CN101109792B - 用于动态磁共振成像的方法以及磁共振设备 - Google Patents

用于动态磁共振成像的方法以及磁共振设备 Download PDF

Info

Publication number
CN101109792B
CN101109792B CN2007101369189A CN200710136918A CN101109792B CN 101109792 B CN101109792 B CN 101109792B CN 2007101369189 A CN2007101369189 A CN 2007101369189A CN 200710136918 A CN200710136918 A CN 200710136918A CN 101109792 B CN101109792 B CN 101109792B
Authority
CN
China
Prior art keywords
data set
partial data
sub
space
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007101369189A
Other languages
English (en)
Other versions
CN101109792A (zh
Inventor
奥尔托·施泰默
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN101109792A publication Critical patent/CN101109792A/zh
Application granted granted Critical
Publication of CN101109792B publication Critical patent/CN101109792B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5611Parallel magnetic resonance imaging, e.g. sensitivity encoding [SENSE], simultaneous acquisition of spatial harmonics [SMASH], unaliasing by Fourier encoding of the overlaps using the temporal dimension [UNFOLD], k-t-broad-use linear acquisition speed-up technique [k-t-BLAST], k-t-SENSE
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4818MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
    • G01R33/4824MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space using a non-Cartesian trajectory
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5613Generating steady state signals, e.g. low flip angle sequences [FLASH]
    • G01R33/5614Generating steady state signals, e.g. low flip angle sequences [FLASH] using a fully balanced steady-state free precession [bSSFP] pulse sequence, e.g. trueFISP
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/56308Characterization of motion or flow; Dynamic imaging
    • G01R33/56325Cine imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/567Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution gated by physiological signals, i.e. synchronization of acquired MR data with periodical motion of an object of interest, e.g. monitoring or triggering system for cardiac or respiratory gating
    • G01R33/5673Gating or triggering based on a physiological signal other than an MR signal, e.g. ECG gating or motion monitoring using optical systems for monitoring the motion of a fiducial marker

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Vascular Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明涉及一种借助磁共振技术记录和产生具有近似周期性运动的器官的时间分辨的图像序列的方法。其中扫描以多个子数据组(63)分割的待扫描k空间(51),其中每个子数据组的扫描点对应于k空间片段(53)的笛卡儿扫描网格(55)的网格点,并且k空间片段的笛卡儿扫描网格相对旋转。对每个子数据组(63)分别借助交替的扫描计划来记录不完整的分数据组序列。每个不完整记录的分数据组分别对应于一个单张图像(69)。在另一步骤中对于子数据组的至少一部分,从不完整的分数据组序列(67)中再现出完整的分数据组序列(71)。再现单张图像,其中对于每个单张图像采用对应于该单张图像的完整分数据组的至少一部分来进行再现。

