CN101104526A - 表面固定金属离子的氨基磁性纳米粒子及其制备方法 - Google Patents

表面固定金属离子的氨基磁性纳米粒子及其制备方法 Download PDF

Info

Publication number
CN101104526A
CN101104526A CNA200710041500XA CN200710041500A CN101104526A CN 101104526 A CN101104526 A CN 101104526A CN A200710041500X A CNA200710041500X A CN A200710041500XA CN 200710041500 A CN200710041500 A CN 200710041500A CN 101104526 A CN101104526 A CN 101104526A
Authority
CN
China
Prior art keywords
amino
magnetic nano
enrichment
magnetic
metal ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA200710041500XA
Other languages
English (en)
Inventor
邓春晖
徐秀青
姚宁
张祥民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CNA200710041500XA priority Critical patent/CN101104526A/zh
Publication of CN101104526A publication Critical patent/CN101104526A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

本发明属于无机材料和生化分析技术领域,具体为一种表面固定金属离子的氨基磁性纳米粒子及其制备方法和应用。该磁性纳米粒子是先合成表面带有氨基的磁性纳米材料,然后采用己二酰氯继而采用亚氨基二乙酸对其进行表面化学修饰,进而固定金属子而获得。该固定金属离子的磁性纳米粒子作为微吸附剂,比表面积大,可进行复杂肽段混合物中痕量磷酸化肽段的选择性富集,方法简单有效。本发明可对低至2fmol/μL级的复杂肽段混合物中的磷酸化肽实现高选择性富集,富集效率可提高一个数量级以上。该材料在蛋白质组学翻译后修饰研究等领域有良好的应用前景。

