CN101135630A - 颗粒探测器及其方法的改进以及烟雾探测器 - Google Patents

颗粒探测器及其方法的改进以及烟雾探测器 Download PDF

Info

Publication number
CN101135630A
CN101135630A CNA2007101815137A CN200710181513A CN101135630A CN 101135630 A CN101135630 A CN 101135630A CN A2007101815137 A CNA2007101815137 A CN A2007101815137A CN 200710181513 A CN200710181513 A CN 200710181513A CN 101135630 A CN101135630 A CN 101135630A
Authority
CN
China
Prior art keywords
detector
particle
fluid
light
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101815137A
Other languages
English (en)
Other versions
CN101135630B (zh
Inventor
马丁·T·科尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cole Innovations & Design Ltd
Siemens Schweiz AG
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2003905839A external-priority patent/AU2003905839A0/en
Application filed by Individual filed Critical Individual
Publication of CN101135630A publication Critical patent/CN101135630A/zh
Application granted granted Critical
Publication of CN101135630B publication Critical patent/CN101135630B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Fire Alarms (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明提供了一种适于在流体样品中确定颗粒存在的颗粒探测器,所述探测器包括:适于提供颗粒存在的指示的探测器装置;第一吸收通道,所述通道被构造成能够使流体流过通道的至少一部分。另一方面,本发明还提供了一种构造适于在流体样品中确定颗粒存在的颗粒探测器的方法,所述方法包括以下步骤:提供适于提供所述颗粒存在的指示的探测器装置;提供第一吸收通道,所述通道被构造成能够使流体流过通道的至少一部分。本发明还提供了一种烟雾探测器。本发明的颗粒探测器及其方法,能够改进颗粒、热解、不完全燃烧(闷烧)、和/或着火事件以及尘土的探测、辨别和/或分析,从而提供对流体携带的颗粒的探测的相应改进。