Description

用于动态磁共振成像的方法以及磁共振设备
技术领域
本发明涉及一种用于借助磁共振技术记录和产生时间分辨的图像序列的方法,这种图像序列尤其是用于显示近似周期运动的器官的运动过程。 
背景技术
磁共振成像在下面称为MRI(“magnetic resonance imaging”),是近年来成功建立的医疗成像领域。简而言之,其中通过采用不同强度和空间以及时间特性的不同磁场在待检查对象体内激励出核自旋共振,并测量该核自旋共振本身。所记录的测量数据在此一般设置在二维或三维空间中,即所谓的k空间中,该空间通过傅立叶变换而与图像空间关联。 
近来动态MRI的开发逐渐增多,即可以用运动过程表示时间分辨的图像序列的记录。本发明的典型应用是对近似周期运动的器官的所谓电影成像,这些器官例如是心脏、肺、胃或通过血管的血流。 
动态MRI需要快速记录时间图像序列的各个图像,以冻结和在时间上分辨待成像器官的变化。由于MRI方法通常为此带来不可接受的很长的图像拍摄时间,因此存在不同的进一步开发来加快该图像记录的过程。一种成功采用的方法是在第一步骤中删除在记录过程中记录的数据的一部分,并且在第二步骤中借助为再现过程所制定的先验知识和/或假设再现所缺少的数据。 
如果在记录测量数据时采用笛卡儿扫描模式,即这样记录该测量数据,使得该测量数据在k空间中沿着笛卡儿网格设置,则存在不同的方法来加速动态MRI中测量数据的记录。这些方法的共同之处在于,对每张图像而言实际记录的k空间行的号码分别下降,其中在记录该测量数据时跳过记录过程中的k空间行。区别主要在于如何采用特定的假设、先验知识和/或另外记录的测量信号,来重新用由该测量数据再现的数据填充在数据记录时跳过的k空间行。 
这些方法的示例以名称UNFOLD和TSENSE公知,并在下面的文献中公开: 
UNFOLD:Madore B等人,“Unaliasing by Fourier-Encoding the OverlapsUsing the Temporal Dimension(UNFOLD),Applied to Cardiac Imaging and fMRI”Magn.Reson.Med.42:813-828,1999; 
TSENSE:Peter Kellman,Frederick H.Epstein,Elliot R.McVeigh,“Adaptivesensitivity encoding incorporating temporal filtering(TSENSE)”Magn.Reson.Med.45:846-8252,2001。 
两种方法都采用这样的扫描计划,其中在记录图像序列的测量数据时在空间方向和在时间方向上都分别只记录每第A个k空间行(A在此是个整数系数),而跳过其它k空间行。如果时间的图像序列是直接从测量数据中计算出的,则该图像序列具有以所谓鬼影图像存在的A倍伪影。 
在UNFOLD方法中沿着时间轴对该图像序列进行傅立叶变换。在频域中图像序列的频谱具有A个分量,其中一个分量对应于期望的图像序列的频谱,而A-1个分量对应于不期望的鬼影图像。该鬼影图像在图像序列中重叠,而在频域中分开:期望的分量的频谱位于零频率附近,而鬼影图像的频谱推移了Np/A(Np…是该图像序列中单张图像的数量)。UNFOLD方法采用低通滤波器来抑制不期望的分量。但是一般来说期望的分量的频谱和鬼影图像的频谱的重叠达到一定的程度。这种重叠无法通过滤波来分开,从而一般来说滤波会在图像序列中或者引起时间上的模糊(通过高频分量的滤波)或者引起鬼影图像伪影的残留(由于相应分量抑制得不足)。 
TSENSE方法以UNFOLD方法为基础。测量数据在此用多个线圈元件来记录,而且在去掉图像序列中的伪影时另外采用不同的线圈灵敏特性,这些特性是采用UNFOLD方法直接从欠扫描的测量数据中确定的。通过这种方式可以更好地消除伪影。 
其它基于相同扫描计划的方法以名称kt-BLAST、kt-SENSE和TGRAPPA公知并公开在下面的文献中: 
kt-BLAST、kt-SENSE:Jeffrey Tsao,Peter Boesiger,Klaas P.Pruessmann,“kt-BLAST and kt-SENSE:Dynamic MRI with high frame rate exploitingspariotemporal correlations”Magn.Reson.Med.50:1031-1042,2003; 
TGRAPPA:Felix A.Breuer,Peter Kellman,Mark A.Griswold,Peter M.Jakob,“Dynamic autocalibrated parallel imaging using temporal GRAPPA(TGRAPPA)”Magn.Reson.Med.53:981-985,2005。 
与完全记录的静止对象相比或与完全记录的、空间分辨率降低了的时间图像序列相比,这些方法的缺点是加强了伪影和/或噪声,或提高了时间上的模糊和降低了时间分辨率。 
此外在MRI中还公知在记录测量数据时k空间扫描的非笛卡儿方法是优选的,尤其是在采用对k空间辐射状的扫描模式时。该方法尤其是通过其抵抗不足记录和伪影、尤其是运动伪影的鲁棒性而凸显出来。 
因此存在在动态MRI中采用非笛卡儿k空间扫描模式以减小残留的伪影和/或增大信噪比和/或获得其它加速的原因。在文献Hansen Michael S等人“k-tBLAST reconstruction from non-Cartesian k-t space sampling”Magn.res.Med.55:85-91,2006中例如讨论了多种方法,它们与k空间的笛卡儿扫描相比全都具有加大困难的缺点。所公开的方法例如具有若干小时的再现时间,因此在临床成像时的使用是很有限的,因为在临床工作流程中会导致不期望的延迟。 
既用于静态MRI又用于动态MRI的另一种方法以名称PROPELLER MRI公知,其例如公开在文献J.G.Pipe“Periodically Rotated Overlapping ParallELLines with Enhanced Reconstruction(PROPELLER)MRI;Application to MotionCorrection”,ISMRM 1999,abstract Nr.242和J.G.PiPe“Periodically RotatedOverlapping ParallEL Lines with Enhanced Reconstruction(PROPELLER)MRI;Application to Motion Correction”,ISMRM 1999,abstract Nr.157和Pipe J.G.“Motion Correction with PROPELLER MRI:application to head motion andfree-breathing cardiac imaging”,Magn.Reson.Med.42:963-969,1999中。 
对于PROPELLER技术中的MRI来说,k空间薄层状的片段分别与围绕中心k空间点旋转的、直角的k空间片段重叠(通常称为“片”或“条”)。 
在这种k空间扫描中有利的首先是,可以确定待检查对象可能出现在记录两个k空间片段的间隔中的不期望的运动等。在再现图像数据时可以根据运动类型或者计算出该运动,或者考虑该运动以至少使得能比较好地抑制由于患者运动所带来的伪影。 
在J.G.PiPe“Periodically Rotated Overlapping ParallEL Lines with EnhancedReconstruction(PROPELLER)MRI;Application to Motion Correction”,ISMRM1999,abstract Nr.157中,PROPELLER技术在一个特殊实施方式中用于动态造影剂检查。但是在此描述的方法不能方便地用于显示近似周期性的运动过程,如心脏的运动。 
发明内容
因此本发明要解决的技术问题是提供一种用于动态MRI的方法,该方法实现高的时间和空间分辨率,只需很少的再现时间,并且对伪影、尤其是运动伪影和磁场非均匀性以及对k空间的欠扫描有很强的抵抗能力。此外,本发明还要解决的技术问题是提供一种用于动态MRI的磁共振设备或计算机软件产品,其具有高的时间和空间分辨率,同时具有很少的再现时间和对伪影的强抵抗能力。 
本发明的方法借助磁共振技术记录和产生具有近似周期性运动的器官的时间分辨的图像序列,该图像序列包括一系列单张图像,其中扫描以多个子数据组分割的待扫描k空间,其中每个子数据组的扫描点对应于k空间片段的笛卡儿扫描网格的网格点,并且这些k空间片段的笛卡儿扫描网格相对旋转,该方法具有以下步骤: 
-对于每个子数据组记录多个不完整的分数据组,其中 
每个不完整的分数据组分别对应于一个单张图像, 
所述不完整分数据组的记录沿着属于子数据组的扫描网格用不同的、交替的扫描计划进行,以及 
在不同的扫描计划中分别扫描属于该子数据组的扫描网格的各其它网格点; 
-对于子数据组的至少一部分,从不完整的分数据组中再现出完整的分数据组,以及 
-再现单张图像,其中对于每个单张图像采用对应于该单张图像的完整分数据组的至少一部分来再现。 
因此在本发明的方法中对k空间进行辐射状扫描,因为各个k空间片段相对旋转。此外本发明的方法还具有以下特性:分别用笛卡儿扫描计划扫描各个k空间片段。K空间片段的扫描是利用多个分数据组来进行的,其中每个分数据组对应于时间分辨的图像序列中的一个单张图像,也就是说,待检查对象的近似周期性的运动保持在各个分数据组中。 
所记录的分数据组在此是不完整的,也就是说在记录时不是k空间片段的所有网格点都被测量数据所占据。但是不完整分数据组的记录是用多个不完整的、连续交替的扫描计划来进行的。在这些不同的扫描计划中分别扫描该k空 间片段的其它网格点。因此,通过重复的扫描计划产生具有笛卡儿扫描模式的不完整分数据组的时间序列,从而现在可以采用在本文开始提到的方法来使不完整分数据组的时间序列变得完整,并因此对每个子数据组都获得一个完整的分数据组序列。 
优选的,所述再现在各个子数据组的每一个中进行。通过这种方式,对每个k空间片段获得一个完整的分数据组序列。每个分数据组序列都反映了待检查对象近似周期性的运动。 
进行图像序列的单张图像的再现,其中优选对每个单张图像都将对应于该单张图像的所有完整分数据组用于再现。在此,由所属分数据组来再现单张图像是利用PROPELLER再现技术的公知方法进行的。在PROPELLER再现中一种多次使用的方法是所谓的网格方法。该方法的详细描述在文献J.I.Jackson等人的“Selection of a Convolution Function for Fourier Inversion Using Gridding”,IEEE Trans.Med.Imag.10:473-478,1991中公开。 
从文献Arfanakis K.等人的“k-Space Undersampling in PROPELLERImaging”,Magn.Reson.Med.53:675-683,2005可知,在k空间不完全被相对旋转的k空间片段覆盖时也可以再现出高质量的图像。出于这个原因优选在拍摄时忽略完整的子数据组,以进一步缩短测量时间。此外还因为这个原因不是一定需要将对应于一个单张图像的所有完整的分数据组都用于再现该单张图像。后者在各个分数据组于再现器件被识别为含有伪影的(例如因为不期望的患者运动,该患者运动与近似周期性的器官运动相叠加)时是有利的。出于这个原因也不一定需要对每个子数据组都再现完整的分数据组。 
