of second layer insulating barrier 26, and be connected with ohmic contact layer 25 on the gate electrode 22b by source-drain electrode via hole 27c; Drain electrode 27b is formed on the top of second layer insulating barrier 26, and is connected with ohmic contact layer 25 on the gate electrode 22b by source-drain electrode via hole 27c; Passivation layer 28 is formed on the top of data wire 27d, source electrode 27a and drain electrode 27b etc.; Pixel electrode 31 is formed on second insulating barrier 26, and partly overlaps with drain electrode 27b; Groove 30 is formed on the grid line 22a between the data wire 27d, and groove 30 blocks the ohmic contact layer 25 of grid line 22a top, and the top that groove 30 exposes ground floor insulating barrier 23 covers one deck pixel electrode material layer 29.
Gate electrode 22b of the present invention top has covered ground floor insulating barrier 23 and second layer insulating barrier 26, increased the distance between source, drain electrode 27a, b and the gate electrode 22b, reduce the generation of short circuit between source-drain electrode and the gate electrode effectively, improved the rate of finished products of TFT matrix.
Fig. 4 to Figure 10 has provided the manufacture method that adopts four photolithographic fabrication TFT matrix structures of the present invention.
On substrate 21 (clear glass or quartz), adopt the method deposition of sputter or thermal evaporation to go up the grid metal level 22 that thickness is about 3600 .The grid metal can be selected metal or their alloys such as Cr, W, Ti, Ta, Mo, Al, Cu for use, also can be satisfied the demand by the grid metal level of multiple layer metal or alloy composition.Then ground floor insulating barrier 23, the thickness that is about 4000  by PECVD method successive sedimentation thickness on grid metal level 22 is about the semiconductor layer 24 of 1800  and the ohmic contact layer 25 that thickness is about 500 , as shown in Figure 4.Ground floor insulating barrier 23 can be selected oxide, nitride or oxynitrides for use, and corresponding reacting gas can be SiH4, NH3 or N2, also or SiH2C12, NH3 or N2.The reacting gas of semiconductor layer 24 and ohmic contact layer 25 correspondences can be SiH4 and H2 or SiH2C12 and H2.
Adopt first mask, promptly gray mask version (Gray Tone mask) is carried out mask, exposure and etching.Wherein after the exposure, obtain photoresist unexposed area, photoresist partial exposure area (Gray Tone) and photoresist complete exposure area, wherein photoresist unexposed area photoresist keeps fully, for keeping the photoresist zone fully, corresponding grid line and the gate electrode position of forming; Photoresist partial exposure area photoresist partly keeps, for part keeps the photoresist zone, and the corresponding TFT raceway groove position that forms; Photoresist complete exposure area part photoresist is removed fully, is no photoresist zone.
Adopt multistep to do the method for carving and etch away corresponding grid metal level 22, ground floor insulating barrier 23, semiconductor layer 24 and the ohmic contact layer 25 in no photoresist zone, form grid line 22a and gate electrode 22b, as shown in Figure 5.The etching gas of grid metal level 22 can be selected SF6/02 or C12/02 for use, and the etching gas of ground floor insulating barrier 23 can be selected SF6/02, C12/02 or HCl/02 for use, and the etching gas of semiconductive layer 24 and ohmic contact layer 25 can be selected gases such as SF6/C12 or SF6/HCl for use.
After multistep do to carve finishes, carry out photoresist ashing technology, mainly be in order to remove the photoresist of photoresist part reserve area, podzolic gas is chosen as SF6,02 or SF6/02 mist etc.At this moment, the photoresist of the complete reserve area of photoresist is also removed (thickness attenuation) by part.After ashing was finished, the ohmic contact layer 25 of photoresist part reserve area correspondence just was exposed, and then the ohmic contact layer that will expose by a step dry carving technology etches away, and forms the raceway groove of TFT, as shown in Figure 6.Etching gas is chosen as gases such as SF6/C12 or SF6/HCl.In order to guarantee that the ohmic contact layer of channel region is etched away fully, generally take the method for over etching.
After the raceway groove of TFT forms, be about the second layer gate insulation layer 26 of 2500  by Plasma Enhanced Chemical Vapor Deposition (PECVD) (PECVD) deposit thickness on substrate 21, ohmic contact layer 25 and the semiconductor layer that exposes, as shown in Figure 7.Second layer gate insulation layer 26 can be selected oxide, nitride or oxynitrides for use, and corresponding reacting gas can be SiH4, NH3 or N2, also or SiH2C12, NH3 or N2.Because second layer gate insulation layer 26 directly overlays the channel region of TFT, so it has not only played the effect of gate insulation, has protected the raceway groove of TFT simultaneously again.