Description

颗粒探测器及其方法的改进以及烟雾探测器
本申请是申请日为2004年10月20日、标题为“颗粒监测器及其方法的改进”的第200480031342.4号中国专利申请的分案申请。
技术领域
本发明涉及悬浮在流体中的物质或颗粒的探测、分析和/或确定的领域。
在一种特殊形式中,本发明涉及烟雾探测器,其用于探测物质中不希望的热解或燃烧。在另一种形式中,本发明涉及早期探测类型的烟雾探测器,其可用于特殊区域的通风、空调、或者管道监测。在又一种形式中,本发明涉及监视监测,例如建筑、消防、或安全监测。在又一种形式中,本发明涉及环境监测,例如流体、地带、区域和/或周围环境(包括商业和工业环境)的监测、探测和/或分析。
显然,本发明具有广泛的应用,因而仅以实例的方式给出上述的特殊形式,而本发明的范围并不限于这些形式。
背景技术
本发明人确定了一种认识:在各种热解和燃烧环境中产生的烟雾类型是不同的。快速燃烧的火焰易于产生大量极小的固体颗粒,这些固体颗粒可聚集成不规则的形状而形成烟灰。相反地,热解的早期易于产生较少量较大的液体颗粒(具有高沸点),该液体颗粒通常以可凝聚形成更大的、半透明的球体的悬浮尘粒存在。
本发明人还确定了一种认识:探测到在整个持续时间内相对较大的颗粒在数量上缓慢地增加,通常表示热解或不完全燃烧(闷烧)的状况,而探测到快速出现大量的小颗粒并且没有早期的热解或不完全燃烧则表示使用包括使用助燃剂的纵火。
本发明人还确定了一种认识:尘土颗粒是由环境中的天然物质或生物体的磨蚀或非热分解所产生的,而且与烟雾颗粒相比,这些颗粒一般非常大。
本发明人还确定了以下认识:
传统的点型烟雾探测器起初设计用于在所保护区域中的天花板安装。这些探测器具有较低的灵敏度,难以探测在大量的气体通过所监测的区域的情况下的不希望的热解的存在,因此削弱了该探测器感应不希望的热解的存在的能力。
为了克服这些缺陷,开发了高灵敏度的吸入式烟雾探测器,并经常配置在管道上用于监测某一区域。这些探测器提供了比传统的点型探测器的灵敏度高几百倍的检测。这些吸入式系统通过气泵利用负压,并且还利用滤尘器以减少不希望的尘土污染,其污染了探测器、或不能区别与烟雾的探测而引起触发错误报警。
吸入式系统中优选使用的烟雾探测器为浊度计。这是一种对多种尺寸的颗粒(例如在火灾中,或在过热、热解、或不完全燃烧的早期所产生的多种烟雾颗粒)敏感的探测器。
现有技术的光学型烟雾(或气载颗粒)探测器通常使用单光源照射可能包含该种颗粒的探测地带。对一些探测器已经提出了使用两个光源。颗粒使这种光的一部分散射到一个或多个接收器元件(或传感器)。从接收器元件输出的信号用于触发报警信号。
其他探测器利用提供偏振的单色光源的通常在近红外波长范围内的激光光束。但是,认为这些探测器不是真正的浊度计,因为它们倾向于对特定的粒度(颗粒尺寸)范围过度敏感,而以牺牲其他的尺寸范围为代价。
上述探测器的缺陷是其对早期热解和初期火灾、以及某些快速燃烧的火灾的极小颗粒特性较为不敏感。
另一方面,电离烟雾探测器利用诸如镅的放射性元素在探测室内电离空气。这些探测器对燃烧性火灾产生的极小颗粒较敏感,但是对热解或不完全燃烧产生的较大颗粒较不敏感。还发现它们较倾向于用于置换探测室内经电离的空气的通风,并由此触发错误报警。这就产生了对其有用的灵敏度的实际限制。
其他的烟雾探测器使用了氙气灯作为单光源。氙气灯产生类似于太阳光的连续光谱,包括紫外、可见以及红外波长范围。利用这种光源可探测所有尺寸的颗粒,并且该探测器产生与烟雾的质量密度成比例的信号,这是真正的浊度计的特性。但是,该探测器不能表征火灾的类型,这是因为其不能辨别(区分)特定的粒度。而且氙气光(源)只有约4年的较短的寿命期,并且已知其光强度是变化的,这影响了灵敏度。
本发明人还认识到,为了在灵敏度方面提供宽的输出范围,现有技术的探测器提供用于将烟雾浓度数据应用于微处理器的模拟数字转换器(ADC)。通过仔细的设计,基本上使用ADC的所有容量来表示最大的烟雾浓度,例如(通常)20%/m。以8比特分辨率运行的ADC很有效,而10比特或更大的ADC则较为昂贵并且需要较大的微处理器。已经发现10比特的ADC允许将20%/m的浓度分成1024级,每一级都表示20/1024=0.02%/m的增量(增益)。所以各级是0、0.02、0.04、0.06等,而没有用于更精细的增量的可能。在低烟雾浓度时,其被认为是非常粗略的分辨率,使得难以精细地设置报警阈值。但是,在高烟雾浓度时,0.02%/m的分辨率就不必要了,例如即使有在10.00%/m或10.02%/m设置报警阈值的能力也没什么益处。所以认为现有技术的探测器的分辨率在低烟雾浓度时太粗略而在高烟雾浓度时又太精细。
包含在本说明书中的文献、装置、作用(act)或知识的任何讨论都用于解释说明本发明的上下文内容。不应该将其当作是承认:任何材料形成了在本文的公开内容和权利要求的优先权日或之前的、在澳大利亚或其他地方的相关技术的现有技术基础或的公知常识的一部分。
本发明的一个目的在于提供一种颗粒探测装置和方法,该装置和方法能够改进颗粒、热解、不完全燃烧(闷烧)、和/或着火事件以及尘土的探测、辨别和/或分析,从而提供对流体携带的颗粒的探测的相应改进。
本发明的另一目的在于提供一种适于结合管道使用或用作独立的探测器和/或监测器的颗粒探测装置。
本发明的又一目的在于减少与现有技术相关的至少一个缺陷并且提供一种或多种与颗粒探测器和/或监测器及其方法相关的改进。
发明内容
根据本发明的各个方面,颗粒、环境、流体、烟雾、地带、或区域的监测、监视、测定、探测和/或分析依据本发明给定的特殊应用的要求可以包括颗粒的存在和/或颗粒特性的确定。
在本发明的一个方面,提供了一种适于在流体样品中确定颗粒存在的颗粒探测器,所述探测器包括:适于提供颗粒存在的指示的探测器装置;第一吸收通道,所述通道被构造成能够使流体流过通道的至少一部分。
根据本发明的适于在流体样品中确定颗粒存在的颗粒探测器,其中,所述流体在进入探测器装置之前流过所述通道的一部分。
根据本发明的适于在流体样品中确定颗粒存在的颗粒探测器,进一步包括构造成接收离开所述探测器装置的流体的至少一部分的第二吸收通道。
根据本发明的适于在流体样品中确定颗粒存在的颗粒探测器,其中,所述流体基本上流过所述第一通道的全部。
根据本发明的适于在流体样品中确定颗粒存在的颗粒探测器,其中,所述流体基本上流过所述第二通道的全部。
根据本发明的适于在流体样品中确定颗粒存在的颗粒探测器,其中,所述第一和/或所述第二通道的表面被构造成避免出现紊流的流体流动。
根据本发明的适于在流体样品中确定颗粒存在的颗粒探测器,其中,所述第一和/或所述第二通道被构造成便于层流的流体(分别)到达或从所述探测器装置流出。
根据本发明的适于在流体样品中确定颗粒存在的颗粒探测器,其中,所述第二通道的一端被构造成为离开所述通道的所述流体提供离开通路。
根据本发明的适于在流体样品中确定颗粒存在的颗粒探测器,其中,所述流体是过滤的流体。
在本发明的另一方面,还提供了一种构造适于在流体样品中确定颗粒存在的颗粒探测器的方法,所述方法包括以下步骤:提供适于提供所述颗粒存在的指示的探测器装置;提供第一吸收通道,所述通道被构造成能够使流体流过通道的至少一部分。
根据本发明的构造适于在流体样品中确定颗粒存在的颗粒探测器的方法,其中,所述第一通道被构造成能够使所述流体进入探测器装置。
根据本发明的构造适于在流体样品中确定颗粒存在的颗粒探测器的方法,进一步包括提供被构造成接收离开所述探测器装置的流体的至少一部分的第二吸收通道的步骤。
根据本发明的构造适于在流体样品中确定颗粒存在的颗粒探测器的方法,其中,所述流体基本上流过所述第一通道的全部。
根据本发明的构造适于在流体样品中确定颗粒存在的颗粒探测器的方法,其中,所述流体基本上流过所述第二通道的全部。
根据本发明的构造适于在流体样品中确定颗粒存在的颗粒探测器的方法,其中,所述第一和/或所述第二通道的表面被构造成避免出现紊流的流体流动。
根据本发明的构造适于在流体样品中确定颗粒存在的颗粒探测器的方法,其中,所述第一和/或所述第二通道被构造成便于层流的流体(分别)到达或从所述探测器装置流出。
在本发明的又一方面,提供了一种颗粒探测器,其是根据构造适于在流体样品中确定颗粒存在的颗粒探测器的方法构造的。
根据本发明的探测器,其中,所述探测器是点型探测器。
根据本发明的探测器,其中,所述探测器是吸气式探测器。
在本发明的又一方面,提供了一种烟雾探测器,其包括根据构造适于在流体样品中确定颗粒存在的颗粒探测器的方法所构造的探测器。
在本发明又一方面,提供了一种用于在流体样品中确定大致具有预定尺寸或尺寸范围的颗粒存在的方法和设备,该方法包括以下步骤:用第一波长的光照射样品,获得表示第一照射的第一响应信号,用第二波长的光照射样品,获得表示第二照射的第二响应信号,以及通过比较第一和第二信号而确定具有该尺寸或该尺寸范围的颗粒的存在。
优选地,该照射是水平和/或垂直偏振的(polarised)。
本发明的还一方面,提供了一种适于在颗粒监测器中提供增益控制的增益控制设备,所述设备包括具有第一放大器的第一增益级、具有第二放大器的第二增益级、以及从第二增益级的输出到第一增益级的输入的电压或电流受控反馈(装置),以使放大器的频率响应不受所述反馈(信号)的影响。
在本发明的又一方面,提供了一种确定颗粒监测器的保养间隔的方法,该方法包括如下步骤:确定尘土颗粒的存在,提供该颗粒存在的检测,以及当检测到达预定阈值时提供保养指示。
在本发明的再一方面,提供了一种颗粒监测室,其包括与照射源可操作结合的第一透镜、用于将入射光聚焦到接收器元件的第二透镜、以及主要用于阻止光直接从第一透镜散射(发散)而入射到第二透镜的主光阑。
在本发明的另一方面,提供了一种用来确定流经给定区域的流体速率的方法和设备,该方法包括如下步骤:在流体流动通道中较低流速的位置提供第一传感器,在流体流动通道中相对较高流速的位置提供第二传感器,第二传感器具有大致与第一传感器类似的温度特性,以及基于流过该第一和第二传感器的流体的冷却效果的检测而确定流速。
另外,根据本发明的另一方面提供了一种用于在管道上安装壳体的方法和设备,该方法包括如下步骤:提供至少一个与该壳体相结合的接头件,将壳体定位在靠近管道的安装区域,修整(shaping)该接头件以基本适合于靠近安装区域的管道外廓,以及使用接头件连接壳体。
本发明还提供了一种用于监测流体介质中微粒的存在、浓度和特性的监测器。
本发明还提供了一种对数信号,作为触发探测器的阈值或报警的输出。其是指一种振幅可以按照对数函数或标度而被压缩的信号。该对数信号可以表示所探测颗粒的各种特性,例如存在、数量、频率、浓度和/或持续时间。
实质上,在本发明的一个方面,利用不同的波长、各种波长范围和/或偏振来探测流体中的预定颗粒。
实质上,在本发明的另一方面,两个信号的减法或提供两个信号的比例使得表示对颗粒和粒度探测的输出更易测量。
实质上,在本发明的另一方面,根据两种信号放大了表示颗粒探测的这种输出。
在说明书中披露了和/或在形成了本发明的说明的一部分的所附的权利要求书中限定了其他的方面和优选方面。
已经发现本发明可产生多种优点,例如减小的尺寸、成本和能耗,并同时实现了对灵敏度、可靠性、保养周期和错误报警极小化的最高的工业标准,和/或用于对环境中烟雾和/或尘土颗粒的存在进行监测,使得可以提供对烟雾的极高灵敏度而不会因为尘土而发生错误报警。
贯穿本说明书,提及了多种具有特定波长的不同的光源。所提及的光源和波长只是因为它们是现在商业上可获得的光源。应该理解的是成为本发明基础的原理对于不同波长的光源具有同等的适用性。
监测器可包括提及的探测器或类似设备。
本发明适用性的进一步范围由下文所给出的详细描述将变得显而易见。但是,应该理解,在表示本发明优选实施方式时,仅以举例说明的方式给出详细的描述和具体实例,因为通过该详细描述,在本发明的精神和范围内的各种变化和修改对于本领域技术人员将变得显而易见。
附图说明
通过参考以下结合附图的优选实施例的描述,相关领域的技术人员可以更好地理解本申请的进一步的公开内容、目的、优点和方面,附图仅以图式说明的方式给出,而不用于限制本发明,附图中:
图1示出了蓝光430nm波长和红光660nm波长对整个粒度范围内的颗粒的结果;
图2示出了蓝光430nm波长和绿光530nm波长对整个粒度范围内的颗粒的结果;
图3示出了蓝光470nm波长和红外光940nm波长对整个粒度范围内的颗粒的结果;
图4示出了由蓝光信号相对减去红光信号后的结果;
图5示出了由蓝光信号相对减去绿光信号后的结果;
图6示出了由蓝光信号相对减去红外光信号后的结果;
图7示出了对各种类型的燃烧剂在整个时间内粒度的变化;
图8示出了红外光通道和蓝光通道对来自各种燃烧剂和/或火灾增长的各个阶段的烟雾的对比响应;
图9示出了在跟踪过程中由给定燃烧剂响应于气载颗粒的通道B输出和通道A输出的相对比率;
图10示出了根据本发明的一个实施例的烟雾监测器的示意性方框图;
图11示出了根据本发明的一个实施例的一种形式的增益控制放大器的电路图;
图12、图13示出了包括指示光路的优选的控制室的几何形状;
图14示出了根据本发明的一个方面的双凸透镜的用途;
图15示出了根据本发明的一个方面的非球面透镜的相关操作;
图16示出了根据本发明的一个方面的非球面镜的用途;
图17示出了根据本发明的一个方面的双凸透镜的相关操作;以及
图18示出了将探测器单元安装到管道装置上的实例。
具体实施方式
在所描述的实施例中,至少提及双通道,一个是通道A,其使用诸如红光或红外光波长的波长,另一个是通道B,其使用诸如蓝光波长的波长。可以使用其它的通道,例如通道C,其使用诸如绿光波长的波长。根据本发明也可以使用其他波长,其将在下列描述中变得显而易见。通常,如果由较长波长确立的读数与由较短波长确立的读数匹敌,则其是优选的。更优选地,由较短波长减去较长波长。还可以使用比率来比较波长读数。