Description

表面固定金属离子的氨基磁性纳米粒子及其制备方法
技术领域
本发明属无机材料合成及生化分析技术领域,具体涉及一种具有超顺磁性的表面固定金属离子的氨基磁性纳米粒子及其制备方法。
背景技术
蛋白质的磷酸化修饰是生物体内重要的共价修饰方式之一。在哺乳动物细胞生命周期中,大约有1/3的蛋白质发生过磷酸化修饰。蛋白质的磷酸化和去磷酸化这一可逆过程几乎调节着包括细胞的增殖、发育、分化、信号转导、细胞凋亡、神经活动、肌肉收缩及肿瘤发生等过程在内的所有生命活动。对蛋白质磷酸化修饰的研究是蛋白质结构分析与鉴定中一个非常重要的内容,确定蛋白质的磷酸化修饰位点并总结其相关的序列特点有助于进一步地了解参与磷酸化的底物及其酶的功能关系,从而更深入理解磷酸化修饰在生命过程中的作用。因此发展磷酸化蛋白的研究方法对于认识生命活动过程具有重要的意义。规模化的识别和鉴定生物体内磷酸化蛋白质的表达及其变化,在技术方法上还存在很大问题,其中磷酸化修饰蛋白质的识别与检测是影响磷酸化蛋白质组学研究的关键技术之一。近年来,基于基质辅助激光解析的飞行时间质谱成为磷酸化蛋白结构解析的强大辅助工具。由于在实际生物样本中蛋白质磷酸化的化学计量值较低,且在质谱分析中,由于磷酸肽本身所具的负电性又使其在质谱分析时信号受抑制,磷酸化肽段离子化效率低,因此其信号往往被非磷酸化肽段所抑制,这对磷酸化肽段的鉴定提出了挑战。在质谱分析前对磷酸蛋白/肽进行选择性分离或富集为磷酸化蛋白的结构解析提供了有效的解决方法。固定金属离子螯合色谱(IMAC)是该方面目前研究的热点。固相金属离子亲和色谱最初用于磷蛋白的亲和纯化,磷酸基团与固相化的金属离子有高亲和力,可被选择性地吸附在上面,通过固定在多孔树脂上的金属离子和磷酸化肽段或蛋白的磷酸根离子之间的静电相互作用实现选择性分离富集。
磁性聚合物纳米粒子以其本身特有的物理、化学性质以及在细胞分离、磁辅助给药和酶固定等众多领域中的潜在应用前景而得到了广泛的关注。磁性聚合物纳米粒子融合了磁性材料的磁响应特性和微球聚合物材料的高分散性等优点,使得其对痕量肽段的富集成为可能。
发明内容
本发明的目的在于提供一种操作简单、效率高、效果好,能对痕量磷酸化肽段进行高选择性富集及直接进行质谱分析的表面固定有金属离子的氨基磁性纳米粒子及其制备方法和应用。
本发明提供的表面固定有金属离子的氨基磁性纳米粒子,是先采用水热法合成氨基四氧化三铁磁性纳米材料,然后与己二酰氯反应,继而再与亚氨基二乙酸反应对其表面进行化学修饰,生成表面带有羧基的磁性纳米材料,进而固定金属离子而获得。其结构如下式所示:
Figure A20071004150000051
式中,1表示氨基四氧化三铁磁性纳米粒子;M表示表面固定的金属离子;
金属离子M可以是Fe3+、Al3+、Ga3+、In3+、Ce3+、Zr4+、Ni2+或Cu2+等。用于磷酸化肽段富集的磁球外部固定的金属离子可以是Fe3+、Al3+、Ga3+、In3+、Ce3+或Zr4+等。
上述表面固定有金属离子的氨基磁性纳米粒子的制备方法如下:
(1)用水热法合成表面带有氨基的超顺磁性纳米粒子:采用1.0-5.0克FeCl3·6H2O为原料,以20-80mL乙二醇为分散体系,添加2-6克无水乙酸钠,反应温度为190-210℃,反应时间为6-18小时,生成表面带有氨基的磁性纳米粒子,其粒径是30-100nm;
(2)在磁性纳米粒子表面进行化学修饰固定金属离子:将0.2-0.6g氨基四氧化三铁磁性纳米材料分散于40-80mL无水甲苯和5-20mL吡啶的混合液中,超声分散;然后往密闭体系中注入5-20mL己二酰氯,反应3-6h。在外加磁场作用下,收集产物,并用无水甲苯清洗。将最终材料分散于30-60mL无水甲苯中;然后往该混合液中加入5-20mL IDA,反应3-6h。最终产物经磁分离收集,用无水甲苯清洗。将得到的产物分散在10-30mL,浓度为0.1-0.3M的FeCl3溶液中,振荡分散2-4h;然后用去离子水反复清洗材料。
本发明中,水热法合成粒子和进行化学修饰后表面羧基化的氨基磁性纳米粒子皆具有很好的超顺磁性,其饱和磁化强度分别为40-70emu/g和30-60emu/g。
本发明合成的具有超顺磁性表面固定有金属离子的氨基磁性纳米粒子可直接放入含有磷酸化肽的复杂肽段混合物中,进行痕量磷酸化肽选择性富集,无需特殊处理;富集好后,采用简单磁场对磷酸化肽和其他样品的进行分离,无需离心,所以可以克服传统离心造成的非磷酸化肽的共离心沉淀问题;富集后样品无需洗脱,克服了样品洗脱过程造成的样品损失问题,并且该材料不存在传统材料的“孔洞效应”,可直接用于基质辅助激光解析离子化质谱分析,进而实现磷酸化位点的鉴定,方法简单实用有效。
本发明中,上述富集体系的pH值为1-6,样品浓度为2×10-7-2×10-9M,超顺磁性微球量是50-1000μg/1mL样品,富集时间在30秒-90分钟,富集温度在20-45℃,本发明可用任何一种合成的表面固定不同金属离子的磁性纳米粒子,其溶液分散性非常好,体系均匀稳定,有利于溶液中的磷酸化肽在材料上的富集。