Adopt second normal masks version, carry out after mask, exposure and the etching part second layer gate insulation layer 26 on the ohmic contact layer 25 being etched away, form source-drain electrode via hole 27c, as shown in Figure 8.Lithographic method is a dry etching, and etching gas can be selected SF6/02, C12/02 or HCl/02 for use.Part ohmic contact layer 25 will come out among the source-drain electrode via hole 27c like this.In this step etching, simultaneously the part second layer insulating barrier 26 on the grid line 22a between neighbor is etched away, on grid line, form a recess.
After second layer gate insulation layer 26 etchings are finished, be about the source leakage metal level 27 of 2200  by the last thickness of method deposition of sputter or thermal evaporation.Metal level is leaked in the source can select metal or their alloys such as Cr, W, Ti, Ta, Mo, Al, Cu for use, can be single or multiple lift on the structure.
Then adopt the 3rd mask, carry out forming source electrode 27a and drain electrode 27b after mask, exposure and the etching, as shown in Figure 9, the lithographic method of taking can be dry etching or wet etching, and wherein electrode 27a in source is connected with ohmic contact layer 25 by source-drain electrode via hole 27c respectively with drain electrode 27b.
After source electrode 27a and drain electrode 27b form, be about the passivation layer 28 of 2000  by PECVD method deposit thickness.Passivation layer 28 can be selected oxide, nitride or oxynitrides for use, and corresponding reacting gas can be SiH4, NH3 or N2, also or SiH2C12, NH3 or N2.Adopt the 4th mask then, carry out forming the passivation layer figure after mask, exposure and the etching, this moment, thin-film transistor channel region was covered with second layer gate insulation layer and passivation layer.Wherein the passivation layer etching forms the passivation layer 28 of recess top after will etching away photoetching for the second time, and continues the ohmic contact layer 25 and the semiconductor layer 24 of this recess below of etching, forms groove 30.
After passivation layer 28 figures form, keep the photoresist on the passivation layer, method deposition by sputter or thermal evaporation goes up the transparent pixels electrode material layer 29 that thickness is about 400 , be generally ITO, at last peel off photoresist and the transparent conductive material layer above the photoresist by chemical solution, form pixel electrode 31, finish the making of TFT matrix, as shown in Figure 2.Its further groove 30 tops keep transparent pixels electrode material layer 29, as shown in Figure 3.
Comprehensively above-mentioned, specific embodiment of the present invention is roughly as follows: gray mask version photoetching for the first time forms grid metal level, ground floor insulating barrier, active area (semiconductor layer and ohmic contact layer) and the thin film transistor channel part of TFT matrix.Wherein gate electrode, ground floor insulating barrier, active area figure form by a step etching technics, and the formation of raceway groove is finished by photoresist ashing (Ashing) → ohmic contact layer etching technics; Second layer gate insulation layer figure is finished in photoetching for the second time; Photoetching for the third time forms source-drain electrode; The 4th photoetching forms passivation layer and pixel electrode.
Therefore, in the manufacture method of the present invention, the formation of raceway groove only can be finished by photoresist ashing (Ashing) → ohmic contact layer etching, simplified the preparation process of TFT raceway groove greatly, simultaneously can obviously reduce various defectives such as raceway groove is residual, raceway groove short circuit, channel surface roughening, ESD etc., improve the rate of finished products of TFT matrix.
Simultaneously, what the present invention proposed forms the process of passivation layer and pixel electrode by a photoetching and stripping technology, simple and practical, has saved a large amount of chemical liquids simultaneously.
It should be noted that at last, above embodiment is only unrestricted in order to technical scheme of the present invention to be described, although the present invention is had been described in detail with reference to preferred embodiment, those of ordinary skill in the art should can use different materials and equipment to realize it as required, promptly can make amendment or be equal to replacement, and not break away from the spirit and scope of technical solution of the present invention technical scheme of the present invention.