光的波长
在本发明的一方面,发明人已确定了所采用的光的波长严重影响本装置对粒度的灵敏度。Bohren CF和Huffman DR在“Absorptionand Scattering of Light by Small Particles”,ISBN0471-05772-X中描述了在各种尺寸范围内来自颗粒的光的散射(发散)。
已经确定了米氏方程(Mie equation)适用于考察合乎常规烟雾和尘土的尺寸范围的颗粒。快速燃烧性火灾易于产生非常大量的极小含碳颗粒,其可聚集成不规则的形状而形成烟灰。相反的,热解的早期易于产生较少量的较大的液体颗粒(具有高沸点),通常以悬浮微粒存在,并可凝聚而形成更大的半透明球体或小液滴(微滴)。尘土颗粒一般由机械磨蚀所产生,并且具有不规则的形状,其可以由用于模型化目的的更大球体来近似。烟雾或尘土的来源不可能是单分散性的(包含一种粒度),而更可有能是多分散性的,具有可遵循高斯分布的尺寸范围。发明人已经发现用于尺寸分布的通常标准偏差在1.8到2附近。
还发现城市中的气载颗粒分布是双峰分布,在约0.1微米和10微米处出峰。通常,烟雾颗粒处在0.01微米到1微米的范围内,而气载尘土颗粒处在1微米到100微米的范围内。但是,在1微米界线处有部分重叠,因为在自然界中最小的尘土小于可能的最大烟雾颗粒。
本发明人还确定了某些粒度更易于被特定(不同)波长的光所辨别。假定如此,我们使用两种波长的入射光。光可以在蓝光到红光(以及红外光)的任何范围内。一个实例为从400nm(蓝光)到1050nm(红光)的范围内的光。例如,可使用430nm(蓝光)和660nm(红光)。
通过对总体平均直径在0.01微米到10微米范围内的粒度应用米氏理论(Mie theory)并使用1.8的标准偏差,图1示出了两种波长的入射光(430nm(蓝光)和660nm(红光))的结果,每一种光都是非偏振的(unpolarised)、垂直偏振的或水平偏振的,并相对于光轴以相同的角度发射。
图1中,结果中的蓝光系(B=非偏振的蓝光,BV=垂直偏振的蓝光,BH=水平偏振的蓝光)很适合于烟雾和尘土的探测,而结果中的红光系(R,RV和RH)同样适合于尘土的探测,但在探测宽范围的烟雾颗粒时由于缺少对小颗粒的响应而比较弱。图1中所有的曲线在高于约0.8微米处聚集在一起,而粒度小于0.8微米的曲线之间存在显著的差异。实现了对垂直蓝光(BV)与水平红光(RH)的最佳分离。在更大的直径处不能有效地分离这些曲线。由于给定波长和给定粒度之间的相互作用导致的相位消除和加强引起了曲线中的周期性(边缘效应或共振)。
如果改为考察波长430nm(蓝光)和530nm(绿光)的组合,得到图2所示的结果。这里,各个曲线图相互之间更加相似,而难以在高于约0.5微米处使这些曲线分离。
所选择用于例示性说明的波长限于商业可获得的发射器的波长。基于在图2(530nm)中所获得的信息,橙色光(620nm)的结果与图1(660nm)相似。
图3中示出了蓝色光(470nm)与红外光(940nm)的结果。在图3中,波长分离基本为一个倍频程(octave)。可以看出在低于1微米(烟雾和尘土之间的标准界线)的区域中,曲线更清晰地分离。
虽然这在甚至更宽地分离的波长下操作监测器有一些优点,但目前可用的技术是一个限制因素。用于探测散射光的接收器元件是具有提高的蓝光响应的PIN光电二极管。由于在850nm处具有峰值响应,其响应在400nm和1050nm处降低约30%,所以为了实用,目前发射器波长限于这个范围。当然,如果可使用另一种接收器元件,则可以改变射入颗粒的光的波长以获得更大的分离。
从上述结论可以看出,在本发明的一个实施例中,用于两个发射器照射待探测颗粒的波长应优选在400nm到500nm范围内的蓝光/紫外光和在650nm到1050nm范围内的红光/红外光。
在本发明的另一个方面,已经发现如果将接收信号的结果相互对比,例如,通过比较比率或通过相互消减(即从一个信号中减去另一个信号),则可以产生更可靠的“触发”或探测信号,其表明在本发明的监测器所适用的应用中存在具有感兴趣粒度的颗粒。因此,例如,如果将本发明的监测器设置为“烟雾”监测器,那么应该对较小的颗粒比对较大的(尘土)颗粒更感兴趣。因此,本发明人认识到,对于烟雾监测器来说,例如,已经发现蓝光对较小的以及较大的粒度有响应,而红外光只对较大的颗粒有响应。通过获取基于“蓝光”响应信号少于“红外光”响应信号的信号,可将监测器设置成对小颗粒具有相对较高的响应率,而对较大的颗粒具有较低的或零响应率。
例如,图4示出了从蓝光(B)数据中减去红光水平(偏振)的(RH)、红光非偏振的(R)、或红光垂直(偏振)(RV)的数据的结果。以这些方式设置的监测器以更高的灵敏度(以来自B-RH组合的最佳灵敏度)响应于小于1微米的颗粒。为了避免混乱,没有示出BH和BV的结果,但它们是一致的。
为了与图4对比,从B中减去GH、G和GV产生了图5的结果。尽管边缘效应很显著,但是相对较小的粒度还是比较大(尘土状)的粒度更易于辨别。
图6示出了在从B中减去IRH后的结果。为了清楚,省略了其他的结果。另外,还示出了对于薰香、棉灯芯、烤面包片和波特兰水泥(一种尘土替代品)所获得的平均粒度的一些公布的数据。可以看出,用于实施这种减法的监测器对常规烟雾类型具有合适的灵敏度,并能够在相当大的程度上(相对地)排斥尘土。
根据该减法的方面,已经开发了本发明的又一方面,因为可利用合理构造的增益放大器提供由警报或其他报警装置或系统使用的适当的输出信号。以下将更充分地披露这个方面。
除了上面所披露的两种波长之外,如果可使用第三或其它波长,就有可能根据所使用的波长不仅识别小颗粒和大颗粒,而且可以识别其他(中间)尺寸的颗粒。
双通道设计
根据本发明的一个方面,通过使用双通道设计提供另一个特性,即本文中所述的通过从B(样品)通道中减去A(参照物)通道(或反之亦然),我们可实现零点平衡。已经发现如果监测室的背景随时间变化时该平衡不会显著地变化。本发明人已经认识到,当监测室在长时间范围(即通过使用尘土滤器而极大延长的时间)内老化或污染时,背景光级会发生改变。通道相减的好处在于,由于双通道(特别是对尘土堆积)的响应基本相同,因此其影响自相抵消,这使得由加法电路所得到的输出随时间的任何改变最小。值得注意的是,由尘土获得的信号不依赖于其是气载的一或其可停留在表面上。这对于比尘土更大的任何物质一尘土状凝聚物或甚至(墙)壁同样成立。
依据保养标准,认为这种由于污染所导致的趋于零的偏移是一有价值的特性。
信号电平分析
参照烟雾监测器的应用,对本发明做进一步的披露。但是,值得注意的是本发明并不仅限于这种应用。
传统的安装于天花板(顶棚)的“光学”烟雾探测器通常提供相当于约10%/m(3%/ft)的遮光率(obscuration)的灵敏度,用于产生报警。对极高灵敏度的烟雾探测所设立的基准需要至少高出两个数量级的灵敏度,相当于在整个量程具有低于0.1%/m遮光率这个水平的报警设定点。Eccleston、King和Packham(Eccleston AJ,King NK和Packham DR,1974:The Scattering Coefficient and MassConcentration of Smoke from some Australian Forest fires,APCAJournal,v24 no11)已经证明对于桉树森林火灾烟雾,该0.1%/m水平对应于4km的可视范围和0.24mg/m3的烟雾浓度。如此高的灵敏度能够进行早期热解的探测,并由此对建筑物中的潜在火灾提供最早的报警,同时具有较低的错误报警率。
如今大多数极高灵敏度烟雾探测器利用具有红外固态激光二极管的光学(监测)室。红外光的长波长有利于探测尘土以及来自某些类型火灾的烟雾悬浮颗粒的较大的气载颗粒特性,但在探测其他火灾中所含有的非常小的颗粒时比较差。优选在更短的可见光波长下操作的传统的固态激光器很昂贵,或者在升高的环境温度(60℃)下不能可靠地操作。为了克服这些困难,在应用于烟雾监测器的本发明的优选实施例中,决定使用在可见光谱蓝光端(470nm)操作的发光二极管(LED)发射器。
如以下将进一步说明的,监测器设置结合了这种设置为与光学监测室内的接收器元件轴成60°角的蓝光发射器。监测器还包括设置为以相同角度、但与蓝色发射器水平相对的940nm(红外光)的参考发射器。在10°的有效发射器照射锥角下,这种配置提供了相对最佳的设置,其使得系统的灵敏度最大化,而同时使得可能干扰接收器元件的背景光最小化。
对于指定的烟雾密度(0.1%/m),包括(比方说)0.3 μm的物质平均粒径(具有1.8的实际几何标准偏差)的颗粒,Weinert(WeinertD.2002:Assessment of Light Scattering from Smoke Particles for aPrototype Duct-mounted Smoke Detector,unpublished)已经确定在所使用的监测器设置中,这种烟雾通过用非偏振蓝光源辐照所接收的信号强度约为每单位辐照4.5E-8的数量级。将在470nm和940nm的Weinert数据绘图并在图3中示出。关键地,这意味着,由于来自监测室壁的有害的残留反射,由元件接收的“背景”光强度必须比发射器光束强度低至少8个数量级,以使得不干扰需要的光信号(散射自烟雾的)。
在一种形式中,指定蓝光发射器在500mA的驱动电流下具有40坎德拉(cd)的发光强度。根据定义,1cd的功率水平为每球面度(sr)1.464mW,所以额定功率是1.464*40=58.6mW/sr。5°半角转换为2π(1-cos(5))=0.024sr,所以输出功率是58.6*0.024=1.4mW。附带地,在这种驱动电流下,发射器电压降是4.0V,所以如果使用0.1%的负载循环,则对发射器的输入功率是0.5*4.0*0.001=2.0mW,这比其最大功率耗散额定值小1%。
因此,在脉冲发射器功率输出为1.4mW时,对所使用的设置定向至元件的散射光信号是1.4*4.5E-8=6.3E-5μW。这种水平的照射被引向并聚焦而落到接收器元件上,该元件是接收器模块中的PIN光电二极管。指定该元件的灵敏度在400nm时为0.2A/W,在470nm时变为0.31μA/μW。因此,在指定的92%(未涂层的)的透镜透光率下,由被照射的元件所转换的信号为0.31*6.3E-5*0.92=1.8E-5μA。
在一种形式中,该接收器模块包括三级的AC-耦合的脉冲预放大器,该脉冲预放大器包括电流到电压转换器和其后的两个电压放大器。该转换器是具有差动连接在反相和正相输入之间的PIN光电二极管而忽略串联电阻的运算放大器。反馈电阻器可以是3.9M(用3.9pF分流),所以在中频带频率,对于1μA的输入信号,从这一级的输出将是3.9E6*1E-6=3.9V/μA。响应于指定的元件照射,输出变为3.9*1.8E-5=7.0E-5V或70μV。
在一种形式中,接下来的两级是各自具有中频带增益为1 0的运算放大器,所以在指定的照射下的接收器模块输出应为7.0mV。用于信号处理的标准全量程输出电平可以是3V,所以主放大器电压增益将为3/7.0E-3=429。采用两个相似的级,这种放大器将需要每级的增益为21。实际上已经发现每级增益为17时已足够用来产生符合全量程所需要的额定0.1%/m的灵敏度。
无疑,所有烟雾探测器的灵敏度都取决于粒度,并且有意义的标准将需要指定这个尺寸(或尺寸范围)。不过,完善的性能国际基准是新近由Vision Systems Australia公司使用氙气光源制造的VESDA MK3监测器。事实上,这种光源比得上蓝光发射器,因为氙气灯的光谱特性,结合了PIN光电二极管的光谱响应和来自小悬浮颗粒或分子(其有利于如1/λ4的短波长)的光散射,确定对于基于氙气的监测器的基准的特征波长为470nm,与蓝光发射器相同。为此,可连续使用诸如氮气和FM200的可靠气体用作标准(这对基于红外激光的探测器是不可能的)。
如上所述,监测器采用两个在不同波长下操作的发射器。参照图3,对于较大的颗粒(>1μ),设计目标为由红外信号在元件处产生相同的信号电平,这与对蓝光信号的情形相同。在940nm的红外光波长下,接收器元件具有0.55μA/μW(可与在470nm下的0.31μA/μW相比较)的灵敏度。由于在940nm处透镜透光率保持92%,又因为所有的相关方程都是线性的,并且几何图形相对统一,所以可以使红外光发射器输出功率通过0.31/0.55=0.56的系数而降低。由于在500mA的电流下,红外光发射器具有343mW/sr(可与蓝光发射器的58.6mW/sr相比较)的功率电平,因此红外光发射器所需要的驱动电流变为500*0.56*58.6/343=48mA。如果使用偏振滤光片,则需要增大该驱动电流,以便克服在这种滤光片中的损失。
在所需要的发射器驱动设置下,如从接收器元件所看到那样,对于由来自监测室壁的累积反射引起的小的背景信号对于任意一个发射器都应处于大致相同(非常低)的电平。这就需要监测室壁的反射(或吸收)在很大程度上独立于所使用的波长的差异。因此,在监测室中没有任何烟雾时,双通道输出之间的差分电压应该接近于零(或者可以被调整成这样)。
通过将烟雾引入监测室,在每个通道上的电压都应该增大,但在通道之间的差分电压可能经常不为零。这种差分电压提供了对气载颗粒特性的指示。图6示出了当从蓝光通道减去红外光通道时所得到的灵敏度。这个结果可用来突出显示小于1μ质量平均粒径的颗粒的存在。图6中包括一些直线,与由一些现有材料(波特兰水泥“尘土”、烤面包片、棉灯芯以及薰香)产生的颗粒的质量平均粒径的公布数据相一致。在第一实例(大的颗粒)中差分电压应为零或略为负值,但在其他三个实例(小的颗粒)中显著为正值。这表明在保持良好的烟雾探测的同时辨别尘土的可能性。