本发明的表面固定有金属离子的氨基磁性纳米粒子的合成方法简单有效并具有很好的磁场感应性;可对磷酸化肽进行有效选择性富集;富集过程无需离心分离,采用磁场作用就可实现材料和样品的分离;与基质辅助激光解析离子化质谱有很好的相容性,被固定金属离子磁性纳米粒子吸附后的样品无需样品洗脱步骤可直接进行基质辅助激光解析电离-飞行时间质谱分析,避免了洗脱过程造成的样品损失;方法简单有效。本发明可对低至2fmol/μL级的复杂肽段混合物中的磷酸化肽实现高选择性富集,富集效率提高一个数量级以上;采用富集到的磷酸化肽样品可进而实现磷酸化位点的鉴定。该材料的合成及应用为磷酸化肽段的富集提供了新的方法,并扩展了磁性纳米材料的实际应用,在蛋白质组学翻译后修饰研究等领域有良好的实用价值和应用前景。
附图说明
图1为水热法合成的氨基磁性纳米粒子的透射电镜图(a)和扫描电镜图(b)。
图2为表面羧基化磁性纳米粒子材料水热法合成的透射电镜图(a)和扫描电镜图(b)。
由图1和2可见:氨基磁性纳米粒子和表面羧基化磁性纳米粒子皆具有很好的均一性和分散性。
图3氨基磁性纳米粒子和表面羧基化磁性纳米粒子的磁滞回线图。可见化学修饰前后磁性纳米粒子都具有很好的超顺磁性。
图4为氨基磁性纳米材料(a)和表面羧基化磁性纳米粒子(b)的傅立叶变换红外谱图。将两者的红外图谱比较可见,经过表面修饰后我们成功制备了表面羧基化的磁性纳米粒子。
图5为表面固定有金属离子的氨基磁性纳米粒子的合成路线图。
图6为50μg表面固定Fe3+离子的氨基磁性纳米粒子富集2×10-8Mβ-casein的胰蛋白酶酶解混合肽段的前后的MALDI-TOF MS谱图(a和b)。比较a和b图可见磷酸化肽富集效率均超过一个数量级以上。
图7为50μg表面固定Fe3+离子的氨基磁性纳米粒子富集2×10-7M casein蛋白的胰蛋白酶酶解混合肽段前后的MALDI-TOF MS谱图(a和b)。比较a和b图,可见肽段混合物中的磷酸化肽得到了选择性富集。
具体实施方式
通过实施例是对本发明所提供的超顺磁性的表面固定Fe3+离子的氨基磁性纳米粒子材料进行样品富集和基质辅助激光解吸离子化/质谱直接分析过程的进一步说明。
实施例1表面固定金属离子的氨基磁性纳米粒子的合成
氨基四氧化三铁表面固定金属离子的磁性微球材料的合成共分为三步。
首先,采用水热法合成氨基四氧化三铁磁性纳米材料:1.0g FeCl3·6H2O溶于30mL乙二醇中,磁力搅拌0.5h得到黄色透明溶液。然后加入4.0g无水NaAc,磁力搅拌0.5h后,加入3.6g 1,6-己二胺,再磁力搅拌0.5h后,得到褐黄色透明溶液。将所得溶液转入200mL的Teflon-lined不锈钢反应釜中。放于烘箱,200℃,放置12小时。50℃真空干燥备用。
其次,在氨基磁性纳米粒子表面进行化学修饰:在双颈圆底烧瓶中将0.3g氨基四氧化三铁磁性纳米材料分散于60mL无水甲苯和10mL吡啶的混合液中超声分散;然后往该密闭体系中注入10mL己二酰氯,反应4h。磁场分离收集产物。然后,将最终材料分散于40mL无水甲苯中;然后往该混合液中加入10mL IDA,反应4h。磁分离收集产物,真空干燥备用。
最后,将金属离子固定在氨基四氧化三铁磁性纳米材料表面:将上述得到的产物分散在20mL浓度为0.2M的氯化铁(FeCl3)水溶液中,分散液振荡2h。60℃真空干燥过夜备用。
实施例2肽段混合物中磷酸化肽的选择性富集和质谱测定
取200μL浓度为2×10-8M酪蛋白的胰蛋白酶酶解的肽段混合物,加入5μL浓度为10mg mL-1的表面固定Fe3+的氨基四氧化三铁磁性纳米材料分散,用乙酸调节体系pH值为2;37℃下分别孵育15min。在磁场作用下,去除上清溶液;采用pH值为2的50%ACN溶液清洗材料(用乙酸调节),去除上清。在沉淀中加入10μL的50%(体积比)的乙腈水溶液,振荡使之悬浮。悬浮液0.5μL与等体积30mg mL-1 2,5-DHB(50%乙腈水溶液,v/v)and 1%(v/v)H3PO4水溶液,1∶1(v/v)混合点至MALDI靶板上,在MALDI-TOF/TOF(4700Proteomics Analyzer,Applied Biosystems);激光器为Nd-YAG激光,波长355nm,激光脉冲频率200Hz;加速电压20KV;正离子模式,反射式TOF检测。由图6a和6b所示,磷酸化肽段得到了有效选择性富集。
实施例3
调整采用的混合肽段样品是200μL浓度为2×10-7M的Casein蛋白的胰蛋白酶酶解的肽段混合物,其他条件同实施例1,进行选择性富集浓缩和质谱实验。实验结果如图7a和7b所示。复杂肽段混合物中的磷酸化肽段得到了选择性富集。
实施例4-5
调整β-酪蛋白胰蛋白酶酶解的肽段混合物的浓度为2×10-7M和2×10-9M,其他条件同实施例2,重复上述选择性富集浓缩和质谱实验。
实施例6-8
调整吸附时间为30秒,15分钟,60分钟,其他条件同实施例2,进行选择性富集浓缩和质谱实验。实验结果表明表面固定Fe3+的氨基四氧化三铁磁性纳米材料在30秒的时间时就能实现对磷酸化肽段的有效富集。
实施例9-10
调整吸附温度为20,45度,其他条件同实施例2,进行选择性富集浓缩和质谱实验。
实施例11-12
调整吸附体系pH值为4,6,其他条件同实施例2,进行选择性富集浓缩和质谱实验。
实施例13-17
调整采用的材料表面固定的金属离子分别是Al3+、Ga3+、In3+、Ce3+、Zr4+,其他条件同实施例2,进行选择性富集浓缩和质谱实验。
实施例4-17所得结果与实施例2相似。