Claims (8)

1. a TFT matrix structure is characterized in that, comprising:
One substrate;
One grid line and with the gate electrode of its one, be formed on the described substrate, the top of grid line and gate electrode is coated with ground floor insulating barrier, semiconductor layer, ohmic contact layer successively;
One thin film transistor channel is formed on the ohmic contact layer on the described gate electrode;
One second layer insulating barrier is formed on the described ohmic contact layer;
One source-drain electrode via hole is formed on the second layer insulating barrier of described thin film transistor channel both sides;
One data wire and with the source electrode of its one, be formed on the top of described second layer insulating barrier, and be connected with ohmic contact layer on the described gate electrode by described source-drain electrode via hole;
One drain electrode is formed on the top of described second layer insulating barrier, and is connected with ohmic contact layer on the described gate electrode by described source-drain electrode via hole;
One passivation layer is formed on the top of described data wire, source electrode and drain electrode;
One pixel electrode is formed on described second insulating barrier, and partly overlaps with described drain electrode;
One groove is formed on the grid line between the described data wire, and described groove blocks the ohmic contact layer of grid line top and exposes the ground floor insulating barrier, and the top that described groove exposes first insulating barrier covers one deck pixel electrode material layer.
2. matrix structure according to claim 1, it is characterized in that: described grid line, gate electrode, source electrode, data wire or the very monofilm of Cr, W, Ti, Ta, Mo, Al or Cu that leaks electricity perhaps are one of Cr, W, Ti, Ta, Mo, Al or Cu or composite membrane that combination in any constituted.
3. matrix structure according to claim 1 is characterized in that: described ground floor insulating barrier, second layer gate insulation layer or passivation layer are oxide, nitride or oxynitrides.
4. the manufacture method of a TFT matrix structure is characterized in that, comprising:
Step 1 on substrate, deposits grid metal level, ground floor insulating barrier, semiconductor layer and ohmic contact layer successively, adopts first mask, carries out mask, exposure and etching, forms grid line, gate electrode and thin film transistor channel part;
Step 2, deposition second layer gate insulation layer adopts second mask on the substrate of completing steps 1, carry out mask, exposure and etching after, the part second layer gate insulation layer on the ohmic contact layer of gate electrode top is etched away formation source-drain electrode via hole; Simultaneously the part second layer insulating barrier on the grid line between neighbor is etched away, form a recess;
Step 3, sedimentary origin leaks metal level on the substrate of completing steps 2, adopts the 3rd mask, carries out forming source electrode and drain electrode after mask, exposure and the etching, and wherein the source electrode is connected with ohmic contact layer by the source-drain electrode via hole respectively with drain electrode;
Step 4, deposit passivation layer on the substrate of completing steps 3, adopt the 4th mask, carry out forming the passivation layer figure after mask, exposure and the etching, wherein etching will etch away the passivation layer above the recess in the step 2 in this step, and continue the ohmic contact layer and the semiconductor layer of etching recess below, form the groove on the grid line; Keep the photoresist on the passivation layer after etching is finished, then pixel deposition electrode material layer on passivation layer peels off photoresist and the pixel electrode material layer above the photoresist by chemical solution at last, forms pixel electrode.
5. manufacture method according to claim 4 is characterized in that: depositing grid metal level, ground floor insulating barrier, semiconductor layer and ohmic contact layer in the described step 1 successively is successive sedimentation.
6. manufacture method according to claim 4, it is characterized in that: the mask that adopts in the described step 1 is the gray mask version, after the described gray mask version exposure, obtain photoresist unexposed area, photoresist partial exposure area and photoresist complete exposure area, wherein corresponding grid line and the gate electrode position of forming of photoresist unexposed area; The corresponding thin film transistor channel position that forms of photoresist partial exposure area; The corresponding other parts of photoresist complete exposure area.
7. manufacture method according to claim 4 is characterized in that: the etching of described step 1 is that grid metal level, ground floor insulating barrier, semiconductor layer and ohmic contact layer once form in the multistep etching.
8. manufacture method according to claim 4 is characterized in that: will carry out quarter when forming thin film transistor channel in the described step 1, the ohmic contact layer of channel region is etched away fully.
CNB2006101520225A 2006-09-11 2006-09-11 TFT matrix structure and making method thereof Active CN100454558C (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CNB2006101520225A CN100454558C (en) 2006-09-11 2006-09-11 TFT matrix structure and making method thereof
KR1020070091891A KR100867866B1 (en) 2006-09-11 2007-09-11 Tft matrix structure and manufacturing method thereof
US11/853,297 US7636135B2 (en) 2006-09-11 2007-09-11 TFT-LCD array substrate and method for manufacturing the same
JP2007235757A JP4823989B2 (en) 2006-09-11 2007-09-11 TFT-LCD array substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006101520225A CN100454558C (en) 2006-09-11 2006-09-11 TFT matrix structure and making method thereof

Publications (2)

Publication Number Publication Date
CN101145561A true CN101145561A (en) 2008-03-19
CN100454558C CN100454558C (en) 2009-01-21

Family

ID=39207957

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101520225A Active CN100454558C (en) 2006-09-11 2006-09-11 TFT matrix structure and making method thereof

Country Status (1)