烟雾悬浮颗粒中的粒度基本可以根据所使用的燃烧剂、温度和时段(周期)、以及决定氧气供应、冷却和烟雾稀释的气流条件而变化。在图7中,将来自Cleary、Weinert和Mulholland(Cleary TG,Weinert,DW和Mulholland GW,200 1:Moment Method of obtainingParticle Size Measures of Test Smokes,NIST)的数据取平均值以制成悬浮颗粒粒度的曲线,该悬浮颗粒由四种燃烧剂,即食用油(电炉上的玻璃皿)、烤面包片(烤箱)、聚氨酯泡沫塑料(不完全燃烧或闷烧)和山毛榉木块(电炉)所产生。可以看出,在每种情形下,平均的颗粒起初很小,随着燃烧剂完全消耗而尺寸增大然后落下。作为总结,可以说小颗粒的探测对于早期火灾的尽可能最早的报警是很重要的。其他数据表明悬浮颗粒质量浓度在所绘制的每个周期的后半部分达到最高值,而在末端下降。
图8提供了对双通道的相对响应的更广泛的对比,期望对于大量物质按公布的粒度顺序进行排列。这里,已经通过0.64的系数使红外光发射器信号降低而使波特兰水泥(尘土替代品)的响应标准化。花旗松和硬聚氨基甲酸酯的数据(Bankston等;Bankston CP,Zinn B T,Browner RF and Powell EA,1981:Aspects of theMechanisms of Smoke Generation by Burning Materials,Combustionand Flame no 41 pp273-292)表明辐射热释放速率的三个不同阶段的进展,其应该产生相应的差分电压信号。
大致地并因为前面所述的原因,可以将图8作为基于标准氙气和目前基于激光的(红外光)探测器之间的期望性能的对比。
此外,就双通道监测器而言,图8证实与这些红外探测器相比提高了对包括热解和不完全燃烧的早期火灾事故的灵敏度(提高4或5倍)而同时极大地降低对源自尘土的错误报警的灵敏度的可能性。这意味着不需要滤尘器。与之相反,期望用尘土过滤来使污染最小化,并由此使监测器的保养周期和总的工作寿命最大化。假定尘土的优良过滤器也可捕获烟雾,则可以利用尘土辨别能力来避免由不可避免通过实际过滤器的少量尘土引起的不希望的错误报警。
而且,因为通道A主要对尘土响应,因此可以对整个时间内(以月或年计算的)来自通道A的输出求积分(累计),用来记录监测室和过滤器元件当区别于烟雾时对尘土的实际暴露,由此能够根据(经常不可预测的)周围环境来确定和预告保养间隔。例如,可基于累计或计算的探测尘土读数的次数来确定滤尘器的保养间隔。一旦计数达到或超过一预定的阈值,保养指示器就会亮起或以其他方式连通。优选地,保养指示器电路应该对实际尘土水平及其持续周期求积分。
对数输出
如上所述,为了提供灵敏度的宽输出范围,现有技术的探测器提供用于将烟雾浓度数据提供给微处理器的模拟数字转换器(ADC)。经过仔细的设计,基本上利用ADC的所有容量来表示最大的烟雾浓度,例如(通常)20%/m。在8比特分辨率下操作的ADC很有用,而10比特或更大的ADC则较为昂贵,并且需要更大的微处理器。已经发现10比特的ADC允许将该20%/m的浓度分成210=1024个级,每一级表示20/1024=0.02%/m的增量。所以各级是0、0.02、0.04、0.06等,而没有用于更精细的增量的可能性。在低烟雾浓度时,其被认为是非常粗糙的分辨率,使得难以精细地设置报警阈值。但是,在高烟雾浓度时,0.02%/m的分辨率就不必要了一例如,即使有在10.00%/m或10.02%/m设置报警阈值的能力也没什么益处。所以认为现有技术的探测器的分辨率在低烟雾浓度时太粗糙,而在高烟雾浓度时又太精细。
然而,根据本发明的这个方面,通过提供对数或十分位数的输出范围而克服了上述这些现有技术的缺陷。根据本发明,已经发现分辨率适合于给定的烟雾浓度,即,在低烟雾浓度时精细而在高烟雾浓度时粗糙。如所举例说明的,对于本发明,通过使用对数输出范围,在低烟雾浓度时可在0.010或0.011%/m处设定报警阈值,而在高烟雾浓度时,可同样容易地在10%/m或11%/m处设定报警阈值。
换句话说,由于认识到烟雾是一种非常易变的物质,而对其密度(浓度)的测量达到高于2位有效数字的精度没有什么益处,因此采用对数输出对整个较宽的烟雾浓度范围和/或阈值设定提供了有利的灵敏度分辨率。
烟雾测试结果
利用本发明构造成的烟雾监测设备并根据上述的信号电平分析的公开内容而进行构造和装配,从而进行了一系列跟踪。将监测器安装在200mm直径的通风管道上,并将探测器(探针)插入该管道,以采集经过该管道的空气样品。进口风扇保持管道内相对连续的流动,并确保气载颗粒与进入的新鲜空气彻底混合。管道的出口通过烟道排出。将在约350℃下操作的电炉放置在风扇和管道入口处,使得可以将少量的燃烧剂样品放置在电炉上。
因为烟雾被夹带并与由试验室内连续吸入到管道内的主要的新鲜空气流混合,这种装置可发生相当显著的稀释。这种情形用来模拟真实的受保护的环境,预料在早期火灾成长的初期在该环境中具有高度的稀释水平。将几种不同的燃烧剂样品分别在电炉上加热以产生烟雾悬浮颗粒。此外,还评估了不用电炉而是通过搅拌在风扇和管道入口处释放的一些尘土样品。
测定两个监测器通道A和B的输出,以提供在气载颗粒被引入监测器之后超出静止状态(干净空气)的电压偏移。
观察到各种燃烧剂类型以不同的速率和浓度产生烟雾悬浮颗粒。在加热和消耗各种燃烧剂时,预期悬浮颗粒粒度随时间而变化,由此来自通道A和B的相关输出应该相应地变化。图9示出了被表示为通道A输出的比率的、响应于若干颗粒源(在对检测稳定瞬态进行修正之后)的通道B输出。这些数据以比率表示是为了说明所包括的不同的气载颗粒密度(假定我们现在关注的是粒度)。每个水平条的长度和位置表示在每个跟踪试验期间发生的范围的比率。在很多情形下,比率很快增大到最高值,然后缓慢下降。一些情形下,比率在一个周期之后在较低值处再次增大。所观察到的一些这样的模型(信号)是明显的双峰。
图9还示出了监测器对这些燃烧剂源和尘土源的相对灵敏度(以平均粒度的表观顺序排列)。相应地,尼龙管道起初产生最小的颗粒(峰比率5.3)。在试验进行一半之后,比率缓慢下降,燃烧剂在比较长的时间内真正地在电炉上熔化并产生悬浮颗粒。泡沫聚苯乙烯具有类似的结果。图表中再向下的燃烧剂易于烧焦并产生固体碳质残渣。
由2m长的PVC绝缘线构成的电热丝试验,该绝缘线通过由2V AC“范围”变压器输送的高电流而加热,以模拟导致早期热解的过热电缆。
焊料树脂的结果来自长度较短的松脂芯软钎料的熔化,其在表中的位置表明产生了相当大的颗粒(高熔点微滴)。
蒸汽的结果异常是因为从沸腾的烧水源获得的输出读数具有非常小的数量级而不能产生报警状态,但是该比率包括在图表下端设置的粒度。相反,在各种尘土源(包括滑石粉)的情况下,所有的其它源都产生大的输出读数,并且只有通道输出比率较小。
在烟雾悬浮颗粒和尘土之间明显存在基于粒度而产生的巨大区别,所以有可能在产生报警过程中利用本实施例来辨别报警所需要的烟雾源和不需要的尘土源。
在比率接近一的情况下,可以理解为从通道B(如蓝光)中减去通道A(如红外光将导致很大程度地降低读数,从而可以避免由这些源引起的不希望的报警。在比率远高于一的情况下,从通道B中减去通道A仍会导致产生报警。减法处理虽然确实可以降低监测器对某些烟雾类型的输出,事实上也可以避免由尘土源引起的不希望的报警,允许监测器在比其他情形更高的灵敏度下操作。
而且,认为这些结果与所公布的表示多种燃烧剂的数据相一致,由热解所释放的第一颗粒相当小。因此,这里所使用的监测器的类型可以提供热解的最早期警报。
电路描述
图10用方框图示意性说明了用于探测烟雾的本发明的一种形式。电路驱动一对光发射器1和2,每一个发射器具有不同的波长(颜色)和/或偏振特性。独立驱动每个发射器以提供具有短持续期(例如0.4ms)的光脉冲,可选地以(比方说)150ms和350ms的间隔(提供)。这样能够使空气质量每秒钟更新两次,成为与低功率消耗相称的高取样更新率。
散射(发散)自通过监测室3的气载颗粒的部分光被接收器模块4内的光电元件(未示出)所接收。在接收器模块4中放大该信号,并将其传送至具有增益控制器6的主放大器5。放大的信号接着通过鉴别器(鉴频器)(包括一对同步探测器7、8和一对缓冲取样与保持电路9、10),该鉴别器将源自两个相应发射器的信号分离到双通道中,用数字9表示通道A,数字10表示通道B。双通道提供关于空气中颗粒类型的信息。通道A特别响应于尘土颗粒,而通道B主要对烟雾敏感,对尘土也有点敏感。这是因为尘土和烟雾颗粒各自覆盖一个宽的尺寸范围,其在一定程度上可以重叠。因此在随后的电路中,依靠加法器11从通道B的烟雾读数中减去通道A的尘土读数,得到基本上只提供烟雾密度(浓度)的指示信号。
将该烟雾密度信号施加到阈值敏感线路12,该线路响应于所探测到的火灾危险的等级而操作一系列的三个灯和继电器13。这些灯和继电器,例如表示为:A1(警告、或1级)、A2(活动、或2级)以及A3(火灾、或3级)。通常这三个报警等级表示烟雾密度大约相当于0.03、0.06和0.10%/m的遮光率,尽管监测器可以调整为其他设置,但应该理解,信号和设定可以被设置成适合于本发明的特定应用。
此外,来自通道A的直接输出14用于表示独立于烟雾浓度等级何时尘土等级较高。这还可以有助于测试、试运转和论证。该输出还表明何时该监测器处于识别尘土的过程中。
可以将附加的灯和继电器13设置为应用于加法器11的“自动防故障(fail-safe)”电路,以便在监测器不能以足够的灵敏度正确运行的情况下提供故障报警。还可以对故障和警戒通报的远程处理提供来自加法器11的模拟输出。可选替换地,可以由从通道A和B中的每一个提供该模拟输出,以允许进行远程信号分析以及故障和警戒通报的处理。
时钟脉冲发生器(clock generator)15可以在需要时提供合适的定时信号,而电源部分16可以在适当电压下将电力分配给电路的各个部分。
当遇到非常高的烟雾或尘土浓度时,来自鉴别器通道的输出信号不饱和是有必要的。这种饱和会损失关于由两个发射器产生的相对信号电平的信息,从而压制了辨别功能。首先,放大器设置有大的“净空高度(headroom)”,使其能够在(比方说)信号电平半饱和时实现满量程运转。其次,提供了自动增益控制器。将来自辨别器通道的DC输出电压反馈给增益控制装置,以确保不会达到饱和浓度。
增益控制器
参照图11,由反馈电阻与输入电阻的比率来确定运算放大器的中频带增益。就图11中的IC3a而言,电压增益为R4/R3,而就IC3b而言,电压增益为R6/R5。由C4·R4和C6·R6确定高频率断点,而由C1·(R1/R2)、C3·R3和C5·R5确定低频率断点。放大器为DC耦合的,并且由R1和R2设定DC偏压。
增益控制装置IC4通常包括在不透光盒子中紧密耦合的LDR(光敏电阻)和LED(发光二极管)。LDR提供可调节的电阻,其值由输送通过LED的电流来确定,该LED由R7从外部控制。在没有电流通过R7时,LDR的电阻实际上无穷大,而在电流为10mA到20mA时,电阻降低到10kΩ到100kΩ的范围内。通常这种LDR会跨过R4或R6进行连接。这在操作中的优点是增大了高频率断点(C4·R4或C6·R6),从而增强(upsetting)了放大器的期望的频率响应和相位特性。另外,已经发现这种装置产生不完全动态范围的增益控制。
由于两级电路对放大的信号是非反相的,因此有可能将来自第二级(IC3b)的输出的LDR连接到第一级(IC3a)的输入。这极大地增大了可用的有效动态范围。而且,当IC4生效时,断点C4·R4和C6·R6都不受影响。
电流驱动R7源自通道A和通道B的样品与保持电压信号(高变低),通过齐纳二极管(稳压二极管)D5和D6,以确保增益控制动作直到信号电平相当大时才开始生效。
重要地,LDR、LED和齐纳二极管组合的特性既不是突变的也不是线性的。它是非线性的,具有提供对数增益功能的作用。增益中的突变可引起不稳定性或不规则的行为,因为高信号电平会引起增益的突然降低,这会引起输出的突然降低,而这又会降低对IC4的驱动,从而引起增益再次增大。而且,这会使得报警输出继电器振动。非线性设计考虑到了在输入达到高电平时的较小的输出增加,并提供了宽动态范围的控制。
对应于最高的报警阈值(“火灾”),监测器的标准满量程灵敏度相当于0.1%/m的遮光率,可用的中间报警阈值低于该水平。通过利用这种对数特性,就可能改变设置报警输出阈值,以便更高级别的报警能够在非线性范围内。通过这种方式,能够提供足够的分辨率,以便在非常低的烟雾密度(例如0.01%/m)下提供第一级报警(“警告”),而最高级别的报警可以达到1%/m、10%/m或甚至更高。
监测室光学
图12示出了发射器的射线图,该发射器在不同的波长和/或偏振作用下运行。为清楚起见,根据射线在光束的中心1201、左或右末端1202的位置示出样品射线。可选替换地,实际上在短脉冲持续时间内操作这些光束。可以看出,光束通过带有透镜的发射体1203、1204形成,并由光阑1205、1206限制,以便穿过监测室的中心、监测区域或地带1207。如果烟雾或尘土正通过这个区域1207,则这些颗粒使光束能量的一小部分散射向多个方向。该能量的部分散射向主接收光阑1208的方向,并由此散射到透镜1209,该透镜将这些能量聚焦到接收器模块1210中的光电池上。值得注意的是,在该路径中免去了中间光阑,因为由监测室构件反射并因此而来源于不合适的方向的漫射光可以由这些中间光阑反射而入射到透镜。
之后直接光束1201、1202进入吸收通道1211,在该吸收通道中源自高度吸收壁1212的多重反射消耗了光能。该通道设计用于将多重反射光引向通道1213的远端,以便在任何残留光出现之前发生多次反射。这种吸收和对于监测室及光束光阑的主光阑的几何形状的组合,避免了起始光束的残留对散射自烟雾或尘土颗粒的光的干扰。
射线1214表示通过接收透镜和主光阑而使得对光电池敏感的区域。可以看出,该敏感区集中在监测区域1207内,但光电池1210沿着超出该区域的光轴保持灵敏度。这种扩展的灵敏度由在监测室远端的吸收区1215所限制。该设计目的在于确保来自发射器1203、1204的可忽略的光能可以落在这个吸收区上,该可忽略的光易于干扰颗粒所散射的光。这种有害(不希望)的光主要来源于发射器光阑1205、1206的反射。对这个吸收区域的遮蔽(屏蔽)与从这个区域中将漫射光反射出去的组合使得这种干扰光最小化。另外,吸收区域的壁优选着色为黑色,以吸收入射光。
图13示出了典型的、由发射器光阑1205、1206反射产生的有害的射线,该射线被阻止到达中心吸收区域1215。该图还包括穿过主光阑1217并在接收通道1218中被吸收的有害射线1216。另外,如图所示,反射自主光阑1217的有害射线1219聚焦在偏离接收器模块1210内的光电池的中心轴外,并借助接收器模块1210内的光电池(如图14中的1401所示)而被避免。
所有这些方法的组合用于避免对散射自气载颗粒的光的干扰。散射的光密度通常比发射器的光低1亿倍,由此可意识到这一任务的困难。
再次参照图12,来自发射器的光1202的中心锥形区内的亮度被认为是监测室内的第一级亮度。该亮光被引向吸收通道1211,沿着该通道该亮光在多重反射之后被有效吸收。在这个中心锥角的外部是由发射器的光学器件和发射器光阑反射引起的第二级亮度1220。因此,认为整个发射器光阑区域在多个方向上必须是光亮的。相应地,从接收器或透镜光阑的视角来看发射器光阑必须是遮蔽的,这可以通过主光阑1217的定位而实现。为了实现这种遮蔽,通过从发射器光阑1205、1206的最外末端、到主光阑1217的最里末端、再到透镜光阑1222的最外末端的直线1221(在图13中以虚线示出)来设定监测室的几何形状。假定本发明的实施例的目的是制备具有最小的可用尺寸和尽可能最高的灵敏度的监测器,则认为该几何形状是一确定的几何形状。
由于处在中心发射锥1202的外面,因而主光阑1217暴露于来自发射器光阑1203、1204的第二级亮度1220的光线中。因此,主光阑1217会在多个方向反射第三级亮度1219的光。值得注意的是,在本讨论中,“亮度数量级”不一定是指十倍。假定黑色表面可以吸收99%的入射光,只反射1%,并且这1%又被由非镜面反射导致的散射进一步减少,则亮度减少的数量级可能是1000倍或更多。由此,亮度的第三级并非精确的测定值,只提供相对的表示。该第三级亮度光1219的一小部分将被反射向透镜光阑1208和透镜1209。如图14所示,透镜1209将聚焦这种偏离接收器元件1210中心轴的有害的光1219,并被接收器光阑1401所阻止。双凸透镜、较长的焦距和较宽的主光阑的使用,能够使反射自主光阑1217的有害射线(偏离中心轴的)落到接收器元件1210的侧面上,并可以被接收器光阑1401减弱。
可以预期有必要对透镜的聚焦进行较为精确的控制,以便控制不需要(有害)的光与需要的光的分离。提出了一种具有较短焦距的非球面透镜1501(如图15所示)。这种透镜在接收器元件的整个表面上提供对聚焦的精确控制,避免了球面像差并形成具有照片品质的图像。图15示出了这种透镜1501在聚焦散射光中的操作,该散射光接收自在监测区域1207(图12)中探测到的颗粒。图15还示出了透镜1501相对于主光阑1217、以及元件1210的位置。然而,图16示出了利用这种非球面透镜反射自主光阑的有害光的一部分落在元件上。这会干扰需要的信号。
再回到图12,使用了较厚的双凸透镜(具有两个凸面),并在图14和图17中更详细地示出了该凸透镜。如图14所示,由于有害的光1219从偏离中心轴的方向到达,所以这种类型的透镜1402的球面像差有助于提高这两组光线的分离。通过使用较长的焦距(而且已经发现这种分离与焦距成比例)进一步促进该分离。在图17中,可以看出,有可能使用双凸透镜1402,因为不需要在接收器元件1210处形成精确的如照片的图像,而只需要聚集光线,所以聚焦点不及所包含的光线通道重要。这样,接收器元件1210和透镜1402的几何形状优选设置为使得来自所探测到的颗粒的最大量的散射光能够落在接收器元件上(如图所示,其中光基本上照亮了元件1210的整个表面),同时不需要的光或者被上述接收器光阑1401所阻挡,或者被允许通过该元件的侧面。
流体动力学
从流体动力学观点看,监测室的设计很重要。本发明的一个实施例包括微型管道探测器,用于采集流过通风管道的空气的连续的少量但有代表性的样品,例如,本发明人在共同未决的美国专利申请2003/0011770中所披露的探测器。
参照图13,从环境中采集的诸如空气的流体样品通过入口1301被吸入到本发明的监测室内,流经探测室和监测区域1207(图12),并经出口1302流出。这就有可能使用能在长时间的运转内有效除去尘土的较大的过滤器1303,而不会引起显著的压头损失(压降)。使用中优选的过滤器类型为大孔的、具有大深度的开口泡沫塑料过滤器。该过滤器设计用来去除的最小尘土颗粒通常比过滤器的平均孔径小至少10倍。实现尘土的去除是布朗运动(快速热振动)的结果,通过布朗运动,尘土颗粒表现为似乎比它们的物理尺寸大许多倍。当流体流经深的过滤器时,统计性地去除掉尘土,使得基本上所有被认为有害的尘土在流体从过滤器出口1314流出之前就被去除。已经发现这可以使在监测室内堆积(污染)的尘土最少,从而极大地延长了保养周期。然而,过滤器的开口结构避免了发生在现有技术的吸入式烟雾探测器中的严重问题,即随时间增加烟雾颗粒去除的灵敏度降低了。而且,这种过滤器为如下类型:过滤器内的压头损失并不随过滤器负载有尘土而明显地增加。
通常,烟雾颗粒在0.01微米到1微米的范围内存在,而气载尘土颗粒在1微米到100微米的范围内存在。但是,在1微米边界处有部分重叠,因为自然界中最小的尘土颗粒比可能最大的烟雾颗粒小。因此,认为过滤器应当是优良的吸尘器是不恰当的。为了避免对烟雾的灵敏度降低,小部分的尘土颗粒必定会因此而通过过滤器,这需要以其他方式(如后文所披露的)进行调节。
过滤器1303的每边都有镜像扩散器1312、1313。过滤器的出口面引向扩散器1313,该扩散器有效地重组流体,使流体进行90°转向,并将流体引至通道1304。在本发明的优选实施例中,这个通道变窄为横截面积仍然比进口管大5倍,从而保持非常低的损失,但是局部空气速率比在过滤器的出口面1314处的速率快约8倍。
在优选的实施例中,可以安装两个传感设备1305、1306,一个传感设备1306在过滤器出口,而一个传感设备1305在该狭窄区1304内。在这种设置中,传感器1306受到从过滤器流出的相当低速的空气流的影响,以致传感器极少发生冷却。可借助于管罩1307进一步防止传感1306冷却。相反地,传感器1305较为充分地暴露于明显更高速率的空气流中,并因此比传感器1306更易于冷却。两个传感器1305、1306优选暴露于相同的环境空气温度。可以优选使用具有已知温度依赖性的匹配设备,由此由它们所暴露于的不同的空气流速引起的不同的冷却速率,可用于产生跨每个传感器的不同的电压,从而以在很大程度上独立于环境空气温度的方式提供空气速率的测定。
传感器可以是美国专利US4,781,065中所披露的类型,但是,在本发明的装置中传感器的定位是独有不同的。
同样,在本装置中,传感器在气流通过尘土过滤器1303之后被暴露在气流中,因此使得污染最小。污染可影响传感器1305、1306的冷却特性,由此降低空气流检测线路的准确性。
流体接着进入另一个扩散器1308,其也是用于发射器1203(图12)的光吸收通道1308。当空气流到达吸收通道1308的入口时,对其进行方向的改变而使其速度变慢至比入口管处的速度小约25倍。因此,在气流经过通道1308、穿过监测区域1207(图12)并进入第二通道1309的过程中只引起非常小的损失。由于这里的速度较慢,可以在气流中存在的任何在数量和尺寸上都较小的残留尘土颗粒(因为过滤器1303)具有非常低的冲量,因此通过离心力并不能使其从流体中的悬浮物中甩出,由此使得在监测区域1207附近范围内的潜在污染最小化。在存在对尘土颗粒的离心分离趋势的情况下,其冲量的方向为使得这些颗粒无害地偏转并远离主光阑1217的方向。
空气流被吸入第二吸收通道1309,并通过扩散作用逐渐并有效地被加速,从而变得匹配废气出口1302。如以上所引用的US4,781,065中所描述的,然后将废气,例如尘土有效地返回到取样的环境。
已经解释说明了气流如何以一种使损失最小化并增进层流的方式通过一系列的阶段。因此,用新鲜的空气样品非常有效并快速地净化了监测室,而只保留极少量的烟雾。尽管大的横截面积引起低的局部速率,但是已经证明监测室组件对烟雾浓度变化的响应是非常迅速的,并适合用于烟雾监测报警的目的。
由于在本发明的监测器内只有非常小的压降,因此监测器内任何位置的绝对压强都与管道内部的相近。由于管道内部与放置监测器的周围环境之间可以有大的压差,因此监测器必须保持良好的压力密封以避免任何位置的泄漏。通过监测室的设计使泄漏的可能性最小化,其包括两个平面连接的相似半部一一对接法兰1310。因此,只需要一个平垫片用来密封监测室。在一个实施例中,优选为厚密封泡沫塑料垫片,因为其易于适应监测室内法兰平面的变化,从而克服了注塑成型中可能产生的少量弯曲和翘曲变形。通过延长在两个监测室半部的中心接合处搭接的小边1311,而将监测室的区域、特别是对监测室壁的光吸收能力敏感的接近监测区域1207的区域对垫片隐藏起来。优选监测室的两个半部之间的实际接触仅在这些边上,这极大地简化了对于制造对接件平面的需要。
前面的描述已原则讨论了管道探测器的使用,但是,在本发明其他的实施例中,探测器可用其他装置替换以获取待监测的流体样品,例如空气。这种其它装置(在US4,781,065中所披露的)可以是在例如20mm直径的小口径管道内的文丘里管装置。这种管道可连接于置于文丘里管上游或者下游的抽吸泵或风机(吸气器)。如果置于下游,则多个监测器可连接于单个吸气器。在每个监测器的上游,小口径管道可延伸到整个火灾区(消防区)。取样管道可设置为延伸至待监测或探测的流体区域或地区内的网状管道或分支状管道。每个所述管道可以包括分支管道。每个所述管道和分支管道可包括多个小孔,以便将每个孔附近的空气吸入到管道中。来自所有这些孔的空气样品的组分接着被间歇或相对连续地吸入到文丘里管。设置文丘里管使得管道内的部分空气被抽吸通过监测器,以便在监测器气流返回到管道之前可以感应到烟雾或尘土的存在。然后所有的空气被吸入到吸气器并排出。
值得注意的是,优选在管道探测器或者文丘里管的情况下,只有一部分可用的空气通过监测器。这部分空气或空气样品含有与主要流体相同密度的烟雾和/或尘土。但是,通过谨慎地使流过监测器的流体最小化,可以使滤尘器中的尘土堆积速率减到最小,从而使得保养间隔最大化,而不影响监测器的灵敏度。
在本发明的另一个可选实施例中,代替文丘里管,可以将监测器直接连接于诸如5mm内径的小口径管。这适于运行诸如几米的短距离。在这种情况下,整个空气流会通过监测器,但是流速会低,因此应该不一定会影响保养间隔期。为了实现小口径管在长距离上的快速响应时间,压降将会非常高,被迫使用具有高压和高能耗的吸气器
监测器的安装
参照图18,监测器1801(例如,根据本发明的监测器)可以安装在有扁平边的、圆形的或其他形状的表面上,如带有安装接头1803的管道1802。可利用如螺钉、或其他合适的装置(未示出)固定监测器1801。在安装监测器的过程中,简单地使接头1803弯曲直到接头与被固定的监测器表面匹配。例如,如图18所示,在管道上安装时,使接头弯曲直至它们紧扣或与管道的表面相匹配。该管道可以小到直径为200mm(8英寸)。接头1803可以与监测器1801的壳体一体形成,在这种情况下,在该壳体中形成的狭槽(未示出)可以限制接头,并能使接头在没有变形的情况下弯曲,以便紧扣到管道表面或其他安装表面上。虽然本发明连同其具体实施例进行了描述,但是可以理解本发明能够进一步改变。本申请趋于从总体上覆盖本发明任何变化使用或改进,本发明的原理和包括作为已知范围内的当前披露或在本发明所述技术领域内的惯例以及在上文中提出的可应用到的必要装置的变更。
虽然结合本发明的具体实施例描述了本发明,但是可以理解,本发明能够进一步修改。本申请用来覆盖总体上遵循本发明原理的本发明的任何变化方案的使用或改进,并且包括偏离本申请的公开内容而来自本发明所属技术领域内已知的或惯常手段、以及可应用于上文中所提出的必要特征的本发明的任何变化方案的使用或改进。
由于可以以多种方式具体实施本发明而不脱离本发明的必要特征的精神,因此应当理解,除非有另外的说明,上述实施例并不限制本发明,而应该在由所附的权利要求所限定的本发明的精神和范围内广泛地解释。各种改变和等效设置也应包括在本发明和所附的权利要求的精神和范围内。因此,具体实施例应被理解为用于实现本发明的原理的多种方式的举例说明。在所附的权利要求中,装置加功能条款用来覆盖作为执行所限定功能的结构,并且不仅是结构上的等效物,而且是等效的结构。例如,尽管钉子和螺钉不是结构上的等效物,因为钉子采用圆柱形表面将木质部件固定到一起,而螺钉采用螺旋状表面将木质部件固定到一起,但是在固定木质部件的情况下,钉子和螺钉是等效结构。
当本说明书使用“包括/包含”时,其用来说明所述特性、整体、步骤或组分的存在,但不排除另外的一个或多个其他特性、整体、步骤、组分或它们的组合的存在。

Claims (23)

1.一种适于在流体样品中确定颗粒存在的颗粒探测器,所述探测器包括:
适于提供所述颗粒存在的指示的探测器装置;
第一吸收通道,所述通道被构造成能够使流体流过所述通道的至少一部分。
2.根据权利要求1所述的探测器,其中,所述流体在进入所述探测器装置之前流过所述通道的一部分。
3.根据权利要求2所述的探测器,进一步包括构造成接收离开所述探测器装置的流体的至少一部分的第二吸收通道。
4.根据权利要求2所述的探测器,其中,所述流体基本上流过所述第一通道的全部。
5.根据权利要求3所述的探测器,其中,所述流体基本上流过所述第二通道的全部。
6.根据权利要求3所述的探测器,其中,所述第一和/或所述第二通道的表面被构造成避免出现紊流的流体流动。
7.根据权利要求3所述的探测器,其中,所述第一和/或所述第二通道被构造成便于层流的流体(分别)到达或从所述探测器装置流出。
8.根据权利要求3所述的探测器,其中,所述第二通道的一端被构造成为离开所述通道的所述流体提供离开通路。
9.根据权利要求1至8中任一项所述的探测器,其中,所述流体是过滤的流体。
10.一种构造适于在流体样品中确定颗粒存在的颗粒探测器的方法,所述方法包括以下步骤:
提供适于提供所述颗粒存在的指示的探测器装置;
提供第一吸收通道,所述通道被构造成能够使所述流体流过所述通道的至少一部分。
11.根据权利要求10所述的方法,其中,所述第一通道被构造成能够使所述流体进入所述探测器装置。
12.根据权利要求11所述的方法,进一步包括提供被构造成接收离开所述探测器装置的流体的至少一部分的第二吸收通道的步骤。
13.根据权利要求11所述的方法,其中,所述流体基本上流过所述第一通道的全部。
14.根据权利要求12所述的方法,其中,所述流体基本上流过所述第二通道的全部。
15.根据权利要求12所述的方法,其中,所述第一和/或所述第二通道的表面被构造成避免出现紊流的流体流动。
16.根据权利要求12所述的方法,其中,所述第一和/或所述第二通道被构造成便于层流的流体(分别)到达或从所述探测器装置流出。
17.根据权利要求12所述的方法,其中,所述第二通道的一端被构造成为离开所述通道的流体提供离开通路。
18.根据权利要求10至17中任一项所述的方法,其中,所述流体是过滤的流体。
19.一种颗粒探测器,其是根据权利要求10至18中任一项所述的方法构造的。
20.根据权利要求1至9中任一项所述的探测器,其中,所述探测器是点型探测器。
21.根据权利要求1至9中任一项所述的探测器,其中,所述探测器是吸气式探测器。
22.一种烟雾探测器,其包括根据权利要求1至9中任一项所述的探测器。
23.一种烟雾探测器,其包括权利要求19所述的探测器。
CN200710181513.7A 2003-10-23 2004-10-20 颗粒探测器及其方法以及烟雾探测器 Expired - Lifetime CN101135630B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AU2003905839A AU2003905839A0 (en) 2003-10-23 Improvement(s) Related to Particle Monitors and Method(s) Therefor
AU2003905839 2003-10-23
AU2003906161 2003-11-08
AU2003906161A AU2003906161A0 (en) 2003-11-08 Improvement(s) Related to Particle Monitors and Method(s) Therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200480031342A Division CN100592344C (zh) 2003-10-23 2004-10-20 颗粒监测器及其方法的改进

Publications (2)

Publication Number Publication Date
CN101135630A true CN101135630A (zh) 2008-03-05
CN101135630B CN101135630B (zh) 2014-05-07

Family

ID=37444503

Family Applications (6)

Application Number Title Priority Date Filing Date
CN200480031342A Expired - Fee Related CN100592344C (zh) 2003-10-23 2004-10-20 颗粒监测器及其方法的改进
CN200710181513.7A Expired - Lifetime CN101135630B (zh) 2003-10-23 2004-10-20 颗粒探测器及其方法以及烟雾探测器
CNA2007101815122A Pending CN101135629A (zh) 2003-10-23 2004-10-20 适于安装到管道上的壳体装置及在管道上安装壳体的方法
CNA2007101815103A Pending CN101135627A (zh) 2003-10-23 2004-10-20 颗粒监测器的室结构及使流体流过颗粒探测区域的方法
CNA2007101815118A Pending CN101135628A (zh) 2003-10-23 2004-10-20 颗粒探测器及其方法
CNA2007101815141A Pending CN101135631A (zh) 2003-10-23 2004-10-20 颗粒监测器、烟雾探测器及其构造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN200480031342A Expired - Fee Related CN100592344C (zh) 2003-10-23 2004-10-20 颗粒监测器及其方法的改进

Family Applications After (4)

Application Number Title Priority Date Filing Date
CNA2007101815122A Pending CN101135629A (zh) 2003-10-23 2004-10-20 适于安装到管道上的壳体装置及在管道上安装壳体的方法
CNA2007101815103A Pending CN101135627A (zh) 2003-10-23 2004-10-20 颗粒监测器的室结构及使流体流过颗粒探测区域的方法
CNA2007101815118A Pending CN101135628A (zh) 2003-10-23 2004-10-20 颗粒探测器及其方法
CNA2007101815141A Pending CN101135631A (zh) 2003-10-23 2004-10-20 颗粒监测器、烟雾探测器及其构造方法