优选连续记录一个子数据组的不完整分数据组。通过这种方式,在采集测量数据期间通断的梯度场可以达到最大程度的均匀,由此按照经验可以将可能导致伪影的不期望的效果-如因为涡流导致的效果降至最低。此外,如果在检查期间出现不期望的患者运动(与动态的器官运动叠加),则该采集顺序通常会减小恶化的分数据组的数量。 
在优选的实施方式中,在触发点之后记录子数据组的不完整分数据组的,该触发点表征器官近似周期性的运动。由此可以简单地将各个不完整分数据组的记录与器官的运动协调一致,其中每一个分数据组都对应于一个单张图像。 
优选的,通过记录对应于子数据组的全部不完整分数据组,扫描属于该子数据组的扫描网格的所有网格点。这意味着通过各个分数据组的全部扫描计划 的整体来扫描该分数据组所对应的子数据组的所有网格点。该优选的实施变形通常还用于使不完整分数据组特别精确地完整,但这不是必须的。例如可以这样构成扫描计划,即虽然k空间片段的中心区域的所有网格点通过扫描计划的全体来扫描,但是在该k空间片段的边缘区域中并不一起采集该扫描计划的全体的所有网格点。 
优选的,通过记录全部不完整的分数据组来多次扫描属于所述子数据组的扫描网格的所有网格点。如果属于一个子数据组的扫描网格的所有网格点被多次扫描,则可以从该不完整的分数据组中特别精确地再现出完整的分数据组。 
在一优选实施方式中,在记录不完整分数据组时采用的不同的扫描计划周期性地交替。周期性交替的扫描计划在记录不完整分数据组时产生周期性。这使得可以从不完整的分数据组中简单地再现出完整的分数据组。 
在一特别简单地转换的实施方式中采用A个不同的扫描计划,这些扫描计划的特征在于在每个扫描计划中只扫描该扫描网格的每第A个k空间行,以及所扫描的k空间行在各个扫描计划之间推移。数目A在此通常是可调节的整数。这种扫描计划的使用尤其可以简单地实现,并且具有以下优点:这种扫描计划使得可以从不完整的分数据组中特别简单地再现出完整的分数据组。 
优选的,不完整分数据组的记录用具有不同空间灵敏度的多个线圈元件来进行,其中在从不完整的分数据组中再现完整的分数据组时采用各个线圈元件的灵敏度信息。由此也可以提高从不完整的分数据组中再现出完整分数据组的精度。 
在该方法的一个实施方式中,从不完整的分数据组中再现完整的分数据组是借助其它完整的辅助数据组来进行的,该辅助数据组对应于中心k空间区域。这种辅助数据组使得可以特别简单和准确地再现分数据组。 
优选的,各个k空间片段围绕k空间的中心点相对旋转。由此各个k空间片段在k空间的中心区域中相交。这种相交造成用每个分数据组来记录对应于该中心区域的测量数据。这些多次记录的测量数据之间的比较优选可以在再现完整的分数据组和图像序列的单张图像时使用。在由完整的分数据组再现单张图像的步骤中,例如记录在采集各个分数据组之间的间隔中出现的不期望的患者运动(并与器官的动态运动相叠加),并且根据该运动的类型部分或甚至完全地加以校正。如果不能校正伪影,则可以通过这种方式识别被特别强的伪影占据的子数据组或分数据组,从而可以将这些子数据组或分数据组排除到后续的 再现之外。 
如果k空间片段在一个中心区域中相交,并且为了从不完整的分数据组中再现完整的分数据组选择将辅助数据组用于再现的方法,则优选从该不完整的分数据组中计算出该辅助数据组。通过这种方式可以在记录测量数据期间节省记录辅助数据组所需要的时间。 
但是在另一个优选的实施方式中,除了不完整的分数据组之外还可以一起记录辅助数据组。在该实施方式中可以缩短再现时间,因为辅助数据组现在不必从不完整的分数据组中计算得出,而是直接用不完整的分数据组来记录,但这同时增加了测量数据的拍摄时间。以名称kt-BLAST/kt-SENSE公知的方法例如利用辅助数据组来再现完整的数据组。 
本发明的磁共振设备包括实施为用于执行上述方法的计算单元。 
本发明的计算机软件产品当在与磁共振设备连接的计算单元上运行时实施上述方法。 
附图说明
下面借助附图描述本发明的实施方式和优选结构,但并不限于此。其中, 
图1示出磁共振设备的示意概貌图, 
图2示出用单个k空间片段对k空间的PROPELLER类型的覆盖,沿着这些k空间片段分别进行沿着笛卡儿扫描网格的扫描, 
图3示出在心脏周期中分为记录子数据组和分数据组的测量数据的记录的概貌, 
图4示出由测量数据再现图像序列中的单张图像的概貌, 
图5示出本发明方法的示意流程。 
具体实施方式
图1示意性示出磁共振设备1的结构。磁共振设备1用于执行实际测量的部件位于屏蔽高频的测量舱3内。为了借助磁共振成像检查身体,对该身体辐射不同的、在时间和空间特性上都最为准确地相互协调一致的磁场。 
强磁铁,通常是具有隧道形开口的低温磁铁5,产生静态的强主磁场7,该主磁场通常为0.2特斯拉到3特斯拉或更大,并且在测量空间内基本上是均匀的。待检查的身体(在此未示出)放置在患者卧榻9上,并且定位在主磁场 7中,确切地说是在测量空间中。 
对身体的核自旋的激励通过磁高频激励脉冲进行,该高频激励脉冲通过在此表示为体线圈13的高频天线射入。高频激励脉冲由脉冲发生单元15产生,后者由脉冲序列控制单元17控制。在通过高频放大器19放大之后,该高频激励脉冲被导向高频天线。在此示出的高频系统只是示意性的。通常在磁共振设备1中采用多于一个的脉冲发生单元15,多于一个的高频放大器19以及多个高频天线。 
此外,磁共振设备1具有梯度线圈21,利用该梯度线圈在测量时射入梯度场,用于选择性地断层激励和对测量信号进行位置编码。梯度线圈21由梯度线圈控制单元23控制,后者与脉冲发生单元15一样也与脉冲序列控制单元17连接。 
由激励的核自旋发射的信号被体线圈13核/或本地线圈25接收,通过对应的高频前置放大器27放大,并由接收单元29进一步处理和数字化。在此该接收线圈还包括多个线圈元件,利用这些线圈元件同时记录核共振信号。 
在一个既可以在发射模式又可以在接收模式下运行的线圈中,如体线圈13,通过前面连接的发送-接收转换器39来调整正确的信号传递。 
图像处理单元31从测量数据中产生图像,该图像通过操作台33显示给用户或者存储在存储单元35中。中央计算单元37控制各个设备部件。计算单元37和其它部件在此这样构成,即利用它们可以执行本发明的方法。 
图2示出在本发明方法的一个优选实施方式中的k空间扫描类型,该k空间扫描类型与PROPELLER技术的扫描类型相应。在此二维的k空间矩阵51被各个k空间片段53覆盖。每个k空间片段53的扫描点位于笛卡儿扫描网格55上的每个k空间片段53中。 
为清楚起见,扫描网格55只显示在按照15个中央(即围绕零点设置的)k空间行57形式的k空间片段53上(L=15),这些k空间行在相位编码方向上等间隔地平行设置。 
每个k空间行57的长度在此覆盖k空间矩阵51的全部宽度(在这里示出的例子中M=192个矩阵点)。但这不是必须的。 
各个k空间片段53围绕一个中心点相对旋转,从而k空间矩阵51的中心圆形区域53被每个k空间片段53覆盖,并因此在每次记录测量数据时都被一起扫描。在此旋转角αi和k空间片段53的数量NB是特征参数,这些特征参数 是这样选择的,即k空间片段53覆盖整个感兴趣的k空间区域。字母B在此代表概念“片”,在PROPELLER类型的k空间扫描中通常用“片”来表示各个k空间片段53。通常这在下列等式成立时得到保证: 
N B = π 2 × M L .
与MRI中的其它采集技术相比,PRPELLER技术的优点是中心的圆形区域59(直径为L)在k空间的中心同样被每个k空间片段53覆盖。在记录测量数据之后,可以在该圆形区域59中不同k空间片段53的测量数据之间进行比较,使得可以确定待检查对象在记录各个k空间片段53的测量数据时出现的运动。然后可以在再现图像数据时在采用所有k空间片段53的测量数据的条件下考虑这样获得的信息,由此可以明显减少图像中的运动伪影。在这里提出的本发明方法的实施例中,PROPERLLER类型的k空间分割的这项优点可用于从完整的分数据组中再现出单张图像的方法步骤。 
即使在此为清楚和简单起见只示出两维k空间矩阵51,本方法也可以在三维扫描计划中使用,只要三维k空间片段的扫描点分别位于笛卡儿扫描网格上,并且该k空间片段相对旋转。 
借助图3和图4描述测量数据的记录和从测量数据中再现图像序列。图3示出在本发明方法中测量数据记录的划分和时间流程的概貌。 
示例性地针对记录和产生运动的心脏的时间分辨的图像序列来解释在此描述的实施例。相应的测量数据的记录在多个心脏周期中进行。一个心脏周期的过程通过EKG(心电图)线61表示,在此通常在该测量过程中从患者推导出一个EKG作为对心脏的近似周期性运动的监控。 
用于再现心脏运动的时间分辨的图像序列,包括Np张单张图像。字母P在此表示在心脏的该运动周期内通过其中一个单张图像再现的时间阶段。每个单张图像都对应于该运动周期的一个时间点t1...tNp。 
在本发明中,在多个子数据组63中顺序地进行k空间扫描,其中记录在一个心脏周期中的每个其开始通过EKG中检测到的R锯齿65来标识的子数据组63。 
在每个子数据组63中,记录一个k空间片段53中的测量数据。该子数据组63的记录,即对所属k空间片段53的扫描在Np个不完整的分数据组67中进行。因此在记录子数据组63时将对k空间片段53的扫描分别在单张图像的 时刻t1...tN重复Np次。 
在通过Np个不完整的分数据组67记录了完整的子数据组63之后,才记录下个子数据组63,利用该子数据组扫描下个相对于前面的k空间片段53旋转了旋转角α的k空间片段53。在所示例子中,每个子数据组63的记录分别在于EKG线中检测到R锯齿65之后进行。 
不完整分数据组67的记录意味着,对应于k空间片段53的扫描网格55没有被完全记录,或者不是每个扫描网格55的网格点都被一个测量值占据。 
在此所示的例子中,在记录不完整的分数据组67时只扫描每第A个k空间行57(通过实线表示),而其它k空间行57(通过虚线表示)则被跳过。在记录各个不完整的分数据组67时,分别连续地扫描或跳过其它k空间行57。如果例如只记录每第A个k空间行57,则给出A个不同的扫描计划,利用这些扫描计划在记录不完整的分数据组67时先后扫描k空间片段53。从而通过只扫描每第A个k空间行57,给出了时空加速系数A。在所示例子中,A的数是3。对于A=2来说,例如产生始终扫描偶数或奇数k空间行57的两个扫描计划。 
在记录不完整的分数据组67时顺序地采用该A个不同的扫描计划,从而分别在记录了A个不完整的分数据组之后记录一个k空间片段53的所有k行57。 
在此提出的扫描计划具有以下优点:这种扫描计划使得可以特别简单地从不完整的分数据组中再现完整的分数据组。在此完整分数据组的再现是利用上述在类似扫描计划中采用的公知方法进行的。 
但是本发明的方法不限于上述分别记录或跳过整个k空间行57的扫描计划,而是还可以用在不完整分数据组67的记录通常利用不同的、交替的扫描计划进行的情况,其中在扫描计划不同时分别扫描k空间片段53或所属扫描网格55的其它网格点。 
因此通过图3所示的测量数据的划分,整个记录的数据组被分为NB个子数据组63。这些子数据组63中的每一个本身又分为Np个不完整的分数据组67,这些分数据组对应于NB个k空间片段53中的一个。 