Country Link
CN (1) CN100454558C (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102270636A (en) * 2010-06-04 2011-12-07 元太科技工业股份有限公司 Thin film transistor array substrate and manufacturing method thereof
CN102446925A (en) * 2010-09-30 2012-05-09 京东方科技集团股份有限公司 Array base plate, liquid crystal display and manufacturing method for array base plate
CN102656698A (en) * 2009-12-29 2012-09-05 夏普株式会社 Active matrix substrate and method for manufacturing same
CN101814511B (en) * 2009-02-23 2012-11-21 北京京东方光电科技有限公司 TFT-LCD (Thin Film Transistor Liquid Crystal Display) array substrate and manufacture method thereof
CN101527320B (en) * 2007-12-03 2013-03-27 株式会社半导体能源研究所 Semiconductor
WO2013181909A1 (en) * 2012-06-08 2013-12-12 京东方科技集团股份有限公司 Thin-film transistor and array substrate and methods of fabricating same
CN104020621A (en) * 2014-05-26 2014-09-03 京东方科技集团股份有限公司 Array substrate and preparation method thereof and display device
CN104241392A (en) * 2014-07-14 2014-12-24 京东方科技集团股份有限公司 Thin-film transistor, preparation method of thin-film transistor, display substrate and display device
WO2016000342A1 (en) * 2014-06-30 2016-01-07 京东方科技集团股份有限公司 Array substrate, manufacturing method therefor, and display apparatus
CN105700216A (en) * 2016-05-07 2016-06-22 深圳爱易瑞科技有限公司 Method for manufacturing liquid crystal display panel
CN105700215A (en) * 2016-05-07 2016-06-22 深圳爱易瑞科技有限公司 Display panel manufacturing method
CN105870132A (en) * 2016-04-18 2016-08-17 武汉华星光电技术有限公司 TFT (thin film transistor) array substrate and manufacturing method therefor
US9599865B2 (en) 2015-01-21 2017-03-21 Apple Inc. Low-flicker liquid crystal display
JP2021113974A (en) * 2009-10-09 2021-08-05 株式会社半導体エネルギー研究所 Display device
CN113589597A (en) * 2021-07-30 2021-11-02 惠科股份有限公司 Display panel and display device
JP2022169538A (en) * 2009-07-31 2022-11-09 株式会社半導体エネルギー研究所 liquid crystal display

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1230919C (en) * 1994-06-02 2005-12-07 株式会社半导体能源研究所 Active matrix display device and electrooptical element
GB2350467B (en) * 1996-05-23 2001-04-11 Lg Electronics Inc Active matrix liquid crystal display and method of making same
JP3208658B2 (en) * 1997-03-27 2001-09-17 株式会社アドバンスト・ディスプレイ Manufacturing method of electro-optical element
JP3391343B2 (en) * 1999-10-26 2003-03-31 日本電気株式会社 Active matrix substrate and manufacturing method thereof
JP3617800B2 (en) * 1999-12-28 2005-02-09 松下電器産業株式会社 TFT array substrate and its manufacturing method Liquid crystal display device using the same