Country Status (5)

Country Link
EP (2) EP2112639B1 (zh)
CN (6) CN100592344C (zh)
AU (1) AU2010200806A1 (zh)
ES (1) ES2597844T3 (zh)
ZA (2) ZA200706464B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103996263A (zh) * 2014-05-11 2014-08-20 中国科学技术大学 一种采用烟雾气体传感的吸气式飞机货舱火灾探测器
CN109712367A (zh) * 2019-02-20 2019-05-03 北大青鸟环宇消防设备股份有限公司 烟雾探测器及烟雾探测方法
CN112466084A (zh) * 2020-11-25 2021-03-09 江苏中实电子有限公司 一种电气火灾监控探测器及其报警方法
CN113924168A (zh) * 2019-06-14 2022-01-11 优而佛格有限公司 配备有安全装置和对生成雾的系统的生成雾的流体的流速进行调节的装置的生成雾的系统

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101718670B (zh) * 2009-12-10 2011-05-18 天津同阳科技发展有限公司 烟气颗粒物和污染气体同时在线监测装置和方法
DE102010039230B3 (de) * 2010-08-11 2012-01-26 Siemens Aktiengesellschaft Auswerten von Streulichtsignalen bei einem optischen Gefahrenmelder sowie Ausgeben einer Staub-/Dampf-Warnung oder eines Brandalarms
US9257027B2 (en) * 2010-09-10 2016-02-09 Xtralis Technologies, Ltd. Duct detector
JP6039570B2 (ja) * 2010-11-12 2016-12-07 ユニヴェルシテ・リブレ・ドゥ・ブリュッセル 透明粒子の特性を決定する光学的方法
CA2836811A1 (en) * 2011-06-22 2012-12-27 Xtralis Technologies Ltd Particle detector with dust rejection
EP2608174B1 (de) 2011-12-20 2016-10-19 Siemens Schweiz AG Verfahren zur Erkennung eines Störobjektes in einem Streuvolumen eines optischen Brandmelders und optischer Brandmelder
KR20150090195A (ko) * 2012-11-27 2015-08-05 엑스트랄리스 테크놀로지 리미티드 화재 감지
EP3005330B1 (en) * 2013-06-03 2024-04-10 Garrett Thermal Systems Ltd Particle detection system and related methods
EP2848913A1 (de) * 2013-09-12 2015-03-18 Siemens Schweiz AG Detektionsgerät zur Feinstaubbestimmung
GB201405561D0 (en) 2014-03-27 2014-05-14 Smiths Detection Watford Ltd Detector inlet and sampling method
WO2015189089A1 (en) * 2014-06-10 2015-12-17 Koninklijke Philips N.V. Aerosol sensor and sensing method
GB2531495B (en) 2014-06-16 2017-04-12 Apollo Fire Detectors Ltd Smoke detector
KR20170030603A (ko) * 2014-10-31 2017-03-17 파나소닉 아이피 매니지먼트 가부시키가이샤 입자 검출 센서, 더스트 센서, 연기 감지기, 공기 청정기, 환기팬 및 에어컨
WO2017066487A1 (en) * 2015-10-14 2017-04-20 Manta Instructions, Inc. Apparatus and method for measurements of growth or dissolution kinetics of colloidal particles
CN106596419B (zh) * 2017-01-10 2023-02-03 长春理工大学 一种用于评价可见光烟幕遮蔽效应的测试系统
EP3276680A1 (de) * 2017-01-25 2018-01-31 Siemens Schweiz AG Optische rauchdetektion nach dem zweifarben-prinzip mittels einer leuchtdiode mit einem led-chip zur lichtemission und mit einem lichtkonverter zum umwandeln eines teils des emittierten lichts in langwelligeres licht
IT201700053602A1 (it) * 2017-05-17 2018-11-17 Marco Pruneri Apparecchiatura per il monitoraggio delle caratteristiche atmosferiche e la rilevazione di incendi
CN108519312B (zh) * 2018-03-30 2020-06-02 重庆山楂树科技有限公司 用于检测气体颗粒的装置
CN111467886B (zh) 2020-03-31 2021-11-19 苏州浪潮智能科技有限公司 一种火灾监控系统及集装箱式数据中心系统
EP3907715A1 (en) 2020-05-08 2021-11-10 Carrier Corporation Detection of a clogged filter in an aspirating detection system
US11676466B2 (en) * 2020-08-19 2023-06-13 Honeywell International Inc. Self-calibrating fire sensing device
CN112422904A (zh) * 2020-11-03 2021-02-26 山西省交通规划勘察设计院有限公司 一种公路隧道机电监控装置
US11615684B2 (en) * 2020-11-24 2023-03-28 Pixart Imaging Inc. Smoke detector
CN112634575B (zh) * 2020-12-14 2023-02-14 深圳市豪恩安全科技有限公司 一种检测颗粒浓度自适应烟感探测方法、装置及系统
CN114034611A (zh) * 2021-09-22 2022-02-11 赫海燕 热逃逸微小颗粒物相变介质生成装置、方法及探测设备与应用
CN115206050B (zh) * 2022-07-15 2023-08-01 江苏稻源科技集团有限公司 一种烟雾报警装置
US20240054875A1 (en) * 2022-08-12 2024-02-15 Ajax Systems Cyprus Holdings Ltd Smoke detection device, a scattered light sensor of the smoke detection device, and a method for detecting a smoke by means of the device
CN115567609B (zh) * 2022-11-16 2023-03-24 江苏太湖锅炉股份有限公司 一种锅炉用物联网通信方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1236097A (zh) * 1998-03-24 1999-11-24 彼特威公司 带粒子传感器的烟尘探测器
CN1418358A (zh) * 2000-02-10 2003-05-14 马丁·T·科尔 烟雾检测器的改进,尤其是管道烟雾检测器的改进

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06511554A (ja) * 1991-10-14 1994-12-22 ビジョン システムズ インコーポレイティド 汚染度検出器用の測定室に関する改良
JPH0744783A (ja) * 1993-08-04 1995-02-14 Nohmi Bosai Ltd 火災感知装置
US5926098A (en) * 1996-10-24 1999-07-20 Pittway Corporation Aspirated detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1236097A (zh) * 1998-03-24 1999-11-24 彼特威公司 带粒子传感器的烟尘探测器
CN1418358A (zh) * 2000-02-10 2003-05-14 马丁·T·科尔 烟雾检测器的改进,尤其是管道烟雾检测器的改进

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103996263A (zh) * 2014-05-11 2014-08-20 中国科学技术大学 一种采用烟雾气体传感的吸气式飞机货舱火灾探测器
CN109712367A (zh) * 2019-02-20 2019-05-03 北大青鸟环宇消防设备股份有限公司 烟雾探测器及烟雾探测方法
CN113924168A (zh) * 2019-06-14 2022-01-11 优而佛格有限公司 配备有安全装置和对生成雾的系统的生成雾的流体的流速进行调节的装置的生成雾的系统
CN113924168B (zh) * 2019-06-14 2023-04-14 优而佛格有限公司 生成雾的系统
CN112466084A (zh) * 2020-11-25 2021-03-09 江苏中实电子有限公司 一种电气火灾监控探测器及其报警方法

Also Published As

Publication number Publication date
EP1868172A2 (en) 2007-12-19
ZA200706468B (en) 2008-09-25
CN100592344C (zh) 2010-02-24
CN101135630B (zh) 2014-05-07
AU2010200806A1 (en) 2010-03-25
ES2597844T3 (es) 2017-01-23
EP2112639A2 (en) 2009-10-28
EP2112639B1 (en) 2016-07-13
ZA200706464B (en) 2008-09-25
EP1868172A3 (en) 2010-05-05
CN101135628A (zh) 2008-03-05
EP2112639A3 (en) 2010-05-05
CN101135631A (zh) 2008-03-05
CN101135627A (zh) 2008-03-05
CN1871624A (zh) 2006-11-29
CN101135629A (zh) 2008-03-05

Similar Documents

Publication Publication Date Title
CN100592344C (zh) 颗粒监测器及其方法的改进
US7724367B2 (en) Particle monitors and method(s) therefor
CN101201315B (zh) 探针
AU2001231426A1 (en) Improvements relating to smoke detectors particularly ducted smoke detectors
CN101512613A (zh) 涉及微粒监控器及其方法的改进
AU2007203107B2 (en) Improvement(s) related to particle monitors and method(s) therefor
CA2598745A1 (en) Improvement(s) related to particle monitors and method(s) therefor
AU2006201261A1 (en) Improvements Relating to Smoke Detectors Particularly Ducted Smoke Detectors
AU2008202548A1 (en) Improvements Relating to Smoke Detectors Particularly Ducted Smoke Detectors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: COLE INNOVATION + DESIGN PTY LTD.

Free format text: FORMER OWNER: COLE MARTIN TERENCE

Effective date: 20121218

Owner name: SIEMENS AG

Free format text: FORMER OWNER: COLE INNOVATION + DESIGN PTY LTD.

Effective date: 20121218

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20121218

Address after: Zurich

Applicant after: SIEMENS SCHWEIZ AG

Address before: Vitoria Australia

Applicant before: Cole Innovations & Design Ltd.

Effective date of registration: 20121218

Address after: Vitoria Australia

Applicant after: Cole Innovations & Design Ltd.

Address before: Vitoria Australia

Applicant before: Cole Martin T.

C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20140507