在这里描述的将测量数据划分为子数据组63和不完整的分数据组67中,要对测量数据的记录进行时间排列,使得对于一个子数据组63首先顺序地记录所有分数据组67,然后才记录下个子数据组63。这种记录的顺序尤其适合于转 用到磁共振设备。但是本发明的方法不限于该顺序的测量数据记录的特殊实施方式;还可以采用其它记录顺序,其中子数据组63的记录和不完整分数据组67的记录相互交错。 
在借助图4描述从记录的测量数据中再现单张图像69之前,首先详细描述记录测量数据所采用的序列。注意力尤其集中在该序列典型的持续时间上,该持续时间与心脏运动的特征性持续时间以及其它生理参数有关。 
用于记录测量数据的特殊序列在此起着从属的作用,只要利用该序列可以笛卡儿地扫描k空间。对于心脏的CINE(电影)成像,例如有TrueFISP序列(“truefast imaging with steady-state precession”,稳态运动的真实快速成像),也称为SSFB(refocused/balanced steady-state free precession,重聚焦/平衡的稳态自由运动)、FIESTA(Fast Imaging Employing Steady sate Acquistion,采用稳态采集的快速成像、平衡的FFE(Fast Field Echo,快速场回波)。在记录图像数据期间指示患者屏住呼吸。每次在EKG中检查到R锯齿65时就开始记录测量数据,其中在一个R锯齿65之后记录Np个不完整的分数据组67。在每个不完整的分数据组67中记录S个k空间行57。在记录了S个k空间行57之后该序列记录下个不完整的分数据组67。S的值典型地为15,通过这种方式一个不完整的分数据组67的记录大约需要50ms。该值同时也是图像序列的时间分辨率。如果假定在一个R锯齿65之后提供900ms来记录测量数据(在心率为60/min时是典型的值),则可以相继记录Np=18个不完整的分数据组67,对应于时间分辨的图像序列的Np=18个单张图像69。 
根据患者的心律,在一个R锯齿65后记录少于或大于18的不完整分数据组67,从而该时间图像序列具有对应的其它数量的单张图像69。如果TS表示扫描S个k空间行57所需要的持续时间,TA表示一个R锯齿65之后的拍摄时间窗口的持续时间,则例如可以借助以下等式计算时间图像序列的单张图像69的数量: 
N P = ( T A T S ) A , 2 ,
其中符号(.)A,2表示,在括号中的值被舍入到下个较小的整数,该整数是偶数而且是时空加速系数A的倍数。 
如果在每个不完整的分数据组67中都只扫描每第3个k空间行57,即如果时空加速系数A=3,则所属k空间片段53的笛卡儿扫描网格具有L=A·S=45个k空间行57。假定k空间矩阵51是矩形而且矩阵大小为M=192个矩阵点, 则k空间行57也具有192个矩阵点的行长度。在这种情况下借助估计式 
N B = π 2 × M L
产生6到7个k空间片段53来覆盖k空间矩阵51。相应地,为了在一个断层中记录心脏的运动需要6到7次心跳。如果以患者可以屏住呼吸最多20sec的时间为出发点,而且假定心率为60/min,则可以提供最大20次心跳来用于没有呼吸运动地记录测量数据。这意味着,在一次屏住呼吸时间内可以记录心脏的大约2到3个断层。为了显示整个心脏,在层厚度为8mm的情况下通常需要12个关联的短轴片段,以显示从心脏顶点到心脏底部的整个左心室。 
因此在心脏成像中的一个目标是将记录一个断层所需要的心跳的次数保持在尽可能的少。心跳的次数越少,在一次呼吸停顿期间就可以记录越多的断层,从而为了显示整个心脏所需要的总的呼吸停顿就更少。可替换地,可以将快速拍摄技术也用于缩短屏息时间,这尤其是对于存在心脏循环问题的患者是非常有利的。采用本发明方法的其它替换是呼吸停顿的次数和持续时间与未加速的测量相比几乎保持相同,但是为此需要提高时间分辨率(通过缩小S)和/或空间分辨率(通过提高M)。通过A、S和M以及每次呼吸停顿的断层个数的参数选择,用户可以确定在这三种替换方式中每一种获利到什么程度。稍后解释按照需要缩短利用本发明方法的拍摄时间的其它手段。 
即使在此以心脏的电影成像为例详细描述本发明的方法,但是该方法还可以在其它应用领域用于产生时间的图像序列,并尤其适合于显示器官的近似周期性的运动,如肺或者腹部器官的运动。 
图4示出从测量数据中再现图像序列的单张图像的概貌。 
由于k空间片段53的扫描是在用笛卡儿扫描计划记录子数据组63时进行的,因此可以通过公知方式补充在不完整子数据组67中缺乏和跳过的测量数据,在该具体例子中是各跳过的k空间行57,从而从不完整的分数据组67中再现出完全的分数据组71,通过点线表示。由此可以消除否则会在记录时在跳过k空间行57的情况下出现的所谓伪影。 
在从不完整的分数据组67中再现出完整的分数据组71时所采用的方法例如在说明书导言部分以名称UNFOLD、TSENSE、kt-BLAST、kt-SENSE和TGRAPPA由对应的参考文献给出。 
所述方法中的一些方法利用实际的测量数据和另外记录的辅助数据组,通 常也称为训练数据组。这种辅助数据组在此通常是完整记录的图像数据组,但是具有减小了的空间分辨率,并可选择具有减小了的时间分辨率。在上述方法中,该辅助数据组例如分别在记录完整的分数据组67之前、之后或甚至期间记录。在本发明的方法中,可以相应于再现方法除了不完整的分数据组67之外还以类似方式记录辅助数据组。在图3和图4中,为清楚起见没有一起显示可选择一起记录的辅助数据组。 
现在描述从子数据组63的NP个不完整的分数据组67中再现出Np个完整的分数据组71的具体方法。为了根据该方法来再现不需要特别记录的辅助数据组;但是不完整分数据组67的记录借助多个线圈元件进行,这些线圈元件分别具有不同的空间灵敏度。 
为了从不完整分数据组67的测量数据中再现出未扫描的k空间行57的数据,采用经过修正的GRAPPA方法。以“GRAPPA”公知的方法是一种用于并行成像的方法(GRAPPA是Generalized Autocalibrating Partially ParallelAcquisitions,通用自动校准部分并行获取),其例如在DE 10126078 B4或Griswold M.A等人的“Generalized Autocalibrating Partially Parallel Acquisitions(GRAPPA)”,Magn.Reson.Med.47:1202-1210,2002中公开,并且用于在利用多个线圈元件同时记录测量数据时消除由于k空间的欠扫描而形成的假信号伪影。在此对每个线圈元件分别计算一个未扫描的k空间行57的每个数据点,作为由k空间中相邻而且经过扫描的多个线圈元件的测量数据组成的加权线性组合。为此所需的加权系数通常采用另外记录的k空间行57来确定,该k空间行不能通过扫描计划的欠扫描来采集。 
在这里提出的方法中,不是通过另外记录不完整的分数据组67的k空间行57,而是借助从不完整的分数据组67中获得的辅助数据组来确定加权系数。 
下面详细描述再现完整分数据组的各个步骤。 
步骤1:将k空间片段53的子数据组63的所有记录的测量数据,即不完整分数据组67的时间序列,排列成四维阵列s(ky,kx,nc,tn)。下标ky,kx表示k空间中的位置,nc表示线圈元件(nc=1,...,Nc),tn表示第n次重复记录不完整分数据组67的时刻(n=1,...,N)。NC在此是所采用的线圈元件的总数,并且大于或等于时空加速系数A。以下阵列元素被0占据:对于这些阵列元素由于欠扫描而在不完整的分数据组67中没有测量数据存在。然后对该阵列沿着t轴以离散傅立叶变换进行傅立叶变换,其中变换长度是Np,从而获得所属的时间频 谱S(ky,kx,nc,fn),其中, 
- N P 2 ≤ N ≤ N P 2 .
步骤2:对该时间频谱应用具有围绕零频率的窄低通频带的低通滤波器,以去掉由于欠扫描而在频谱中存在的鬼影图像。 
步骤3:从时间频谱中去掉对应于图像序列的时间平均的分量的静态分量,其中在时间频谱中频率为0的值被设置为0:S(ky,kx,nc,f0)=0, - ( L 2 ) 2 &le; k y < - ( L 2 ) 2 + L , - M 2 &le; k x < M 2 , 1≤nc≤NC。 
步骤4:对这样修改后的时间频谱沿着f轴用反傅立叶变换进行反变换。由此获得修正的分数据组的时间序列,其通过阵列 
Figure G071D6918920070925D000144
描述。该修正的序列现在是完整的,也就是说在所属的阵列 中还有由于欠扫描而在原始阵列中曾等于0的数据值不等于0: 
s ~ dynamic ( k y , k x , n c , t n ) &NotEqual; 0 , - ( L 2 ) 2 &le; k y < - ( L 2 ) 2 + L ,
- M 2 &le; k x < M 2 , 1≤nc≤NC,1≤n≤NP。 
步骤5:通过这种方式获得的修正的分数据组的时间序列 
Figure G071D6918920070925D000149
作为辅助数据组序列,用于为每个时间点tn计算用于GRAPPA类型的再现的线性加权系数。通过这种方式获得NP个线性加权系数组,并将它们存储起来用于稍后的再现。 
步骤6:如果又从不完整分数据组67的原始时间序列(通过阵列s(ky,kx,nc,tn)描述)出发,则计算出原始测量数据的静态分量,其中对时间序列求时间上的平均值: 
S static ( k y , k x , n c ) = A N P &Sigma; n = 1 N P s ( k y , k x , n c , t n ) .
步骤7:获得k空间片段53的不完整分数据组67的原始时间序列的动态分量,其中减去静态分量: 
Figure G071D6918920070925D000151
步骤8:采用步骤5中计算的线性加权系数组来对数据进行GRAPPA类型的再现,该再现应用于分数据组的动态分量。通过这种方式获得分数据组的新的动态时间序列,通过阵列 表示。该新的动态时间序列是完整的,也就是说在所属的阵列 
Figure G071D6918920070925D000153
中还有由于欠扫描而在原始阵列中曾等于0的数据值不等于0。 
在下面的再现过程的步骤中,一方面重新添加在步骤7被减掉的静态分量,并且抑制残留的假信号伪影。 
步骤9:首先对来自步骤8的分数据组的新动态时间序列 
Figure G071D6918920070925D000154
沿着t轴进行傅立叶变换(变换长度为NP的离散傅立叶变换),以获得所属的时间频谱: 
Figure G071D6918920070925D000155
N P 2 &le; n < N P 2 .
步骤10:该频率为0的所属时间频谱的值应当等于0,最多有小的偏差。该值现在被静态分量NP·sstatic(ky,kx,nc)代替,其中sstatic(ky,kx,nc)是在步骤6中计算出来的。 
步骤11:为了进一步抑制在这样修改的时间频谱中残留的伪影,对该时间频谱应用具有窄的截止范围的带通滤波器。该滤波器的截止范围是位于频率fm附近的频带,对该频率下式成立: 
m = j &CenterDot; N P A , 和 
Figure G071D6918920070925D000158
通过这种方式抑制了残留的伪影。 
步骤12:通过反傅立叶变换从经过滤波的频谱中再现出完整的分数据组71的时间序列。 
该再现步骤现在优选对所有NB个子数据组63及其不完整的分数据组67重复进行。 
完整的分数据组71在另一个步骤中用于按照PROPELLER技术执行对图像序列的再现。在此再现图像序列的一个单张图像69,其中子数据组63的对应于该单张图像69的完整分数据组71都用于再现。该再现方法在前面引用的 文献J.G.Pipe的“Motion Correction with PROPELLER MRI:application to headmotion and free-breathing cardiac imaging”,Magn.Reson.Med.42:963-969,1999中公开。对最终图像质量起决定性作用的步骤是在合适的笛卡儿网格上插值分数据组71的数据点。对于该再现步骤可以采用各种公知方法。下面简要描述两种方法。 
一种用于在合适的笛卡儿网格上插值分数据组71的数据点的可行和多次采用的方法是所谓的网格方法。对该方法的详细描述在文献J.I.Jackson等人的“Selection of a Convolution Function for Fourier Inversion Using Gridding”,IEEETrans.Med.Imag.10:473-478,1991中公开。利用按照该网格方法的过程,对完整的、属于单张图像的分数据组的每个数据点或通过加权补偿/校正的数据点进行卷积(利用相应的卷积核),并投影到合适的笛卡儿网格上。然后将该以笛卡儿形式出现的原始数据组利用快速傅立叶变换(FFT)变换到图像空间中。通过傅立叶变换的卷积核来告知该FFT的结果,使得可以获得待再现的单张图像。 
对于另一种可以用于从所属的分数据组中再现出单张图像的优选方法,执行以下步骤:首先选择一个笛卡儿的最终网格。在第二步骤中将每个分数据组的数据分别传送给一个新网格,该新网格具有属于该分数据组的k空间片段的方向,而且在此还具有对应于最终网格的网格常量的网格常量。这种传送例如可以通过Sinc插值来进行。对于该最终网格和分数据组的扫描网格具有相同的网格常量的情况,不需要插值。在第三步骤中,将每一个新网格的数据插值地传送给最终网格并累加,其中该新网格的数据旋转一个等于k空间片段或新网格相对于最终网格的旋转角的角度。接着对这样获得的最终网格的数据进行傅立叶变换,从而获得单张图像。 
为了例如再现出图像序列的第三个单张图像69’,采用子数据组63的第三完整分数据组71’。如果存在,则在此优选采用所有子数据组63的第三分数据组71’。还可以不将所有的第三分数据组71’都用于再现第三个单张图像69’,例如在一个子数据组63不能求值的情况下,因为在记录该子数据组时会出现太大的伪影。在这种情况下还可以只用第三分数据组71’的一部分来再现第三个单张图像69’。如在Arfanakis K.等人的“k-Space Undersampling in PROPELLERImaging”,Magn.Reson.Med.53:675-683,2005中所述,在根据PROPELLER技术再现时删除各个k空间片段的数据会在可容许的范围内影响图像质量。可替换地,将在这种情况下存在伪影的第三分数据组71’用同一个子数据组的时间 上相邻的分数据组(在该例中例如是第二或第四分数据组)来代替。这种替换方案的前提是,同一子数据组的时间上相邻的分数据组存在更少的伪影。此外在这种替换方案中抑制被代替的分数据组71’的位于这样的k空间区域中的数据点,在该k空间区域中存在实际的第三分数剧组的数据点。 
本发明的方法具有另一个优点:该优点尤其是在选择一种用于使不完整的分数据组67中的k空间行57完整的方法时更为突出,在这种方法中通常采用另外记录的辅助数据组。这种方法例如是在说明书导言中以名称kt-BLAST和kt-SENSE提到的方法,其中在记录实际的不完整测量数据之前另外记录低分辨率的、完整的辅助数据组。 
现在利用本发明的方法可以放弃记录低分辨率的辅助数据组,而是采用所记录的、属于k空间矩阵51的中心区域59并且是在记录每一个k空间片段53时一起记录的测量数据。 
虽然在记录期间进行了不完整的扫描,该中心区域59的测量数据仍然具有足够的密度,因为这些测量数据是对每个k空间片段53一起记录的,从而从该测量数据中可以产生辅助数据组,其与通常一起记录的辅助数据组类似具有较低的空间分辨率,但是没有假信号伪影。 
与附加地记录辅助数据组相比,直接从不完整的分数据组67中提取低分辨率的辅助数据组具有多个优点。一方面可以缩短整个拍摄时间,因为辅助数据组必须单独记录。另一方面可以绕过记录辅助数据组和记录实际图像数据组之间的时间延迟,这种时间延迟在其间出现运动的情况下(例如由于一次不足的呼吸停顿)会导致错误地再现完整的数据组,因为这样辅助数据组和欠扫描的测量数据就分别对应于一个很容易改变的对象。 
图5示出本发明方法的优选实施方式的示意方法流程。 
在第一方法步骤81中记录测量数据。测量数据的记录在此是迭代地进行的,其中在每次迭代步骤中都记录一个子数据组63的测量数据;也就是在每次迭代步骤中都沿着一个k空间片段53记录测量数据。为此对应于该序列的单张图像69的数量记录一个分数据组67的序列,其中不完整地记录每个分数据组67,并且借助不同的、交替的扫描计划来进行该记录。不同的扫描计划分别扫描属于该子数据组63的扫描网格的其它网格点,其中通过记录全部不完整的分数据组67来扫描属于该子数据组63的扫描网格的所有网格点。 
在第二方法步骤83中从不完整的分数据组67中再现出完整的分数据组 71。该再现在此同样是迭代地进行的。在迭代步骤中从一个子数据组63的所有不完整的分数据组67中再现出对应的完整的分数据组71。 
在第三方法步骤85中,迭代地再现出图像序列的各个单张图像69。在此在迭代步骤中再现出单张图像69,其中将所有对应于该单张图像69的完整的分数据组71都用于再现该单张图像69。 
下面对按照上述实施例的本发明方法与纯笛卡儿地扫描k空间-即各个k空间片段不相对旋转的方法进行比较。下面假定,矩形k空间的矩阵大小是M=192。此外假定,在一个分数据组中分别扫描S=15个k空间行,其中分别扫描每第三个k空间行。这相当于A=3的时空加速系数。 
抵抗运动的鲁棒性: 
在该实施例中-如上所述-为了完整地记录一个断层需要大约6到7次心跳,而在纯笛卡儿的扫描和分割中4到5次心跳就足够。这是由以下等式给出的: 
HB Cartesian = M S &times; A .
这虽然稍快,但是在记录时还出现了以下问题:患者典型地在记录期间无法完全屏住呼吸。这导致在心跳之间出现运动。 
与典型的患者运动相比,在两种方法中在一个k空间片段中记录测量数据都比较快。 
但是由于在k空间的纯笛卡儿扫描和分割中首先必须不完整地记录k空间片段,以据此使该不完整记录的k空间矩阵完整,因此在记录期间出现的患者运动会在再现图像中引起比较强的伪影。也即在对k空间纯笛卡儿地扫描时,在不同心跳时记录的k空间信号被该运动这样改变,使得在图像再现时会形成鬼影图像和/或在相位编码方向上出现模糊。 
但在本发明的方法中,使单个k空间片段53或单个子数据组63的不完整分数据组67完整,从而完整的分数据组71本身具有很少的运动伪影。因此在记录时的不足呼吸停顿主要导致各个k空间片段53或子数据组63的相对方向出现错误。 
但在本发明的方法中,各个k空间片段53在k空间矩阵51的中心圆形区域59中相互重叠。由于在该区域中重复记录测量数据,因此可以将该重复记录的测量数据用于均衡在记录各个k空间片段时出现的刚性体旋转和刚性体平 移。仅当运动不具有刚性特征和/或运动在断层方向发生时,在再现单张图像时才无法校正由此形成的、各个k空间片段53相互之间的错误方向。 
所述的后一错误方向通常只出现在少量的k空间片段53中并因此出现在子数据组63中,通常出现在在一次呼吸停顿结束时记录的k空间片段53或子数据组63中。在这种情况下,不同k空间片段53的中心测量数据之间的比较至少实现了识别该k空间片段53的可能性。这样识别的k空间片段53可以在对测量数据的进一步处理时去掉。这种去掉在此或者是完全的,也可以是部分的,对于后一种情况例如只丢弃已经通过其它k空间片段53记录的k空间片段的测量数据。 
在纯笛卡儿地分割和扫描k空间矩阵时,无法利用刚才描述的优点,这在前面提到过。 
即使在再现图像数据时不进行运动校正,本发明的方法也能提供更佳的图像质量,因为k空间与各个k空间片段53的径向覆盖以及在PROPELLER技术中对图像的再现都比单纯的笛卡儿扫描k空间更不易受到运动伪影的影响。 
抵抗方位欠扫描的鲁棒性: 
本发明的方法相对于纯笛卡儿扫描来说具有另一个优点,该优点可以用于加速本发明的方法。 
如上所述,在纯笛卡儿的扫描中4到5次心跳就足以记录一个断层,而在本发明方法中,对于相对旋转的k空间片段53来说出现了k空间片段53的重叠,因此为了扫描k空间矩阵51需要6到7次心跳。与纯笛卡儿地扫描k空间矩阵51相比,扫描所需要的心跳次数增加了系数π/2。 
但是可以看出(参见例如Arfanakis K.等人的“k-Space Undersampling inPROPELLER Imaging”,Magn.Reson.Med.53:675-683,2005),这样进行k空间的欠扫描,使得不是一起扫描整个k空间片段53和整个子数据组63,甚至当直到50%的k空间片段53不是一起扫描时只是稍微降低了图像质量。这意味着,本发明的方法可以这样实施,为了记录心脏的一个断层的图像数据同样只需要4至5次心跳,如果扫描的持续时间是一个问题的话。 
图像再现时间的比较: 
下面比较本发明方法中的图像再现时间与传统方法的图像再现时间,在传统方法中时间上的图像序列是利用纯笛卡儿的、分段的k空间扫描拍摄的,例如用在说明书导言部分描述的UNFOLD、TSENSE、kt-BLAST、kt-SENSE和 TGRAPPA方法。 
由于在产生时间分辨的图像序列时矩阵大小与静态MRI中的矩阵大小相比通常比较小,因此以PROPELLER技术再现单张图像花费比较少的时间。因此再现时间的主要部分用于从不完整的分数据组67中再现出完整的分数据组71。在此假定下,动态图像序列的再现持续时间变长了一个系数,该系数给出单个k空间片段的数量,即NB,因为完整分数据组71的再现要针对每个k空间片段53分开进行。 
本发明的方法具有以下优点:如上所述不需要为了再现而记录低分辨率的辅助数据组,从而可以直接在记录了测量数据之后开始处理所记录的测量数据。假定为了从不完整分数据组67中再现完整的分数据组71而选择一种针对每个子数据组63分开进行该步骤的方法,则可以直接在记录子数据组63之后开始处理所记录的测量数据。 
对于在该实施例中描述的心脏的电影(CINE)成像,这例如意味着,完整的分数据组71的数据处理和再现可以在子数据组63的记录结束之后进行,也即直接在结束一个心脏周期之后开始。如果另外还可以像记录所持续的那么快地处理子数据组63的不完整分数据组67,则可以保证对测量数据的快速处理,因为在结束测量数据的记录之后只需处理具有不完整分数据组67的最后的子数据组63。在这种情况下可以在与传统方法差不多的时间内获得图像。实际的是,为此所需的算法实施为可以保持再现时间。 