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527320B (en) * 2007-12-03 2013-03-27 株式会社半导体能源研究所 Semiconductor
US8558236B2 (en) 2007-12-03 2013-10-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8497964B2 (en) 2009-02-23 2013-07-30 Beijing Boe Optoelectronics Technology Co., Ltd. TFT-LCD array substrate
CN101814511B (en) * 2009-02-23 2012-11-21 北京京东方光电科技有限公司 TFT-LCD (Thin Film Transistor Liquid Crystal Display) array substrate and manufacture method thereof
US11728350B2 (en) 2009-07-31 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor
JP2022169538A (en) * 2009-07-31 2022-11-09 株式会社半導体エネルギー研究所 liquid crystal display
JP7304466B2 (en) 2009-07-31 2023-07-06 株式会社半導体エネルギー研究所 liquid crystal display
JP2021113974A (en) * 2009-10-09 2021-08-05 株式会社半導体エネルギー研究所 Display device
JP7161562B2 (en) 2009-10-09 2022-10-26 株式会社半導体エネルギー研究所 Display device
CN102656698B (en) * 2009-12-29 2015-06-17 夏普株式会社 Active matrix substrate and method for manufacturing same
CN102656698A (en) * 2009-12-29 2012-09-05 夏普株式会社 Active matrix substrate and method for manufacturing same
CN102270636A (en) * 2010-06-04 2011-12-07 元太科技工业股份有限公司 Thin film transistor array substrate and manufacturing method thereof
CN102270636B (en) * 2010-06-04 2015-12-16 元太科技工业股份有限公司 Thin-film transistor array base-plate and manufacture method thereof
CN102446925A (en) * 2010-09-30 2012-05-09 京东方科技集团股份有限公司 Array base plate, liquid crystal display and manufacturing method for array base plate
CN103489918A (en) * 2012-06-08 2014-01-01 京东方科技集团股份有限公司 Thin-film transistor, array substrate and manufacturing method thereof
WO2013181909A1 (en) * 2012-06-08 2013-12-12 京东方科技集团股份有限公司 Thin-film transistor and array substrate and methods of fabricating same
WO2015180302A1 (en) * 2014-05-26 2015-12-03 京东方科技集团股份有限公司 Array substrate and manufacturing method thereof, and display device
US9835921B2 (en) 2014-05-26 2017-12-05 Boe Technology Group Co., Ltd. Array substrate, manufacturing method thereof and display device
CN104020621A (en) * 2014-05-26 2014-09-03 京东方科技集团股份有限公司 Array substrate and preparation method thereof and display device
CN104020621B (en) * 2014-05-26 2017-03-01 京东方科技集团股份有限公司 A kind of array base palte and preparation method thereof, display device
WO2016000342A1 (en) * 2014-06-30 2016-01-07 京东方科技集团股份有限公司 Array substrate, manufacturing method therefor, and display apparatus
US9761616B2 (en) 2014-06-30 2017-09-12 Boe Technology Group Co., Ltd. Manufacturing method of array substrate with reduced number of patterning processes array substrate and display device
US9748276B2 (en) 2014-07-14 2017-08-29 Boe Technology Group Co., Ltd. Thin film transistor and method of manufacturing the same, array substrate and display device
CN104241392B (en) * 2014-07-14 2017-07-14 京东方科技集团股份有限公司 A kind of thin film transistor (TFT) and preparation method thereof, display base plate and display device
CN104241392A (en) * 2014-07-14 2014-12-24 京东方科技集团股份有限公司 Thin-film transistor, preparation method of thin-film transistor, display substrate and display device
US9599865B2 (en) 2015-01-21 2017-03-21 Apple Inc. Low-flicker liquid crystal display
CN105870132A (en) * 2016-04-18 2016-08-17 武汉华星光电技术有限公司 TFT (thin film transistor) array substrate and manufacturing method therefor
CN105700215A (en) * 2016-05-07 2016-06-22 深圳爱易瑞科技有限公司 Display panel manufacturing method
CN105700216A (en) * 2016-05-07 2016-06-22 深圳爱易瑞科技有限公司 Method for manufacturing liquid crystal display panel
CN113589597A (en) * 2021-07-30 2021-11-02 惠科股份有限公司 Display panel and display device

Also Published As

Publication number Publication date
CN100454558C (en) 2009-01-21

Similar Documents

Publication Publication Date Title
CN100454558C (en) TFT matrix structure and making method thereof
US7636135B2 (en) TFT-LCD array substrate and method for manufacturing the same
CN100463193C (en) TFT array structure and its producing method
CN101526707B (en) TFT-LCD array base plate structure and manufacturing method thereof
CN102629577B (en) TFT array substrate and manufacturing method thereof and display device
CN100483232C (en) TFT LCD array substrate structure and its production method
JP5564464B2 (en) TFT-LCD array substrate and manufacturing method thereof
CN102034750B (en) Array substrate and manufacturing method thereof
US9236405B2 (en) Array substrate, manufacturing method and the display device thereof
CN101685229B (en) Method for manufacturing array substrate of liquid crystal display device
CN101752319B (en) Manufacture method of thin film transistor liquid crystal display array substrate
CN102709234B (en) Thin-film transistor array base-plate and manufacture method thereof and electronic device
JP2008166765A (en) Tft array structure and manufacturing method therefor
US20210408076A1 (en) Display substrate and manufacturing method thereof, display panel, and display device
CN104576542A (en) Array substrate, manufacturing method of array substrate and display device
CN101013709A (en) TFT array structure and manufacturing method thereof
CN104269413B (en) Array base palte and preparation method thereof, liquid crystal display device
CN104835782A (en) Array substrate, manufacturing method of array substrate and display device
CN100454559C (en) TFT matrix structure and making method thereof
CN106784014A (en) Thin film transistor (TFT) and preparation method thereof, display base plate, display device
CN102654698A (en) Liquid crystal display array substrate and manufacturing method thereof as well as liquid crystal display
CN102768990A (en) Array substrate, and manufacturing method and display device of array substrate
CN102468243B (en) TFT (Thin Film Transistor) array substrate, manufacturing method and liquid crystal display device
CN102629592A (en) Array substrate, producing method and displaying device thereof
CN104576526B (en) A kind of array substrate and preparation method thereof and display device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant