CN101111306A - 经脱水缩合反应可发生相转移的分子集合体及其相转移方法 - Google Patents

经脱水缩合反应可发生相转移的分子集合体及其相转移方法 Download PDF

Info

Publication number
CN101111306A
CN101111306A CNA2005800474454A CN200580047445A CN101111306A CN 101111306 A CN101111306 A CN 101111306A CN A2005800474454 A CNA2005800474454 A CN A2005800474454A CN 200580047445 A CN200580047445 A CN 200580047445A CN 101111306 A CN101111306 A CN 101111306A
Authority
CN
China
Prior art keywords
carbon number
film
bimolecular
vesicle
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800474454A
Other languages
English (en)
Other versions
CN101111306B (zh
Inventor
国岛崇隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Publication of CN101111306A publication Critical patent/CN101111306A/zh
Application granted granted Critical
Publication of CN101111306B publication Critical patent/CN101111306B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1277Processes for preparing; Proliposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/12Making microcapsules or microballoons by phase separation removing solvent from the wall-forming material solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2984Microcapsule with fluid core [includes liposome]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/31761Next to aldehyde or ketone condensation product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Medicinal Preparation (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供能够产生相转移的双分子膜小泡,该双分子膜小泡含有如下物质作为膜的构成成分:(a)碳原子数6~20的脂肪酸盐;(b)具有碳原子数6~20的脂肪链的醇或胺化合物;(c)能够形成双分子膜的人工合成脂质或磷脂质。优选的是,该双分子膜小泡还含有(d)叔胺作为膜的构成成分。本发明还提供诱发双分子膜小泡的相转移的方法,该方法包括向所述双分子膜小泡中添加界面聚集性脱水缩合剂和脱水缩合剂前体的工序。根据本发明,通过形成分子集合体的脂质的化学变化,使其物理性质或形态改变,能够调制膜融合等相转移的时机。另外,例如在膜融合时,双分子膜小泡内的内容物也不会泄漏,可以被融合。

Description

经脱水缩合反应可发生相转移的分子集合体及其相转移方法
技术领域
本发明涉及通过水界面的脱水缩合反应可以发生相转移的分子集合体及其相转移方法。更详细地说,本发明涉及诱发脂质体等水界面分子集合体的融合或分裂的方法。
背景技术
为了引起分子集合状态的变化,通常来说要改变表面活性剂的浓度或温度。在胶束等平衡体系中,如果添加不同种类的表面活性剂,则快速地发生状态变化。
另一方面,在以脂质体为代表的双分子膜小泡之类的分散体系中,由于构成它们的脂质处于比较稳定的状态,因此其移动非常缓慢。为了诱发这些集合体的融合或分裂,通常来说要引起界面的物理状态变化。此时,对所使用的脂质或反应条件等的依赖性很高,多有限制。
例如,由磷脂酰丝氨酸等构成的脂质体由于Ca2+的添加而诱发膜融合等的相转移(Duzgunes等、Biochemistry,1987年,26卷,8435-8442页)。认为其原因在于,由于Ca2+而发生了电荷的中和、脂质间的交联、脱水缩合等,膜变得不稳定。但是,该方法并不能适用于仅由中性磷脂质构成的脂质体。另外,报告指出,通过在含有磷脂酰丝氨酸的脂质体中添加高浓度的聚乙二醇,会发生膜融合(Lentz等、Biochemistry,1992年,31卷,2643-2653页和Yang等、BiophysicalJournal,1997年,73卷,277-282页)。这是由于膜的自由水消失、膜变得不稳定所导致的。进而,还提出了利用病毒的膜融合法(Blumenthal等、Chemistry and Physics of Lipids,2002年,116卷,39-55页)。该方法中,在膜的外侧上必需病毒的受体。还报告了介由电脉冲的物理刺激的膜融合诱发法(Sugar等、Biophysical Chemistry,1987年,26卷,321页)或者利用在接触的脂质体上照射UV光的膜融合法(Kulin等、Langmuir,2003年,19卷,8206-8210页)。还有通过添加蛋白质或肽,引起由于pH依赖性的质子化所导致的高级结构的变化,从而诱发膜融合的方法(Kim等、Biochemistry,1986年,25卷,7867-7874页)。
这些各种融合方法均是以形成分子集合体的脂质的物理状态变化为基础,在融合前阶段必须产生凝集。即,当单独分散时,分子集合体的脂质处于完全未活化的状态。
另一方面,有关于以化学反应为基础的相转移,例如融合和分裂的报告(Takakura等、Chemistry Letters,2002年,404-405页和Toyota等、Chemistry Letters,2004年,33卷,1442-1443页)。具体地说,通过小泡的双分子膜中的脱水缩合所导致的亚胺形成及其水解反应,小泡的形态发生变化,由此发生膜融合和分裂。例如,如果在由具有疏水性反应性基团(醛基)的双亲性脂质形成的小泡的分散液中加入具有亲水性反应性基团(氨基)的双亲性脂质的胶束分散液,则由于双分子膜中的反应性基团之间的可逆性脱水缩合反应,产生亚胺,小泡变大(Takakura等、前述)。另外,对应于这些具有各反应性基团的脂质和脱水缩合的双亲性脂质的存在比,可以观察到小泡的可逆形态变化(Toyota等、前述)。但是,这些方法中,不能控制小泡的双分子膜状态。
还有通过使用了酶的生物学手法改变脂质结构,从而引起融合的方法。具体地说,通过使用磷脂酶C水解磷脂酰胆碱或磷脂酰乙醇胺(Nieva,J.-L.等、Biochemistry,1989年,28卷,7364-7367页),或者使用鞘磷脂酶水解鞘磷脂(大木和夫、生物物理、2004年,44卷,161-165页),将构成小泡的双分子膜的磷脂质的磷酸基除去,分别生成二酰基甘油或神经酰胺的方法。分子的形状均由倒锥形向极性头部的分子面积小的圆柱型变化(临界填充参数变化)、曲率改变,发生融合。
作为生物学研究,报道了当引起膜的融合或分裂时,将单链的磷脂质酰化向双链磷脂质转变的酶的活性提高(Schmidt,A.等、Nature,1999年,401卷,133-141页)。即,提示在神经末稍的突触上再次形成突触小泡时,必需溶血磷脂酸(LPA)酰基转移酶。该酶将酰基转移至键合有磷酸的单酰基甘油(单链的磷脂质)的LPA上,向双链磷脂质转变。由于是在发生膜变化时进行该反应,因此说明这种酶的化学反应所导致的膜曲率变化是很重要的。
发明内容
本发明的目的在于提供通过形成分子集合体的脂质的化学变化,能够使其物理性质或形态改变、调节膜融合等相转移的时机等的方法。
本发明的诱发双分子膜小泡相转移的方法的基础在于:在含有具有胺或羧酸盐的极性头部的表面活性剂的分子集合体(脂质体)中,化学地进行它们的脱水缩合反应,从而改变脂质的临界填充参数,结果脂质体的双分子膜的曲率发生改变,发生由此产生的扭曲。
本发明提供双分子膜小泡,该双分子膜小泡含有以下物质作为膜的构成成分:
(a)碳原子数6~20的脂肪酸盐;
(b)具有碳原子数6~20的脂肪链的醇或胺化合物;
(c)可以形成双分子膜的人工合成脂质或磷脂质。
在某实施方式中,上述(b)醇或胺化合物为下式I所示的二元醇。
R1-NH-CH2-CH(OH)-CH2OH    (I)
(式中,R1为碳原子数6~20的烷基、碳原子数6~20的烯基、或者碳原子数6~20的炔基)。
更优选的实施方式中,上述双分子膜小泡还含有(d)下述式II所示的叔胺作为上述膜的构成成分。
Figure A20058004744500071
(式中,R2、R3和R4中的1个或2个为甲基,剩余的R2、R3和R4各自独立,为-CH2COOCnH2n+1、-CnH2n+1或-C6H4-p-CnH2n+1,其中n为6~20的整数,-CnH2n+1为直链状)。
在1个实施方式中,上述(a)脂肪酸盐和上述(b)醇或胺化合物的摩尔比为1∶1。
另一个实施方式中,上述(a)脂肪酸盐和(b)醇或胺化合物以及上述(c)能够形成双分子膜的人工合成脂质或磷脂质的摩尔比为1∶1∶1。
某个实施方式中,上述(c)能够形成双分子膜的人工合成脂质或磷脂质为磷脂质。
本发明还提供诱发双分子膜小泡的相转移的方法,该方法包括调制双分子膜小泡的工序,即该双分子膜小泡含有(a)碳原子数6~20的脂肪酸盐,(b)具有碳原子数6~20的脂肪链的醇或胺化合物和(c)可以形成双分子膜的人工合成脂质或磷脂质作为膜的构成成分的工序;以及在该双分子膜小泡中添加脱水缩合剂或脱水缩合剂前体的工序。
在一个实施方式中,上述(b)醇或胺化合物为下式I所示的二元醇,上述脱水缩合剂前体为下式III所示的氰尿酸衍生物。
R1-NH-CH2-CH(OH)-CH2OH    (I)
(式中,R1为碳原子数6~20的烷基、碳原子数6~20的烯基、或者碳原子数6~20的炔基)。
更优选的实施方式中,上述双分子膜小泡还含有(d)下述式II所示的叔胺作为上述膜的构成成分。
(式中,R2、R3和R4中的1个或2个为甲基,剩余的R2、R3和R4各自独立,为-CH2COOCnH2n+1、-CnH2n+1或-C6H4-p-CnH2n+1,其中n为6~20的整数,-CnH2n+1为直链状)。
Figure A20058004744500082
(式中,R5和R6各自独立,为甲基、乙基、碳原子数2~5的羟烷基、-(CH2CH2O)mR7(这里,m为1~120的整数,R7为氢原子、甲基、乙基或丙基)、-(CH2CH2NR8)mH(这里,m为1~120的整数,R8为碳原子数2~5的烷基、N,N-二烷基氨基乙基、或者-CH2CH2N+(CH3)3)、-CH2CH2SO3 -、-CH2CH2N+(CH3)3、或碳原子数6~20的烷基,但R5和R6不同时为碳原子数6~20的烷基,X为卤原子)。
某个实施方式中,上述式III中的R5和R6的至少一者为甲基或乙基。
在1个实施方式中,上述式II中的n为12~16。
通过本发明的方法,可以利用脱水缩合反应使形成含有双分子膜小泡的分子集合体的脂质发生化学变化,改变其物理性质或形态,调节膜融合等相转移的时机。即,可以在双分子膜小泡中诱发分子集合体的相转移(融合或分裂)。因此,能够提供活化状态或准稳定状态的小泡。另外,本发明的双分子膜小泡由于诱发这种相转移而能够优选使用。
附图说明
图1为用于说明本发明原理的模式图。
图2为从NBD-PE向Rh-PE的荧光能量转移的荧光谱图。
图3为显示在MLV中产生的假神经酰胺收率的经时变化的曲线图。
图4为显示SUV的膜结合所导致的F值经时变化的曲线图。
图5为显示利用荧光稀释法的SUV膜融合所导致的F值经时变化的曲线图。
图6为添加CDMT之前的SUV的电子显微镜照片。
图7为添加CDMT之后的SUV(GUV)的电子显微镜照片。
图8为仅添加甲醇后的SUV电子显微镜照片。
具体实施方式
本发明中,通过脱水缩合剂使导入到小泡双分子膜中的适当双亲性物质发生脱水缩合反应,可以改变双分子膜的状态。
根据图1说明本发明的原理。在一般的表面活性剂中,如图中的倒三角形所示,具有电荷的胺或羧酸盐是极性头部很大的倒锥型表面活性剂。它们脱水缩合而得的神经酰胺由于在该反应前后,双亲性物质的酰基链(或烷基链)的数量和极性头部的电荷或官能团的种类发生变化,例如电荷消失导致极性头部变小,因此成为图中长方形所示的圆柱或锥型的脂质。因而,如果在含有这些胺和羧酸盐的分子集合体(脂质体等)中进行这些化合物的脱水缩合反应,则由于临界填充参数的增加和膜间排斥力的降低,发生膜曲率的变化等,为了缓和上述现象,膜最终发生融合。具体地说,可以举出由鞘氨醇合成神经酰胺。但是,由于难以大量获得鞘氨醇,因此优选使用如图所示的二元醇作为类似化合物,利用其缩合合成假神经酰胺,从而确认上述原理。
本发明的方法对于通过脱水缩合能够形成神经酰胺类似物质的基质可以广泛地应用。作为这种基质,可以举出双亲性的多种脂肪酸盐或者伯和仲胺类。特别是,为了维持作为产物的假神经酰胺的双亲性,优选至少在羧酸或胺或者醇化合物的任一个的极性头部周围具有与进行脱水缩合反应的羧基或氨基或者羟基不同的亲水性官能团。作为该亲水性官能团,优选羟基或糖等中性基团,还可以是作为普通表面活性剂极性头部的季铵离子、磷酸离子、磺酸离子、硫酸离子等离子。
以下更加详细地说明本发明。
本发明如上所述提供能够产生相转移的双分子膜小泡以及其相转移方法。本发明中,“相转移”并非限定于双分子膜小泡的膜的相转移。例如,还包括双分子膜小泡膜融合或膜分裂、由双分子膜小泡向平面双分子膜或胶束的转变、由胶束向双分子膜小泡的转变等各种分子集合相的形态变化。
本发明的双分子膜小泡含有以下物质作为膜的构成成分:
(a)碳原子数6~20的脂肪酸盐;
(b)具有碳原子数6~20的脂肪链的醇或胺化合物;
(c)可以形成双分子膜的人工合成脂质或磷脂质。
上述(a)碳原子数6~20的脂肪酸盐只要是具有聚集在水界面的能力的双亲性脂肪酸盐则没有特别限定。作为这种脂肪酸盐,优选为具有长链烷基之类脂溶性基团的脂肪酸盐,更优选为碳原子数约为10~20的直链、支链或环状的脂肪酸盐。具体地说,可以举出羊蜡酸(癸酸)、十一烷酸、月桂酸(十二烷酸)、肉豆蔻酸、棕榈酸、棕榈油酸、硬脂酸、油酸、反油酸、岩芹酸、亚油酸、α-亚油酸、γ-亚油酸、二十烷酸、二十碳三烯酸、花生四烯酸等的盐。作为这些盐,通常可以举出钠盐、钾盐等。根据需要,还可以在这些化合物的羧基的周围或附近具有上述那样的亲水性官能团。
上述(b)具有碳原子数6~20的脂肪链的醇或胺化合物只要是具有能够与上述(a)脂肪酸盐的羧基发生脱水缩合的基团(例如羟基或氨基)、且具有聚集在水界面的能力的双亲性化合物,则没有特别限定。优选具有长链烷基之类的脂溶性基团,更加优选在能够脱水缩合的基团的周围或附近具有上述那样的亲水性官能团。需要说明的是,上述(a)脂肪酸盐在除了进行脱水缩合反应的羧基以外没有更多的亲水性官能团时,该(b)化合物更优选在极性头部周围进一步具有亲水性官能团。
作为这种化合物的优选例子,可以举出下式I所示的二元醇。在该二元醇中,胺部分是能够脱水缩合的基团,醇部分相当于亲水性官能团。
R1-NH-CH2-CH(OH)-CH2OH    (I)
(式中,R1为碳原子数6~20的烷基、碳原子数6~20的烯基、或者碳原子数6~20的炔基)。
在上述式I所示的(b)二元醇中,当R1为碳原子数6~20的烷基时,该烷基可以是直链状、支链状或环状。优选碳原子数约为10~20的直链状。作为这种烷基,可以举出正癸基、正十二烷基(月桂基)、正十六烷基、正十八烷基等。当R1为碳原子数6~20的烯基时,该烯基可以是直链状、支链状或环状。优选碳原子数约为10~20的直链状。作为这种烯基,可以举出1-癸烯、1-十二烯、9-十六烯、9-十八烯等。当R1为碳原子数6~20的炔基时,该炔基可以是直链状、支链状或环状。优选碳原子数约为10~20的直链状。作为这种炔基,可以举出1-癸炔、1-十二炔、9-十六炔、9-十八炔等。
上述(c)能够形成双分子膜的人工合成脂质或磷脂质只要是能够形成双分子膜的化合物,则没有特别限定。
作为人工合成脂质,可以举出长链二烷基化合物、单烷基表面活性剂、三链型表面活性剂等。例如在《脂质体》、野岛庄七等编、南江堂、1988年、302-309页中有所示例。通常来说,优选在同一分子内具有C12~C15的2根长链状烷基和亲水性官能团(阳离子性、阴离子性、非离子性等)的化合物,代表地可以举出C12~C15的二烷基铵盐。
磷脂质没有特别限定,可以是甘油脂质或鞘磷脂质的任一种。作为这种磷脂质,可以举出磷脂酰胆碱(卵磷脂)、磷脂酰乙醇胺、磷脂酰丝氨酸、磷脂酰肌醇、磷脂酰甘油、鞘磷脂等。优选磷脂酰胆碱。
本发明的双分子膜小泡根据需要还含有(d)下式II所示的叔胺作为膜的构成成分。
(式中,R2、R3和R4中的1个或2个为甲基,剩余的R2、R3和R4各自独立,为-CH2COOCnH2n+1、-CnH2n+1或-C6H4-p-CnH2n+1,其中n为6~20的整数,-CnH2n+1为直链状)。
在可以作为上述式II所示(d)叔胺的R2、R3和R4的-CH2COOCnH2n+1、-CnH2n+1或-C6H4-p-CnH2n+1中,n为6~20的整数,-CnH2n+1为直链状。作为它们的取代基,例如可以举出正辛氧基羰基亚甲基、正癸氧基羰基亚甲基、正十二烷氧基羰基亚甲基、正十六烷氧基羰基亚甲基;正己基、正庚基、正辛基、正壬基、正癸基、正十一烷基、正十二烷基、正十三烷基、正十四烷基、正十五烷基、正十六烷基、正十七烷基、正十八烷基、正十九烷基、正二十烷基;对-(正己基)亚苯基、对-(正辛基)亚苯基、对-(正癸基)亚苯基、对-(正十二烷基)亚苯基、对-(正十四烷基)亚苯基、对-(正十六烷基)亚苯基、对-(正十八烷基)亚苯基等。如果考虑向本发明的双分子膜小泡的导入容易性,优选上述式II的R2、R3和R4中的n为8~18,更优选为12~16。
对于上述式II的R2、R3和R4,如果考虑本发明方法的脱水缩合反应性,则R2、R3和R4中的1个或2个为甲基,剩余的R2、R3和R4为具有碳原子数6~20的直链烷基的基团。更优选R2、R3和R4中的2个为甲基。当R2、R3和R4全部为具有碳原子数6~20的直链烷基的基团时,反应效率不好,因此不优选。
含有上述式II所示的叔胺作为双分子膜小泡的膜构成成分时,优选使用作为脱水缩合剂前体的、以下详述的、式III所示的氰尿酸衍生物。
本发明的双分子膜小泡中的上述(a)~(d)的比例只要是能够形成小泡,则没有特别限定。作为脱水缩合反应基质的(a)脂肪酸盐和(b)醇或胺化合物优选为约1∶1的摩尔比。更优选(a)脂肪酸盐与(b)醇或胺化合物与(c)人工合成脂质或磷脂质的摩尔比为约1∶1∶1。(d)叔胺通常相对于1摩尔(a)脂肪酸盐以0.01~1.0摩尔、优选0.1~0.5摩尔的比例含有。
上述(a)~(d)可以分别单独使用,还可以混合2种以上使用。
本发明的双分子膜小泡还可以根据需要含有具有其他界面聚集性的化合物或者虽然没有界面聚集性但可以含有在双分子膜中的化合物。例如,如下所述,可以举出用于观察膜融合的荧光物质等。
本发明的双分子膜小泡可以是多层小泡(MLV:通常0.2~5μm大小)或者单层膜小泡(SUV:100nm以下;LUV和REV:100~1000nm;GUV:1000nm以上)的任何一种。它们可以通过本领域技术人员使用的普通方法制造。例如,MLV可以如下制造:将上述(a)~(d)分别溶解在适当的有机溶剂(例如甲醇、氯仿等)中,在容器中混合,蒸馏除去有机溶剂。接着,使形成在内壁上的薄膜干燥后,加入适当的水溶液(例如磷酸缓冲液、Tris-HCl缓冲液、碳酸缓冲液等),通过约30秒钟左右的超声波照射使其膨润。进而,利用涡流混合机等进行搅拌振荡,剥去薄膜,从而可以以混悬液的状态获得MLV。SUV例如可以通过进一步以高功率强力地照射超声波(例如冰冻下约20分钟)而作为SUV的分散液获得(超声波处理法)。或者还可以通过在相转移温度以上的温度下利用微注射器注入溶解在乙醇中的脂质的乙醇注入法、或者通过将MLV放入在弗氏压碎器中进行挤出的弗氏压碎法等来调制SUV。LUV可以通过醚注入法、表面活性剂法、Ca2+融合法、冷冻-溶解法等本领域技术人员通常使用的方法调制。REV可以通过反相蒸发法获得。GUV例如可以通过使甲基葡萄糖甙和脂质的乙醇溶液相对于多量的缓冲液进行透析而获得。
诱发本发明的双分子膜小泡相转移(例如膜融合)的方法包括以下工序:
调制上述双分子膜小泡的工序;以及在该双分子膜小泡中添加脱水缩合剂或脱水缩合剂前体的工序。
作为在上述方法中使用的脱水缩合剂,可以举出水溶性的脱水缩合剂或界面聚集性的脱水缩合剂或脱水缩合剂前体。
作为水溶性的脱水缩合剂,例如可以举出下述式IV所示的季铵盐(参照WO00/53544和Kunishima等、Tetrahedron,2001年,57卷,1551-1558页)。具体地说,可以举出4-(4,6-二甲氧基-1,3,5-三嗪-2-基)-4-甲基吗啉盐酸盐(DMT-MM)。
(这里,E为具有1个或2个叔胺基的1价或2价诱发基团;n在E具有1个叔胺基时为1、在E具有2个叔胺基时为2;R6和R10各自独立,表示碳原子数1~4的烷基、或者碳原子数6~8的芳基;a为1或2、在n为1时为1;Z-(n/a)表示(n/a)价的抗衡阴离子)。
作为表面聚集性的脱水缩合剂,可以举出下式V所示的1,3,5-三嗪型化合物。
(式中,R5和R6各自独立,为甲基、乙基、碳原子数2~5的羟烷基、-(CH2CH2O)mR7(其中,m为1~120的整数,R7为氢原子、甲基、乙基或丙基)、-(CH2CH2NR8)mH(其中,m为1~120的整数,R8为碳原子数2~5的烷基、N,N-二烷基氨基乙基或-CH2CH2N+(CH3)3)、-CH2CH2SO3 -、-CH2CH2N+(CH3)3或碳原子数为6~20的烷基,R5和R6不同时为碳原子数6~20的烷基;R2、R3和R4中的1个或2个为甲基,剩余的R2、R3和R4各自独立,为-CH2COO-CnH2n+1、-CnH2n+1或-C6H4-p-CnH2n+1,其中n为6~20的整数,-CnH2n+1为直链状;X-为卤化物离子)。该式V所示的化合物通过在适当的溶剂中混合下式III所示的氰尿酸衍生物和下式II所示的叔胺而获得。
Figure A20058004744500151
(式中,R5和R6各自独立,为甲基、乙基、碳原子数2~5的羟烷基、-(CH2CH2O)mR7(这里,m为1~120的整数,R7为氢原子、甲基、乙基或丙基)、-(CH2CH2NR8)mH(这里,m为1~120的整数,R8为碳原子数2~5的烷基、N,N-二烷基氨基乙基、或者-CH2CH2N+(CH3)3)、-CH2CH2SO3 -、-CH2CH2N+(CH3)3、或碳原子数6~20的烷基,但R5和R6不同时为碳原子数6~20的烷基,X为卤原子)。
Figure A20058004744500152
(式中,R2、R3和R4的定义如上)。特别优选在混合待使其脱水缩合的至少2种化合物的同时,还混合这些氰尿酸衍生物和叔胺。
作为脱水缩合剂,可以直接使用上式V所示的1,3,5-三嗪型化合物,但该化合物如上所述优选在调制小泡的同时添加,因此难以调节融合或相转移。因此,优选在预先以含有(d)叔胺化合物作为膜的构成成分的方式调制得到的小泡中添加作为脱水缩合剂前体的氰尿酸衍生物(化合物III)。此时,通过在调制脂质体制后添加氰尿酸衍生物(化合物III),可以在体系内(脂质体界面)产生脱水缩合剂(化合物V),引起界面的脱水缩合反应。因此,由于适当地进行了目标的融合或相转移,因此更为优选。
在上式III中,当R5和R6为碳原子数2~5的羟烷基时,该羟烷基可以是直链状、支链状或环状,羟基的位置和数量没有特别限定。优选为直链状,且为末端羟基。作为碳原子数2~5的羟烷基,例如可以举出2-羟乙基、3-羟丙基、4-羟丁基、5-羟戊基。
在上式III中,当R5和R6为-(CH2CH2O)mR7时,m为1~120的整数、优选为1~50的整数。R7为氢原子、甲基、乙基或丙基。此时,R5和R6的部分平均分子量优选约为45~5000(相当于m为1~120)、更优选约为45~2000(相当于m为1~50)。
在上式III中,当R5和R6为-(CH2CH2NR8)mH时,m为1~120的整数、优选为1~50的整数。R8为乙基或N,N-二烷基氨基乙基,该烷基的碳原子数为2~5。此时,R5和R6的部分平均分子量优选约为45~5000(相当于m为1~120)、更优选约为45~2000(相当于m为1~50)。
在上式III中,当R5和R6为碳原子数6~20的烷基时,该烷基可以是直链状、支链状或环状,优选为直链状。作为R5和R6的碳原子数6~20的烷基,可以举出正己基、正戊基、正辛基、正壬基、正癸基、正十二烷基、正十六烷基等。
对于上式III的R5和R6,如果考虑该氰尿酸衍生物在水界面上的停留容易性,优选R5O-和R6O-部分具有亲水性。随着上述R2、R3和R4的组合的不同而不同,优选R5和R6的至少一者为甲基或乙基,更优选两者均为甲基。当R5和R6同时为碳原子数6~20的烷基时,该氰尿酸衍生物的疏水性变强,难以聚集在水界面上,因此不优选。
作为这种氰尿酸衍生物,例如可以举出2-氯-4,6-二甲氧基-1,3,5-三嗪(CDMT)。
如上所述,为了使脱水缩合反应发生,从在双分子膜小泡的界面上的聚集性良好、且在界面上能够产生脱水缩合剂的方面出发,对于含有(d)叔胺作为双分子膜小泡的膜构成成分的小泡,特别优选使用作为脱水缩合剂前体的氰尿酸衍生物(化合物III)。
在该工序中,上述脱水缩合剂或脱水缩合剂前体相对于(a)脂肪酸盐或(b)醇或胺化合物使用1~100当量、优选使用25~50当量。进行该工序的温度根据目的适当决定,通常在室温下进行。该工序所需要的时间随着小泡的膜构成成分、脱水缩合剂或脱水缩合剂前体的量、该工序的实施温度等各种因素而改变,或者可以通过这些因素调节。
在该工序中,当使用氰尿酸衍生物时,如以下路线所示,首先通过添加上式III的氰尿酸衍生物,形成存在于双分子膜小泡的(d)叔胺和脱水缩合剂。接着,膜中的(a)羧酸与(b)胺化合物(二元醇)发生脱水缩合,形成假神经酰胺。因此,如上所述,由于膜的临界填充参数增加和膜间的排斥力降低,发生膜曲率的变化等,产生膜融合等的相转移(参照图1)。
Figure A20058004744500171
作为用于评价和观察膜融合等相转移的方法,可以举出利用电子显微镜进行的观察、所产生的假神经酰胺的定量(例如利用质谱等)、荧光变化的测定等。当为荧光变化的测定时,将由于存在于附近而发生荧光能量转移的化合物作为双分子膜的构成成分导入。作为这种化合物,例如可以举出1,2-二肉豆蔻基-sn-甘油-3-磷酸乙醇胺-N-(7-硝基-2-1,3-苯并二唑-4-基)(NBD-PE)和1,2-二肉豆蔻基-sn-甘油-3-磷酸乙醇胺-N-(磺酰基丽丝胺罗丹明B)(Rh-PE)的组合。前者为能量供体,后者为能量受体。如图2所示,如果NBD-PE和Rh-PE相邻存在,则发生荧光能量转移。荧光变化的评价可以使用通过下式获得的荧光变化F。例如,当NBD-PE和Rh-PE分别含有在不同的小泡中时,如果发生它们的融合,则F值增大。相反,含有NBD-PE和Rh-PE两者的小泡与不含它们的小泡融合时,NBD-PE和Rh-PE的距离增加,因此F值减少。
a0=反应开始时的NBD-PE的荧光强度
at=任意时间下的NBD-PE的荧光强度
b0=反应开始时的Rh-PE的荧光强度
bt=任意时间下的Rh-PE的荧光强度
利用本发明方法的膜融合等相转移不仅可以在由本发明提供的含有脂肪酸盐和胺作为膜构成成分、且通过脱水缩合能够被活化的不稳定双分子膜小泡之间产生,还可以在这种不稳定双分子膜小泡和未被活化的稳定的双分子膜小泡之间产生。而且,通过不稳定的双分子膜小泡与稳定的双分子膜小泡的量比、脱水缩合剂或脱水缩合剂前体的量等各种因素可以调节相转移。
通过本发明的方法,当诱发双分子膜小泡之间的膜融合时,其内容物可以不随膜的融合而漏出(泄漏)地被融合。
这样,通过本发明的方法,例如能够诱发细胞和由本发明提供的双分子膜小泡之间的膜融合,还可以进行调节使得在适当的时机将小泡的内容物送入到细胞内。
实施例
[制造例1:二元醇的合成]
作为构成脂质体、且用于在脂质体中进行脱水缩合反应的基质,如以下线路1所示,使缩水甘油的环氧化物与长链伯胺反应,合成具有2个羟基作为极性基团的胺的假鞘氨醇。
线路1
Figure A20058004744500191
[1-1]3-辛基氨基-1,2-丙二醇(二元醇1A)的合成
在反应容器中加入正辛胺(3.0g、0.023mol),加热至85℃。在氮气气流下用10分钟的时间加入缩水甘油(1.56g、0.021mol),搅拌1小时后,使反应溶液真空干燥。将所得残渣上柱色谱,利用氯仿∶甲醇=1∶1(添加1%三甲胺)展开后,利用甲醇(添加1%三甲胺)洗脱后分别收集,获得二元醇1A(1.03g、收率24%)。
无色结晶,熔点:59.5~61.5℃。
1H NMR(CDCl3)δ0.87(t,J=6.9Hz,3H),1.21-1.35(m,10H),1.42-1.51(m,2H),2.54-2.73(m,3H),2.79-2.85(m,1H),3.58-3.65(m,1H),3.70-3.77(m,2H);IR(KBr)3320,3271,2919,2853cm-1
二元醇1A相对于以下实施例中使用的缓冲液(5mM NaH2PO4,0.15MNaCl,pH7.5)的溶解度约为10mM。
[1-2]3-十二烷基氨基-1,2-丙二醇(二元醇1B)的合成。
利用与上述[1-1]的二元醇1A的合成相同的方法合成(收率33%)。
无色结晶:熔点:78~79℃。
1H NMR(CDCl3)δ0.88(t,J=6.9Hz,3H),1.23-1.33(m,18H),1.42-1.51(m,2H),2.54-2.73(m,3H),2.79-2.86(m,1H),3.59-3.65(m,1H),3.70-3.77(m,2H);IR(KBr)3323,3272,2916,2847cm-1;元素分析:C15H33NO2:计算值:H,12.82;C,69.45.实测值:H,12.83;C,69.42。ESI-MS m/z 260[(M+1)+,C16H33O2N]。
二元醇1B相对于以下实施例中使用的缓冲液(5mM NaH2PO4,0.15M NaCl,pH7.5)的溶解度约为0.2mM。
[1-3]3-十六烷基氨基-1,2-丙二醇(二元醇1C)的合成。
利用与上述[1-1]的二元醇1A的合成相同的方法合成(收率34%)。
无色结晶:熔点:86~89.5
1H NMR(CDCl3)δ0.87(t,J=6.9Hz,3H),1.23-1.33(m,26H),1.42-1.52(m,2H),2.54-2.73(m,3H),2.80-2.87(m,1H),3.59-3.66(m,1H),3.70-3.77(m,2H);IR(KBr)3345,3272,2918,2851cm-1;元素分析:C19H41NO2:计算值:H,13.10;C,72.32.实测值:H,13.34;C,72.30。ESI-MS m/z 316[(M+1)+,C19H41O2N]。
[制造例2:假神经酰胺的合成]
由于考虑到在脂质体中由于脱水缩合反应产生的产物为假神经酰胺(线路2),因此作为用于确认其的标准品,根据Kunishima等报道的、前面记载的方法合成了假神经酰胺。
线路2
Figure A20058004744500211
[2-1]3-(N-月桂酰基十二烷基氨基)-1,2-丙二醇(假神经酰胺2B)的合成
在反应容器中加入月桂酸钠(0.25g、1.13mmol),加入甲醇(6mL)。然后将通过上述[1-2]获得的二元醇1B(0.29g、1.13mmol)溶解在甲醇(4mL)中加入。进而将DMT-MM(0.34g、1.24mmol)溶解在甲醇(2mL)中加入后,在室温下搅拌5小时。利用泵将甲醇减压蒸馏除去后,使用醋酸乙酯和蒸馏水提取残渣。利用饱和碳酸钠洗涤2次回收的醋酸乙酯层、用蒸馏水洗涤1次、1M HCl洗涤2次、蒸馏水洗涤1次、饱和食盐水洗涤1次后,利用无水硫酸镁使其干燥,在减压下除去溶剂。将所得残渣供于柱色谱,利用己烷∶醋酸乙酯=1∶1展开后,利用己烷∶醋酸乙酯=4∶6洗脱后分别收集,获得假神经酰胺2B(0.33g、收率65%)。
无色结晶:熔点:35~36.5℃。
1H NMR(CDCl3)δ0.88(t,J=6.9Hz,3H),0.88(t,J=6.9Hz,3H),1.23-1.85(m,34H),1.56-1.66(m,4H),2.33(t,J=7.6Hz,2H),3.17-3.36(m,2H),3.38-3.59(m,4H),3.70-3.80(1H);IR(KBr)3354,2919,2851,1613cm-1;元素分析:C27H55NO3:计算值:H,12.55;C,73.41.实测值:H,12.71;C,73.16。ESI-MS m/z 442[(M+1)+,C27H55O3N]。
[2-2]3-(N-辛酰基辛基氨基)-1,2-丙二醇(假神经酰胺2A)的合成
利用与上述[2-1]的假神经酰胺2B的合成相同的方法合成(收率52%)。
无色油状。1H NMR(CDCl3)δ0.88(t,J=7.0Hz,3H),0.89(t,J=6.9Hz,3H),1.22-1.37(m,18H),1.52-1.70(m,4H),2.33(t,J=7.6Hz,2H),3.18-3.36(m,2H),3.39-3.59(m,4H),3.71-3.79(m,1H);IR(neat)3378,2926,2855,1620cm-1;元素分析:C19H39O3N:计算值:H,11.93;C,69.25.实测值:H,12.14;C,69.49。ESI-MS m/z 330[(M+1)+,C19H39O3N]。
[制造例3:界面聚集性叔胺的合成]
线路3
Figure A20058004744500221
[3-1]N,N-二甲基氨基-醋酸-1-十二烷基酯(C12-叔胺)的合成
在氮气氛围下向N,N-二甲基甘氨酸盐酸盐(2.23g、0.016mol)的干躁N,N-二甲基甲酰胺(DMF:100mL)溶液中添加1-十二烷醇(2.98g、0.016mol)、三乙胺(1.62g、0.016mol)和4-(N,N-二甲基氨基)吡啶(DMAP:0.195g、0.0016mol),冷却至0℃。接着,在0℃下加入二环己基碳二亚胺(DCC:3.63g、0.0176mol)的干燥DMF溶液(60ml)。使反应液恢复至室温,搅拌约1天后,利用泵将DMF减压蒸馏除去。使用醚和饱和碳酸氢钠水溶液溶解残渣,回收醚层,利用水洗涤1次、饱和食盐水洗涤1次,利用无水硫酸镁干燥后,在减压下除去溶剂。将所得残渣供于柱色谱(己烷∶醋酸乙酯∶三乙胺=50∶50∶1),获得N,N二甲基氨基-醋酸-1-十二烷基酯(C12-叔胺),(收率48%、2.10g)。
无色液体。1H NMR(CDCl3)δ0.88(t,J=6.9Hz,3H),1.23-1.31(m,18H),1.59-1.68(m,J=7.0Hz,2H),2.35(s,6H),3.15(s,2H),4.12(t,J=6.8Hz,2H)。ESI-MS m/z 272[(M+1)+,C16H33O2N]。IR(KBr)2923,1749cm-1
[3-2]N,N-二甲基氨基-醋酸-1-辛酯(C8-叔胺)的合成
除了使用1-辛醇代替1-十二烷醇之外,与上述[3-1]同样地操作,以59%的收率获得N,N-二甲基氨基-醋酸-1-辛酯(C8-叔胺)。
无色液体。1H NMR(CDCl3)δ0.88(t,J=6.9Hz,3H),1.24-1.33(m,10H),1.57-1.66(m,J=7.2Hz,2H),2.35(s,6H),3.16(s,2H),4.12(t,J=6.8Hz,2H)。ESI-MS m/z 216[(M+1)+,C12H25O2N]。IR(KBr)2928,1753cm-1
[3-3]N,N-二甲基氨基-醋酸-1-十六烷基酯(C16-叔胺)的合成
除了使用十六烷醇代替1-十二烷醇之外,与上述[3-1]同样地操作,以44%的收率获得N,N-二甲基氨基-醋酸-1-十六烷基酯(C16-叔胺)。
无色液体。1H NMR(CDCl3)δ0.87(t,J=6.7Hz,3H),1.23-1.30(m,26H),1.59-1.68(m,J=6.8Hz,2H),2.35(s,6H),3.16(s,2H),4.12(t,J=6.8Hz,2H)。ESI-MS m/z 328[(M+1)+,C20H41O2N]。IR(KBr)2923,1742cm-1
[实施例1:调制含有叔胺的多层小泡(MLV)]
根据文献(“化学与生物实验在线27脂质体的调制和实验法”,奥直人编、广川书店、第5章、43页)所述的方法,利用以下所述的方法调制MLV。
将月桂酸钠(甲醇中45.0mM、8.7μL)、通过上述[2-1]合成的二元醇1B(氯仿中38.5mM、10.1μL)、通过上述制造例3合成的3种叔胺中的任何一个(氯仿中3.05mM、25.6μL)、L-α-磷脂酰胆碱(氯仿中12.9mM、28.5μL)和作为荧光剂的NBD-PE(Avanti Polor Lipids生产)(氯仿中1.23mM、15.9μL)加入到20mL茄型瓶中。使用旋转蒸发仪将溶剂蒸馏除去,通过氮气恢复至常压后,使用真空泵在室温下将形成在内壁上的薄膜减压干燥0.5小时。再次利用氮气恢复至常压,加入6mL磷酸缓冲液(5mM NaH2PO4/Na2HPO4,0.15M NaCl,pH7.5),利用浴槽型超声波产生装置照射30秒钟超声波后,利用涡流混合机(使用AS ONE TUBE MIXER MODEL TMF)振荡20分钟(室温,强度80%),剥离薄膜。将含有薄膜的分散液转移至10mL样品瓶中,利用涡流混合机振荡约半天(室温、强度30%),获得含有叔胺的含NBD-PE的MLV分散液。
除了使用Rh-PE(Avanti Polar Lipids生产)(氯仿中4.19mM、4.7μL)代替NBD-PE作为荧光剂之外,与上述同样操作,获得含有叔胺的含Re-PE的MLV分散液。
[实施例2:多层小泡(MLV)调制-2]
在上述实施例1的MLV调制中,除了在20mL茄型瓶中不加入叔胺之外,与上述实施例1同样地操作,获得不含叔胺的各种MLV分散液。
[实施例3:使用多层小泡(MLV)的膜融合实验]
在室温下混合通过上述实施例1获得的含有叔胺(C8或C16)的MLV分散液各1mL。在其中加入2-氯-4,6-二甲氧基-1,3,5-三嗪(CDMT)(150mM或300mM)的甲醇溶液(21.7μL),在室温下放置。进而,调制在通过上述实施例2获得的MLV分散液中添加有作为水溶性脱水缩合剂的4-(4,6-二甲氧基-1,3,5-三嗪-2-基)-4-甲基吗啉盐酸盐(DMT-MM)(225mM或300mM)的甲醇溶液(21.7μL)的物质。作为对照实验,调制添加有21.7μL甲醇的溶液来代替CDMT溶液。
利用荧光光度计测定调制好的各混合液的经时荧光变化。激发波长为470nm。作为荧光变化的标准如上所述,使用F值。如果发生膜融合,则F值增大(参照图2)。结果示于表1中。
表1
  缩合剂或前体(当量)* MLV中的叔胺种类 荧光变化(F值)
    CDMT   DMT-MM   2小时    5小时     12小时     36小时
    -     -   C16   -    -     -     -
    25     -   1.64    8.10     -     -
    50     -   4.41    10.4     -     -
    50     -   C8   -    2.22     5.40     -
    -     38 -   -    -     -     1.42
    -     50   -    -     -     1.64
:相对于月桂酸钠的量
如表1所示,当使用CDMT时,随着时间延长F值均变大,发生膜融合。另一方面,当使用DMT-MM时,膜融合发生得非常慢。另外,当不加入缩合剂时,未观察到荧光变化。
[实施例4:假神经酰胺2B的定量]
为了研究MLV融合中假神经酰胺的反应收率和荧光变化的相关性,对在MLV中产生的假神经酰胺进行定量。
在2mL通过上述实施例1获得的含有叔胺(C8或C16)的MLV分散液中加入CDMT(甲醇中150mM或300mM,21.7μL),在室温下放置。对于通过上述实施例2获得的不含叔胺的MLV分散液,也加入21.7μL的CDMT溶液,同样地放置。进而,还调制在通过上述实施例2获得的MLV分散液中添加有DMT-MM(甲醇中300mM,21.7μL)的溶液。作为对照实验,加入21.7μL甲醇代替CDMT溶液,同样地放置。在任意时间(2、5、12和36小时)下采集各MLV分散液的一部分(500μL),加入醋酸铵(蒸馏水中390mM、8.3μL)和N-甲基吗啉(NMM)(根据CDMT添加量为0μL、3.6μL或7.2μL),利用涡流混合机(室温、强度30%)振荡10分钟。接着,加入500μL的醋酸乙酯,利用涡流混合机(室温、强度50%)振荡10分钟进行提取,回收有机层。将所得有机层50μL、内标(假神经酰胺2A)溶液(醋酸乙酯中32.5μM、50μL)、醋酸铵水溶液(10mM)/乙腈混合液(1∶10(v/v))500μL和氯化钠水溶液(10mM、3.6μL)混合,通过ESI-MS测定进行定量。内标和检测物质的定量峰均为加钠峰(M+23),分别使用m/z352和464。结果示于图3和表2中。
表2
  缩合剂或前体(当量)* MLV中的叔胺种类           假神经酰胺的收率(%)
  CDMT  DMT-MM   2小时   5小时   12小时   36小时
    50     -     C8     -     7     20     -
    0     -     C16     0     0     -     -
    25     -     42     92     -     -
    50     -     80     88     -     -
    50     - -     -     -     -     -
    -     50     -     -     -     9
:相对于月桂酸钠的量
当在含有叔胺的MLV分散液中添加CDMT时,以对应叔胺脂肪链长度的收率获得假神经酰胺。另外,未添加CDMT时,确认没有假神经酰胺的生成。另一方面,在DMT-MM中,假神经酰胺非常缓慢地生成。该结果与上述实施例3的结果一致,因此显示假神经酰胺的生成量和融合的相关性。需要说明的是,当在不含叔胺的MLV分散液中添加CDMT时,没有观察到假神经酰胺的生成。
[实施例5:伴随着MLV融合的粒径变化]
使用下表3所记载的化合物,根据上述实施例1记载的操作调制MLV分散液。
表3
    浓度     使用量
月桂酸钠     45.0mM(甲醇中) 21.7μL
二元醇1B     38.5mM(甲醇中) 25.3μL
C8-叔胺     4.64mM(甲醇中) 42.0μL
非还原型卵黄卵磷脂     12.9mM(甲醇中) 75.6μL
使用15mL磷酸缓冲液(5mM NaH2PO4/0.15M NaCl pH8.5)调制
采集调制好的MLV分散液各2mL,加入50当量(21.7μL)CDMT(甲醇中300mM)。作为对照,添加21.7μL甲醇。调制各2个检体,通过动态光散射法(DLS)测定12小时后的粒径。结果示于表4中。
表4
Run   CDMT(当量)   叔胺(当量)        Z平均*1
 0小时  12小时
    1     0     0.2  226.6nm  229.6nm
    2     0     0.2  226.7nm  227.3nm
    3     50     0.2  235.2nm  280.3nm
    4     50     0.2  232.4nm  278.2nm
1:Z平均=平均流体力学直径
加入CDMT时,经过12小时后粒径增大,但不加入CDMT时,即便经过12小时也未见大小有何变化。这说明当加入CDMT时诱发膜融合。
[实施例6:单层小泡(SUV)的调制]
根据文献(“化学和生物实验在线27脂质体的调制和实验法”,奥直人编、广川书店、第2章、27页)所述的方法,利用以下所述的方法调制SUV。
将月桂酸钠(甲醇中45.0mM、5.8μL)、二元醇1B(氯仿中38.5mM、6.8μL)、C16-叔胺(氯仿中3.05mM、17.0μL)、非还原型卵黄卵磷脂(氯仿中13.0mM、19.0μL)和荧光剂(为NBD-PE时:氯仿中1.23mM、10.6μL;为NBD-PE时:氯仿中4.19mM、3.1μL)加入到20mL茄型瓶中,使用旋转蒸发仪将溶剂减压蒸馏除去。使用真空泵将形成在内壁上的薄膜减压干燥(室温下、0.5小时)。加入4mL磷酸缓冲液(5mMNaH2PO4/Na2HPO4,0.15M NaCl,pH8.5),利用浴槽型超声波装置照射30秒钟超声波。之后,利用涡流混合机以强度100%搅拌振荡10分钟。接着,转移至20mL试验管中,利用探针型超声波产生装置(TOMY ULTRASONIC DISRUPTOR MODEL URL200P)以25W超声波处理(冰冻下)20分钟(反复照射1分钟和放置30秒钟,总照射时间为20分钟),获得SUV分散液。
[实施例7:使用了SUV的膜融合实验]
使用在上述实施例6中获得的NBD-PE和含有NBD-PE的SUV分散液,与上述实施例3的MLV的膜融合实验同样地测定经时荧光变化。通过荧光峰计算F值,对SUV的融合进行评价。结果示于图4中。如曲线图可知,仅加入CDMT时,可以获得启示膜融合的结果。
[实施例8:利用荧光稀释法的SUV膜融合的评价]
根据上述实施例6记载的SUV调制方法,通过表5所示的组成调制含有荧光剂的SUV分散液和不含荧光剂的SUV分散液。
表5
  含有荧光剂的SUV   不含荧光剂的SUV
  浓度   使用量   浓度   使用量
月桂酸钠   45.0mM(甲醇中) 5.8μL   45.0mM(甲醇中) 7.2μL
二元醇1B   38.5mM(氯仿中) 6.8μL   38.5mM(氯仿中) 8.4μL
C16-叔胺   3.05mM(氯仿中) 17.0μL   3.05mM(氯仿中) 21.3μL
非还原型卵黄卵磷脂   13.0mM(氯仿中) 19.6μL   13.0mM(氯仿中) 25.0μL
荧光剂   NBD-PE   12.3μM(氯仿中) 351.1μL - -
Rh-PE   41.9μM(氯仿中) 21.0μL - -
  磷酸缓冲液   *   4mL   *   5mL
:磷酸缓冲液使用5mM Na2HPO4/0.15M NaCl,pH8.5
在室温下混合0.2mL调制好的含有荧光剂的SUV分散液和1.8mL不舍荧光剂的SUV分散液。调制各三个检体。在其中的各2个检体中分别加入10.8μL(25当量)或21.7μL(50当量)的CDMT(甲醇中300mM),在室温下放置。剩余1个加入21.7μL甲醇作为对照实验,同样地放置,每隔一定时间测定荧光。结果示于图5中。
当为该实施例8的荧光稀释法时,与实施例7的混合法不同,F值随着融合的发展而变小。如图5所示,仅加入CDMT时可见荧光减弱,强烈启示诱发膜融合。需要说明的是,在图5所示的曲线图中,在初期状态下加有CDMT的曲线与对照曲线之间可见到差别。但是,这说明添加CDMT2小时后可见很大的荧光变化,在反应开始前的荧光中没有差别。
[实施例9:伴随着SUV融合的粒径变化]
使用月桂酸钠和油酸钠这2种作为脂肪酸盐进行实验。
根据上述实施例6记载的SUV调制方法,以表6所示的组成调制SUV分散液。
表6
  含有月桂酸钠的SUV   含有油酸钠的SUV
  浓度   使用量   浓度   使用量
脂肪酸   月桂酸钠   22.5mM(甲醇中) 20.2μL   -   -
油酸钠 - -   16.4mM(甲醇中) 27.7μL
二元醇1B   19.3mM(氯仿中) 23.5μL   19.3mM(氯仿中) 23.6μL
C16-叔胺   3.05mM(氯仿中) 29.8μL   3.05mM(氯仿中) 29.8μL
非还原型卵黄卵磷脂   6.51mM(甲醇中) 69.9μL   6.51mM(甲醇中) 69.9μL
  磷酸缓冲液   *   7mL   *   7mL
:磷酸缓冲液使用5mM Na2HPO4/0.15M NaCl,pH8.5,来进行调制。
利用0.45μm孔滤膜过滤调制好的SUV分散液,分为各2mL的各2个检体,其中一个加入21.7μL(50当量)CDMT(甲醇中300mM),另一个加入21.7μL甲醇作为对照实验,在室温下放置。利用DLS测定3小时后的粒径。结果示于表7中。
表7
  CDMT(当量) 脂肪酸   Z平均*1
  0小时   3小时
  1   0   月桂酸   91.3nm   91.6nm
  2   50   月桂酸   92.7nm   218.7nm
  3   0   油酸   65.6nm   66.3nm
  4   50   油酸   66.1nm   213.8nm
1:Z平均=平均流体力学直径
在3小时左右粒径均显著增大。由粒径的变化,启示在月桂酸中有十多个SUV融合,在油酸中有30~40个左右SUV融合。
[实施例10:利用透射型电子显微镜观察SUV]
根据上述实施例6记载的SUV调制法,以表8所示的组成调制SUV分散液。
表8
    浓度     使用量
月桂酸钠     22.5mM(甲醇中) 288.9μL
二元醇1B     19.3mM(氯仿中) 336.8μL
C16-叔胺     3.05mM(氯仿中) 426.2μL
非还原型卵黄卵磷脂     6.51mM(甲醇中) 998.5μL
在5mL磷酸缓冲液(5mM Na2HPO4/0.15M NaCl,pH8.5)中调制
取出200μL调制好的SUV分散液,加入4.3μL的CDMT(甲醇中300mM),在室温下放置。作为对照实验加入4.3μL甲醇代替CDMT,在室温下放置。将数滴放置后的SUV分散液滴加在载玻片上,利用液氮冷冻,通过本领域技术人员通常进行的冷冻割断法,调制电子显微镜试样(复制品)  (使用JEOL JFD-9010)。利用TEM(JEOLJEM-1010)观察所得试样(加速电压100kv)。电子显微镜照片示于图6~8中,照片中的箭头表示SUV。
当加入CDMT时,粒径在添加CMDT前为数十~约100nm(图6),添加CDMT后达到1μM以上,而且粒子数显著减少(图7)。这是由于相互接近的数千个SUV之间发生融合,形成巨大的GUV。另一方面,当仅加入甲醇时,即便经过1天以上,在粒径和分布中也未见变化(图8)。
[实施例11:活化SUV和惰性SUV的融合实验]
对于作为膜构成成分含有脂肪酸盐和胺、通过脱水缩合而活化的SUV(以下称为活化SUV)和通常的SUV(以下称为惰性SUV),通过上述实施例6记载的SUV调制方法,以下表9所示组成分别调制含有荧光剂的SUV分散记和不含荧光剂的SUV分散液。
表9
  含有荧光剂的活化SUV   不含荧光剂的活化SUV   含有荧光剂的惰性SUV   不含荧光剂的惰性SUV
  月桂酸钠   13nmol   117nmol   -   -
  二元醇1B   13nmol   117nmol   -   -
  C16-叔胺   2.6nmol   23.4nmol   -   -
  非还原型卵黄卵磷脂   13nmol   117nmol   28.6nmol   257.4nmol
荧光剂   NBD-PE   0.39nmol   -   0.39nmol   -
  Rh-PE   0.13nmol   -   0.13nmol   -
  磷酸缓冲液*   0.2mL   0.8mL   0.2mL   0.8mL
:磷酸缓冲液使用5mM Na2HPO4/0.15M NaCl,pH8.5
根据上述实施例8记载的荧光稀释法,在室温下混合0.2mL调制好的含有荧光剂的SUV分散液和1.8mL不含荧光剂的SUV分散液。在此,SUV的组合有以下4种类:含有荧光剂的活化SUV和不含荧光剂的活化SUV的组合(第1轮)、含有荧光剂的惰性SUV和不含荧光剂的活化SUV的组合(第2轮)、含有荧光剂的活化SUV和不含荧光剂的惰性SUV的组合(第3轮)、含有荧光剂的惰性SUV和不含荧光剂的惰性SUV的组合。接着,加入15.2μL(4.55μmol:第1轮的总脂肪酸盐的35当量)CDMT(甲醇中300mM),在室温下放置,通过荧光光度计测定F值的经时变化。结果示于图9中。
由图9可知,一方面即便是惰性SUV,F值也显著地变化(第2轮和3)。对于相同的SUV之间的融合来说,理论上没发生荧光变化,因此该F值的减少表明发生活化SUV和惰性SUV的融合。当活化SUV少时(第3轮),F值的变化量小,这是由于通过一次融合SUV的不稳定性被消除、不会进一步融合,荧光剂未被充分地稀释。另一方面,当SUV的90%为活化SUV时(第2轮),融合多阶段地发生,荧光剂被充分地稀释,因此F值的变化很大。
[实施例12:伴随融合的SUV内水相的泄漏研究]
当将膜融合用在DDS或基因导入中时,脂质体内容物必须被很好地导入到靶细胞的内部。融合如果伴随着膜的部分崩解时,则大量的内容物会泄露到外部,不能达到该目的,其应用性有限,因此,进行融合时的内容物的泄漏实验。
以下所示的钙黄绿素(Calcein)这种荧光色素在高浓度下会自己消光,不会发出荧光,但在低浓度下会发出荧光。
Figure A20058004744500331
因此,在本实施例中,利用该性质,进行在内部(内水相)中预先放入有高浓度钙黄绿素的脂质体的融合实验。伴随着融合,如果内容物泄露,则在外水相中呈现出稀释的钙黄绿素的荧光,但如果不发生泄露,则荧光没有变化。
SUV的调制根据实施例6所记载的方法进行。在磷酸缓冲液(5mMNaH2PO4/Na2HPO4,0.15M NaCl,pH8)中放入钙黄绿素(75mM),通过超声波处理制作SUV。通过凝胶过滤(Sephadex G-50、在流动相中同样使用磷酸缓冲液)分离SUV,除去存在于外水相中的钙黄绿素,获得SUV分散液。
在所得SUV分散液中添加CDMT(50当量)后,在室温下放置,经过一定时间后测定荧光(520nm)(Fs)、之后立即添加Triton X-100(10%、200μL)破坏SUV后,再次测定荧光(FT)。没有膜融合的对照实验同样使用SUV、不添加CDMT、每隔一定时间测定荧光,最后添加Triton-X100破坏脂质体,测定荧光。根据下式计算泄露率。
Figure A20058004744500332
F0:0小时的荧光强度
FS:各时间的荧光强度
FT:添加Triton-X100后的荧光强度
所得结果示于下表10中。
表10
时间     泄露率(%)
  有融合 没有融合(对照)
  1小时     6.5     1.3
  2小时     7.1     2.0
  3小时     8.3     2.2
如表10所示可知,当添加CDMT发生膜融合时,直至融合基本完成的3小时可见泄露率有若干的增加(相对于对照实验的2%,融合时为8%),但荧光强度(FS)在刚测定后与添加TrionX-100时的荧光(FT)相比非常小,内容物基本没有泄露。
产业实用性
通过本发明的方法,能够化学地改变利用脱水缩合反应形成分子集合体的脂质,改变其物理性质或形态,调整膜融合等相转移的时机等。即,能够诱发在双分子膜小泡中分子集合体的相转移,可以诱发脂质体等水界面的分子集合体的融合或分裂。另外,本发明的双分子膜小泡可以提供活化状态或准稳定状态的小泡。进而,在脂质体等的膜融合时,其内容物也可能融合。因此,本发明的方法和双分子膜小泡在利用脱水缩合反应的有机合成化学或界面化学的领域、或者利用脂质体等小泡的领域等的研究中有用。另外,作为用于研究关于细胞或细胞内小器官的形成、分解、分裂或融合等生物的形态变化的模型体系,对于阐明伴随着内吞作用或胞吐作用的生物学机制、或者基因治疗或药物传递系统等的治疗医学的开发也有用。

Claims (11)

1.一种双分子膜小泡,其中,含有如下物质作为膜构成成分:
(a)碳原子数6~20的脂肪酸盐;
(b)具有碳原子数6~20的脂肪链的醇或胺化合物;
(c)能够形成双分子膜的人工合成脂质或磷脂质。
2.权利要求1所述的双分子膜小泡,其中,所述(b)醇或胺化合物为下式I所示的二元醇,
R1-NH-CH2-CH(OH)-CH2OH    (I)
式中,R1为碳原子数6~20的烷基、碳原子数6~20的烯基、或者碳原子数6~20的炔基。
3.权利要求1或2所述的双分子膜小泡,其中,还含有(d)下式II所示的叔胺作为上述膜构成成分,
Figure A2005800474450002C1
式中,R2、R3和R4中的1个或2个为甲基,剩余的R2、R3和R4各自独立,为-CH2COOCnH2n+1、-CnH2n+1或-C6H4-p-CnH2n+1,其中n为6~20的整数,-CnH2n+1为直链状。
4.权利要求1~3任一项所述的双分子膜小泡,其中,所述(a)脂肪酸盐和所述(b)醇或胺化合物的摩尔比为1∶1。
5.权利要求1~4任一项所述的双分子膜小泡。其中,所述(a)脂肪酸盐和所述(b)醇或胺化合物和所述(c)能够形成双分子膜的人工合成脂质或磷脂质的摩尔比为1∶1∶1。
6.权利要求1~5任一项所述的双分子膜小泡,其中,所述(c)能够形成双分子膜的人工合成脂质或磷脂质为磷脂质。
7.一种诱发双分子膜小泡的相转移的方法,其包括以下工序:
调制双分子膜小泡的工序,该双分子膜小泡含有如下物质作为膜构成成分:
(a)碳原子数6~20的脂肪酸盐;
(b)具有碳原子数6~20的脂肪链的醇或胺化合物;
(c)能够形成双分子膜的人工合成脂质或磷脂质;
以及在该双分子膜小泡中添加脱水缩合剂或脱水缩合剂前体的工序。
8.权利要求7所述的方法,其中,所述(b)醇或胺化合物为下式I所示的二元醇,
R1-NH-CH2-CH(OH)-CH2OH    (I)
式中,R1为碳原子数6~20的烷基、碳原子数6~20的烯基、或者碳原子数6~20的炔基。
9.权利要求7或8所述的方法,其中,所述双分子膜小泡还含有(d)下式II所示的叔胺作为所述膜构成成分,且所述脱水缩合剂前体为下式III所示的氰尿酸衍生物,
Figure A2005800474450003C1
式中,R2、R3和R4中的1个或2个为甲基,剩余的R2、R3和R4各自独立,为-CH2COOCnH2n+1、-CnH2n+1或-C6H4-p-CnH2n+1,其中n为6~20的整数,-CnH2n+1为直链状;
式中,R5和R6分别独立,为甲基、乙基、碳原子数2~5的羟烷基、-(CH2CH2O)mR7(这里,m为1~120的整数,R7为氢原子、甲基、乙基或丙基)、-(CH2CH2NR8)mH(这里,m为1~120的整数,R8为碳原子数2~5的烷基、N,N-二烷基氨基乙基、或者-CH2CH2N+(CH3)3)、-CH2CH2SO3 -、-CH2CH2N+(CH3)3、或碳原子数6~20的烷基,但R5和R6不同时为碳原子数6~20的烷基,X为卤原子。
10.权利要求9所述的方法,其中,所述式III中的R5和R6的至少一个为甲基或乙基。
11.权利要求9或10所述的方法,其中,所述式II中的n为12~16。
CN2005800474454A 2005-01-28 2005-12-12 经脱水缩合反应可发生相转移的分子集合体及其相转移方法 Expired - Fee Related CN101111306B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP021241/2005 2005-01-28
JP2005021241 2005-01-28
PCT/JP2005/023196 WO2006080157A1 (ja) 2005-01-28 2005-12-12 脱水縮合反応により相転移を生じ得る分子集合体およびその相転移方法

Publications (2)

Publication Number Publication Date
CN101111306A true CN101111306A (zh) 2008-01-23
CN101111306B CN101111306B (zh) 2010-09-29

Family

ID=36740191

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800474454A Expired - Fee Related CN101111306B (zh) 2005-01-28 2005-12-12 经脱水缩合反应可发生相转移的分子集合体及其相转移方法

Country Status (6)

Country Link
US (2) US8449979B2 (zh)
EP (2) EP1852177B1 (zh)
JP (1) JP4787818B2 (zh)
CN (1) CN101111306B (zh)
CA (1) CA2595003C (zh)
WO (1) WO2006080157A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105832670A (zh) * 2015-12-28 2016-08-10 四川大学 一种利用诱导脂质体融合来制备双载或多载脂质体的技术

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1852177B1 (en) * 2005-01-28 2014-02-26 Japan Science and Technology Agency Molecular aggregate capable of undergoing phase transition by dehydrating condensation and method of phase transition thereof
JP5219144B2 (ja) * 2007-12-28 2013-06-26 公益財団法人新産業創造研究機構 新規アフィニティーラベル化方法及びラベル化方法を用いたスクリーニング方法
EP2455060A4 (en) * 2009-07-15 2015-09-30 Kao Corp METHOD FOR PRODUCING A VESICLE COMPOSITION
JP5669058B2 (ja) * 2010-05-10 2015-02-12 独立行政法人科学技術振興機構 リポソームの製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4789633A (en) * 1984-04-19 1988-12-06 University Of Tennessee Research Corporation Fused liposome and acid induced method for liposome fusion
US4911928A (en) * 1987-03-13 1990-03-27 Micro-Pak, Inc. Paucilamellar lipid vesicles
US5229104A (en) * 1991-04-29 1993-07-20 Richardson-Vicks Inc. Artificial tanning compositions containing positively charged paucilamellar vesicles
US6387373B1 (en) * 1993-01-15 2002-05-14 Novavax, Inc. Vaccines containing paucilsmellar lipid vesicles as immunological adjuvants
WO1994016061A1 (en) * 1993-01-15 1994-07-21 Micro Vesicular Systems, Inc. Method of inhibiting viral reproduction
US5468398A (en) * 1993-05-20 1995-11-21 Colgate-Palmolive Company Liquid fabric softening composition
CA2183435C (en) * 1994-02-24 2008-05-13 Craig D. Wright Vaccines containing paucilamellar lipid vesicles as immunological adjuvants
JP3620059B2 (ja) * 1994-03-04 2005-02-16 日本油脂株式会社 反応性小胞体、形成剤および機能性物質固定化小胞体
DK0758883T3 (da) * 1994-04-12 2003-06-02 Liposome Co Inc Fusogene liposomer og fremgangsmåder til fremstilling af og anvendelse af disse
US5874105A (en) * 1996-01-31 1999-02-23 Collaborative Laboratories, Inc. Lipid vesicles formed with alkylammonium fatty acid salts
US5756014A (en) * 1997-04-11 1998-05-26 Igen, Inc. Heat resistant lipid vesicles
WO2000053544A1 (fr) 1999-03-08 2000-09-14 Tokuyama Corporation Procede d'obtention d'un derive d'acide carboxylique et agent de condensation comprenant un sel d'ammonium quaternaire
JP2001089360A (ja) * 1999-09-16 2001-04-03 Shionogi & Co Ltd Tリンパ球増殖反応の低下剤
FR2803202B1 (fr) * 2000-01-03 2004-04-16 Capsulis Compositions pharmaceutiques destinees a une adminstration par voie orale
EP1138310A1 (de) * 2000-03-28 2001-10-04 Primacare S.A. Pro-liposomen
AU2001283817A1 (en) 2000-09-08 2002-03-22 Novozymes A/S A dough composition comprising a lipid-encapsulated enzyme
US20020094367A1 (en) * 2000-09-08 2002-07-18 Novozymes A/S Dough composition
KR100439068B1 (ko) * 2001-09-07 2004-07-05 주식회사 코리아나화장품 레티놀을 3중으로 안정화한 화장료
EP1461014B1 (en) * 2001-12-04 2021-07-14 Ben Gurion University Of The Negev Research And Development Authority Amphiphilic compounds and vesicles/liposomes for organ-specific drug targeting
FR2842734A1 (fr) * 2002-07-24 2004-01-30 Ethypharm Sa Procede pour diminuer la variabilite de la biodisponibilite d'un medicament a administration orale et compositions pharmaceutiques a administration orale
JP4669665B2 (ja) * 2004-04-12 2011-04-13 正彦 阿部 細胞毒性のないポリカチオン修飾リポソームおよびその製造方法
EP1852177B1 (en) * 2005-01-28 2014-02-26 Japan Science and Technology Agency Molecular aggregate capable of undergoing phase transition by dehydrating condensation and method of phase transition thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105832670A (zh) * 2015-12-28 2016-08-10 四川大学 一种利用诱导脂质体融合来制备双载或多载脂质体的技术

Also Published As

Publication number Publication date
EP1852177A4 (en) 2011-05-18
US20130251788A1 (en) 2013-09-26
CN101111306B (zh) 2010-09-29
JPWO2006080157A1 (ja) 2008-06-19
WO2006080157A1 (ja) 2006-08-03
US20090023003A1 (en) 2009-01-22
US8449979B2 (en) 2013-05-28
EP1852177B1 (en) 2014-02-26
CA2595003A1 (en) 2006-08-03
CA2595003C (en) 2011-03-15
JP4787818B2 (ja) 2011-10-05
EP2669002A1 (en) 2013-12-04
EP1852177A1 (en) 2007-11-07
US10098841B2 (en) 2018-10-16

Similar Documents

Publication Publication Date Title
Jesorka et al. Liposomes: technologies and analytical applications
Kennedy et al. Factors governing the assembly of cationic phospholipid-DNA complexes
Baillet et al. Lipid and nucleic acid chemistries: combining the best of both worlds to construct advanced biomaterials
CN101111306B (zh) 经脱水缩合反应可发生相转移的分子集合体及其相转移方法
Kubota et al. Microscopic imaging techniques for molecular assemblies: electron, atomic force, and confocal microscopies
Mukthavaram et al. Cationic glycolipids with cyclic and open galactose head groups for the selective targeting of genes to mouse liver
Bhattacharya et al. Synthesis, thermotropic behavior, and permeability properties of vesicular membranes composed of cationic mixed-chain surfactants
Köksal et al. Nanotube-mediated path to protocell formation
Bunge et al. Lipid Membranes Carrying Lipophilic Cholesterol-Based Oligonucleotides Characterization and Application on Layer-by-Layer Coated Particles
Dwivedi et al. Review on preparation and characterization of liposomes with application
Gopal et al. Synthesis and transfection efficiency of cationic oligopeptide lipids: role of linker
Misiak et al. New gluconamide-type cationic surfactants: Interactions with DNA and lipid membranes
Bhattacharya et al. Vesicle and stable monolayer formation from simple “click” chemistry adducts in water
Kohli et al. Synthesis and characterization of betaine-like diacyl lipids: zwitterionic lipids with the cationic amine at the bilayer interface
Menger Remembrances of self-assemblies past
Drescher et al. Impact of headgroup asymmetry and protonation state on the aggregation behavior of a new type of glycerol diether bolalipid
Mulla et al. Liposome as a drug carrier
Aljaberi et al. Physicochemical properties affecting lipofection potency of a new series of 1, 2-dialkoylamidopropane-based cationic lipids
Huang et al. Asymmetric 1-alkyl-2-acyl phosphatidylcholine: a helper lipid for enhanced non-viral gene delivery
Shi et al. Fluorescent and highly stable unimodal DMPC based unilamellar vesicles formed by spontaneous curvature
Matsui et al. Distribution of DNA in cationic liposome complexes probed by Raman microscopy
JP5142295B2 (ja) ベシクル及びその製法
Shmendel et al. Uncharged Gemini-Amphiphiles as Components of Cationic Liposomes for Delivery of Nucleic Acids
JP7157999B2 (ja) 微生物を封入したベシクルを用いた微生物の培養方法
Sarkar Influence of amphiphile composition on properties of model primitive membranes and its implications for the origins of early cellular life

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100929

Termination date: 20151212

EXPY Termination of patent right or utility model