Claims (13)

1.一种借助磁共振技术记录和产生具有近似周期性运动的器官的时间分辨的图像序列的方法,该图像序列包括一系列单张图像(69),
其中扫描以多个子数据组(63)分割的待扫描的k空间(51),其中每个子数据组(63)的扫描点对应于k空间片段(53)的笛卡儿扫描网格(55)的网格点,并且这些k空间片段(53)的笛卡儿扫描网格(55)相对旋转,该方法具有以下步骤:
对于每个子数据组(63)记录多个不完整的分数据组(67),其中,
每个不完整的分数据组(67)分别对应于一个单张图像(69),
所述不完整分数据组(67)的记录沿着属于该子数据组(63)的扫描网格(55)用交替的不同扫描计划进行,以及
在不同的扫描计划中分别扫描属于该子数据组(63)的扫描网格(55)的其它网格点;
对于所述子数据组(63)的至少一部分,从不完整的分数据组(67)中再现出完整的分数据组(71),以及
再现单张图像(69),其中对于每个单张图像(69)采用对应于该单张图像(69)的完整分数据组(71)的至少一部分来进行再现。
2.根据权利要求1所述的方法,其特征在于,连续记录一个子数据组(63)的不完整分数据组(67)。
3.根据权利要求1或2所述的方法,其特征在于,在触发点(65)之后记录子数据组(63)的不完整分数据组(67),该触发点表征器官的近似周期性的运动。
4.根据权利要求1或2所述的方法,其特征在于,通过记录全部不完整的分数据组(67)来扫描属于所述子数据组(63)的扫描网格(55)的所有网格点。
5.根据权利要求1或2所述的方法,其特征在于,通过记录全部不完整的分数据组(67)来多次扫描属于所述子数据组(63)的扫描网格(55)的所有网格点。
6.根据权利要求1或2所述的方法,其特征在于,在记录不完整的分数据组(67)时采用的不同的扫描计划周期性地交替。
7.根据权利要求1或2所述的方法,其特征在于,采用A个不同的扫描计划,这些扫描计划的特征在于在每个扫描计划中只对所述扫描网格(55)的每隔A-1个k空间行(57)扫描一行,以及所扫描的k空间行(57)在各个扫描计划之间移动。
8.根据权利要求1或2所述的方法,其特征在于,利用具有不同空间灵敏度的多个线圈元件来进行所述不完整的分数据组(67)的记录,其中在从不完整的分数据组(67)中再现完整的分数据组(71)时采用各个线圈元件的灵敏度信息。
9.根据权利要求1所述的方法,其特征在于,所述从不完整的分数据组(67)中再现完整的分数据组(71)是借助其它完整的辅助数据组来进行的,该辅助数据组对应于中心k空间区域。
10.根据权利要求1所述的方法,其特征在于,所述各个k空间片段(53)围绕k空间(51)的中心点相对旋转。
11.根据权利要求10所述的方法,其特征在于,从所述不完整的分数据组(67)中确定所述辅助数据组。
12.根据权利要求9或10所述的方法,其特征在于,除了所述不完整的分数据组(67)之外还记录所述辅助数据组。
13.一种磁共振设备,具有计算单元(37),该机算单元具有:
用于对于每个子数据组(63)记录多个不完整的分数据组(67)的装置,其中,
每个不完整的分数据组(67)分别对应于一个单张图像(69),
所述不完整分数据组(67)的记录沿着属于该子数据组(63)的扫描网格(55)用交替的不同扫描计划进行,以及
在不同的扫描计划中分别扫描属于该子数据组(63)的扫描网格(55)的其它网格点;
用于对于所述子数据组(63)的至少一部分,从不完整的分数据组(67)中再现出完整的分数据组(71)的装置,以及
用于再现单张图像(69)的装置,其中对于每个单张图像(69)采用对应于该单张图像(69)的完整分数据组(71)的至少一部分来进行再现。
CN2007101369189A 2006-07-21 2007-07-23 用于动态磁共振成像的方法以及磁共振设备 Expired - Fee Related CN101109792B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006033862.6 2006-07-21
DE102006033862A DE102006033862B3 (de) 2006-07-21 2006-07-21 Verfahren zur dynamischen Magnet-Resonanz-Bildgebung sowie Magnet-Resonanz-Gerät

Publications (2)

Publication Number Publication Date
CN101109792A CN101109792A (zh) 2008-01-23
CN101109792B true CN101109792B (zh) 2012-08-22

Family

ID=38650796

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101369189A Expired - Fee Related CN101109792B (zh) 2006-07-21 2007-07-23 用于动态磁共振成像的方法以及磁共振设备

Country Status (4)

Country Link
US (1) US8073522B2 (zh)
JP (1) JP5294582B2 (zh)
CN (1) CN101109792B (zh)
DE (1) DE102006033862B3 (zh)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1856549A1 (en) * 2005-03-11 2007-11-21 Royal Brompton and Harefield NHS Trust Mri imaging of an object in cyclic motion
DE102006033862B3 (de) * 2006-07-21 2007-12-06 Siemens Ag Verfahren zur dynamischen Magnet-Resonanz-Bildgebung sowie Magnet-Resonanz-Gerät
US8219176B2 (en) * 2007-03-08 2012-07-10 Allegheny-Singer Research Institute Single coil parallel imaging
US7541808B2 (en) * 2007-04-11 2009-06-02 Allegheny-Singer Research Institute Rapid MRI dynamic imaging using MACH
US7471086B2 (en) * 2007-04-20 2008-12-30 General Electric Company Magnetic resonance imaging visualization method and system
EP2145199B1 (en) * 2007-04-27 2018-12-12 Koninklijke Philips N.V. Magnetic resonance device and method for propeller mri
US7863893B2 (en) * 2007-05-02 2011-01-04 Case Western Reserve University Dynamic pMRI using GRAPPA-operator with under-sampled time interleaved frames
JP5575385B2 (ja) * 2007-11-02 2014-08-20 株式会社東芝 磁気共鳴イメージング装置
US20090129648A1 (en) * 2007-11-15 2009-05-21 Konstantinos Arfanakis Method of reducing imaging time in propeller-MRI by under-sampling and iterative image reconstruction
CN101470180B (zh) * 2007-12-29 2016-01-20 西门子(中国)有限公司 磁共振成像中失真校准的方法和装置
EP2303117B1 (en) * 2008-06-25 2013-09-25 Koninklijke Philips N.V. Radiation therapy system with real time magnetic resonance monitoring
US8688193B2 (en) * 2008-06-26 2014-04-01 Allegheny-Singer Research Institute Magnetic resonance imager, method and program which continuously applies steady-state free precession to k-space
DE102008046267B4 (de) * 2008-09-08 2011-04-07 Siemens Aktiengesellschaft Bildverzeichnungskorrektur bei kontinuierlicher Tischbewegung
US8131046B2 (en) * 2008-10-29 2012-03-06 Allegheny-Singer Research Institute Magnetic resonance imager using cylindrical offset region of excitation, and method
JP2010179046A (ja) * 2009-02-09 2010-08-19 Toshiba Corp 磁気共鳴イメージング装置
DE102009014498B4 (de) * 2009-03-23 2011-03-24 Siemens Aktiengesellschaft Verfahren, Magnetresonanzgerät und Computerprogramm zur Erstellung von Bildern mittels paralleler Akquisitionstechnik
DE102009014461B4 (de) * 2009-03-23 2011-06-22 Siemens Aktiengesellschaft, 80333 Verfahren, Magnetresonanzgerät und Computerprogramm zur Erstellung von Bildern mittels paralleler Akquistionstechnik
US8198892B2 (en) * 2009-04-22 2012-06-12 Allegheny-Singer Research Institute Steady-state-free-precession (SSFP) magnetic resonance imaging (MRI) and method
DE102009019592B4 (de) * 2009-04-30 2014-02-20 Siemens Aktiengesellschaft Verfahren zur getriggerten Messung an einem Magnetresonanztomograhiegerät sowie ein Magnetresonanztomographiegerät hierfür
DE102009061198B3 (de) * 2009-04-30 2014-02-20 Siemens Aktiengesellschaft Verfahren zur getriggerten Messung an einem Magnetresonanztomographiegerät sowie ein Magnetresonanztomographiegerät hierfür
US9472000B2 (en) * 2009-06-19 2016-10-18 Viewray Technologies, Inc. System and method for performing tomographic image acquisition and reconstruction
US8405394B2 (en) * 2009-10-20 2013-03-26 Allegheny-Singer Research Institute Targeted acquisition using holistic ordering (TACHO) approach for high signal to noise imaging
EP2499509A1 (en) * 2009-11-10 2012-09-19 Deutsches Herzzentrum Berlin Look-locker ir-ssfp for cardiac mr imaging with simultaneous generation of cardiac t1 maps, cine images and ir -prepared images
US20110215805A1 (en) * 2010-03-03 2011-09-08 Allegheny-Singer Research Institute MRI and method using multi-slice imaging
US8502534B2 (en) * 2010-03-31 2013-08-06 General Electric Company Accelerated dynamic magnetic resonance imaging system and method
DE102010019016B4 (de) * 2010-05-03 2017-03-02 Siemens Healthcare Gmbh Verfahren zur Rekonstruktion von Bilddaten eines bewegten Untersuchungsobjektes aus Messdaten nebst zugehöriger Gegenstände
DE102010032080B4 (de) * 2010-07-23 2012-09-27 Siemens Aktiengesellschaft Getriggerte Magnetresonanzbildgebung auf der Grundlage einer partiellen parallelen Akquisition (PPA)
WO2012085810A2 (en) * 2010-12-22 2012-06-28 Koninklijke Philips Electronics N.V. Rapid parallel reconstruction for arbitrary k-space trajectories
US8934691B2 (en) 2011-04-06 2015-01-13 Siemens Medical Solutions Usa, Inc. System for motion compensated MR parallel imaging
WO2012149401A1 (en) * 2011-04-29 2012-11-01 Magnetic Resonance Innovations, Inc. Tissue similarity mapping
DE102011085033B4 (de) * 2011-10-21 2013-08-08 Siemens Aktiengesellschaft Korrektur von Artefakten in MR-Bildern aufgrund unzureichender Anregung bei ultrakurzen Echozeiten
WO2014039080A1 (en) 2012-09-07 2014-03-13 Heartvista, Inc. Methods for optimal gradient design and fast generic waveform switching
US20130274592A1 (en) * 2012-02-29 2013-10-17 Taehoon SHIN Time-resolved early-to-late gadolinium enhancement magnetic resonance imaging
US9910118B2 (en) * 2012-04-20 2018-03-06 University Of Virginia Patent Foundation Systems and methods for cartesian dynamic imaging
CN103529413B (zh) * 2012-07-04 2016-03-02 上海联影医疗科技有限公司 磁共振成像方法与装置、k空间的重建方法与装置
DE102012217287B4 (de) * 2012-09-25 2015-11-26 Siemens Aktiengesellschaft Korrektur von Artefakten in Magnetresonanzbildern
DE102014200006B4 (de) * 2014-01-02 2015-12-03 Siemens Aktiengesellschaft Rekonstruktion von fehlenden Magnetresonanz-Rohdaten
CN106104292B (zh) * 2014-03-24 2019-11-29 皇家飞利浦有限公司 Propeller磁共振成像
JP6362950B2 (ja) * 2014-07-24 2018-07-25 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 磁気共鳴装置
DE102014218924A1 (de) * 2014-09-19 2016-03-24 Siemens Aktiengesellschaft Ermittlung einer Position eines Objekts mittels MRT-Aufnahmen
KR101611451B1 (ko) 2014-11-03 2016-04-11 삼성전자주식회사 자기 공명 영상 처리 장치 및 방법
WO2017009391A1 (en) 2015-07-15 2017-01-19 Koninklijke Philips N.V. Mr imaging with motion detection
US10198810B2 (en) * 2015-09-16 2019-02-05 University Of Virginia Patent Foundation Free-breathing parameter mapping with high-contrast image registration
EP3416133A1 (en) 2017-06-16 2018-12-19 Siemens Healthcare GmbH A method for predicting a current position of a body part, computer program product and system for predicting the current position of a body part
JP7351847B2 (ja) * 2018-04-19 2023-09-27 サトゥル メディカル,インコーポレイテッド 深層学習を使用して磁気共鳴撮像を向上させるためのシステムおよび方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818229A (en) * 1995-10-31 1998-10-06 Kabushiki Kaisha Toshiba Correction of MR imaging pulse sequence using prescan having application phase adjusted RF refocusing pulses
US6289232B1 (en) * 1998-03-30 2001-09-11 Beth Israel Deaconess Medical Center, Inc. Coil array autocalibration MR imaging
US6600944B2 (en) * 2000-07-31 2003-07-29 Koninklijke Philips Electronics N.V. Magnetic resonance method and apparatus
CN1516051A (zh) * 2003-08-27 2004-07-28 中国人民解放军第一军医大学 基于广义模糊梯度矢量流场的医学序列图像运动估计方法
US20050007114A1 (en) * 2003-07-09 2005-01-13 Pipe James G. Split-blade data collection for propeller mri
CN1692880A (zh) * 2004-04-29 2005-11-09 美国西门子医疗解决公司 获取对比度增强的、t1加权的、电影摄影磁共振图像

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144200A (en) * 1998-02-20 2000-11-07 General Electric Company Acquisition of segmented MRI cardiac data using an EPI pulse sequence
US6841998B1 (en) * 2001-04-06 2005-01-11 Mark Griswold Magnetic resonance imaging method and apparatus employing partial parallel acquisition, wherein each coil produces a complete k-space datasheet
JP3929047B2 (ja) * 2003-04-24 2007-06-13 株式会社日立メディコ 磁気共鳴イメージング装置
JP4230875B2 (ja) * 2003-10-09 2009-02-25 株式会社日立メディコ 磁気共鳴イメージング装置
US7102348B2 (en) * 2004-08-05 2006-09-05 Siemens Aktiengesellschaft MRI method and apparatus for faster data acquisition or better motion artifact reduction
JP3668816B1 (ja) * 2004-12-16 2005-07-06 学校法人慶應義塾 磁気共鳴イメージング装置
DE102006033862B3 (de) * 2006-07-21 2007-12-06 Siemens Ag Verfahren zur dynamischen Magnet-Resonanz-Bildgebung sowie Magnet-Resonanz-Gerät

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818229A (en) * 1995-10-31 1998-10-06 Kabushiki Kaisha Toshiba Correction of MR imaging pulse sequence using prescan having application phase adjusted RF refocusing pulses
US6289232B1 (en) * 1998-03-30 2001-09-11 Beth Israel Deaconess Medical Center, Inc. Coil array autocalibration MR imaging
US6600944B2 (en) * 2000-07-31 2003-07-29 Koninklijke Philips Electronics N.V. Magnetic resonance method and apparatus
US20050007114A1 (en) * 2003-07-09 2005-01-13 Pipe James G. Split-blade data collection for propeller mri
CN1516051A (zh) * 2003-08-27 2004-07-28 中国人民解放军第一军医大学 基于广义模糊梯度矢量流场的医学序列图像运动估计方法
CN1692880A (zh) * 2004-04-29 2005-11-09 美国西门子医疗解决公司 获取对比度增强的、t1加权的、电影摄影磁共振图像

Also Published As

Publication number Publication date
US20080021304A1 (en) 2008-01-24
US8073522B2 (en) 2011-12-06
CN101109792A (zh) 2008-01-23
JP2008023338A (ja) 2008-02-07
JP5294582B2 (ja) 2013-09-18
DE102006033862B3 (de) 2007-12-06

Similar Documents

Publication Publication Date Title
CN101109792B (zh) 用于动态磁共振成像的方法以及磁共振设备
Yoon et al. Rapid imaging: recent advances in abdominal MRI for reducing acquisition time and its clinical applications
JP6998218B2 (ja) 動き検出を用いるmr撮像
Block et al. Towards routine clinical use of radial stack-of-stars 3D gradient-echo sequences for reducing motion sensitivity
JP6691797B2 (ja) 磁気共鳴イメージング装置
JP4646015B2 (ja) 磁気共鳴イメージング(mri)システムの作動方法
JP5980126B2 (ja) 単一および多重チャネル受信コイルを用いた同時マルチスライス磁気共鳴画像法
US7309985B2 (en) Method of reconstructing an MR image
KR101642428B1 (ko) 확대된 임시 윈도우의 서브 세트를 유연하게 가시화하기 위한 자기 공명 촬상 장치 및 자기 공명 촬상 방법
US7592809B1 (en) Hybrid k-t method of dynamic imaging with improved spatiotemporal resolution
JPS63214247A (ja) 像を発生する方法
JP4871399B2 (ja) 磁気共鳴イメージング装置
JP2001161657A (ja) 核磁気共鳴撮影装置
WO2003092497A1 (fr) Dispositif d&#39;imagerie par resonance magnetique
WO2012011069A1 (en) Mri method for retrospective motion correction with interleaved radial acquisition
US10962617B2 (en) Methods and apparatus for scan time reductions in magnetic resonance imaging using outer volume supression
US20220221540A1 (en) Propeller echo planar time-resolved imaging with dynamic encoding
US9018952B2 (en) Method for self-calibrated parallel magnetic resonance image reconstruction
US10228434B2 (en) Multi-shot echo planar imaging using reordered segments and RF excitation pulse phase and slice profiles matched across interleaves
JP2004089275A (ja) 磁気共鳴イメージング装置における位相補正方法
WO2009047690A2 (en) Segmented multi-shot mri involving magnetization preparation
JP4678916B2 (ja) 磁気共鳴イメージング装置
JP6831755B2 (ja) 磁気共鳴イメージング装置及び磁気共鳴イメージング装置の制御方法
WO2008041208A2 (en) Segmented multi-shot mri involving magnetization preparation
EP3118643A1 (en) Dynamic propeller mr imaging

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120822

Termination date: 20200723

CF01 Termination of patent right due to non-payment of annual fee