Claims (3)

1.一种表面固定金属离子的氨基磁性纳米粒子,其特征在于是先采用水热法合成氨基四氧化三铁磁性纳米材料,然后与己二酰氯反应,继而再与亚氨基二乙酸反应对其表面进行化学修饰,生成表面带有羧基的磁性纳米材料,进而固定金属离子而获得,其结构如下式所示:
Figure A2007100415000002C1
式中,1表示氨基四氧化三铁磁性纳米粒子;M表示表面固定的金属离子;这里金属离子M为Fe3+、Al3+、Ga3+、In3+、Ce3+或Zr4+
2.一种如权利要求1所述的表面固定金属离子的氨基磁性纳米粒子的制备方法,其特征在于具体步骤如下:
(1)用水热法合成表面带有氨基的超顺磁性纳米粒子:采用1.0-5.0克FeCl3·6H2O为原料,以20-80mL乙二醇为分散体系,添加2-6克无水乙酸钠,反应温度为190-210℃,反应时间为6-18小时,生成表面带有氨基的四氧化三铁磁性纳米粒子,其粒径是30-100nm;
(2)在磁性纳米粒子表面进行化学修饰固定金属离子:将0.2-0.6g氨基四氧化三铁磁性纳米材料分散于40-80mL无水甲苯和5-20mL吡啶的混合液中超声分散;然后往该密闭体系中注入5-20mL己二酰氯,反应3-6h;在外加磁场作用下,收集产物,并用无水甲苯清洗;将最终材料分散于30-60mL无水甲苯中;然后往该混合液中加入5-20mL IDA,反应3-6h;最终产物经磁分离收集,用无水甲苯清洗。
3.如权利要求1所述的表面固定金属离子的氨基磁性纳米粒子作为微吸附剂的应用,其特征在于直接将所述磁性纳米粒子加入含有磷化肽的复合肽段混合物中,进行痕量磷酸化肽选择性富集,富集后采用磁场对磁酸化肽和其他样品进行分离;富集体系pH值为1-6,样品浓度为2×10-7-2×10-9M,富集时间为30秒-90分钟;富集温度为20-45℃,超顺磁性纳米粒子量是50-1000μg/mL样品。
CNA200710041500XA 2007-05-31 2007-05-31 表面固定金属离子的氨基磁性纳米粒子及其制备方法 Pending CN101104526A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA200710041500XA CN101104526A (zh) 2007-05-31 2007-05-31 表面固定金属离子的氨基磁性纳米粒子及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA200710041500XA CN101104526A (zh) 2007-05-31 2007-05-31 表面固定金属离子的氨基磁性纳米粒子及其制备方法

Publications (1)

Publication Number Publication Date
CN101104526A true CN101104526A (zh) 2008-01-16

Family

ID=38998646

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA200710041500XA Pending CN101104526A (zh) 2007-05-31 2007-05-31 表面固定金属离子的氨基磁性纳米粒子及其制备方法

Country Status (1)

Country Link
CN (1) CN101104526A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101697303B (zh) * 2009-10-16 2011-11-30 上海师范大学 氨基功能化的水溶性四氧化三铁纳米磁性粒子的制备方法
CN101923934B (zh) * 2009-06-09 2013-03-27 南京大学 有机膦酸功能化磁性纳米材料的制备及在蛋白富集中的应用
CN115041143A (zh) * 2022-04-02 2022-09-13 中国医学科学院基础医学研究所 一种磁性聚合物、制备方法、试剂盒及应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101923934B (zh) * 2009-06-09 2013-03-27 南京大学 有机膦酸功能化磁性纳米材料的制备及在蛋白富集中的应用
CN101697303B (zh) * 2009-10-16 2011-11-30 上海师范大学 氨基功能化的水溶性四氧化三铁纳米磁性粒子的制备方法
CN115041143A (zh) * 2022-04-02 2022-09-13 中国医学科学院基础医学研究所 一种磁性聚合物、制备方法、试剂盒及应用

Similar Documents

Publication Publication Date Title
Jiang et al. Facile synthesis of Fe3O4@ PDA core-shell microspheres functionalized with various metal ions: A systematic comparison of commonly-used metal ions for IMAC enrichment
CN101053827A (zh) 一种表面固定金属离子的磁性微球及其制备方法和应用
Cheng et al. Magnetic affinity microspheres with meso-/macroporous shells for selective enrichment and fast separation of phosphorylated biomolecules
Huang et al. Ionic liquid-coated Fe 3 O 4/APTES/graphene oxide nanocomposites: Synthesis, characterization and evaluation in protein extraction processes
Zhang et al. Boronic acid modified magnetic nanoparticles for enrichment of glycoproteins via azide and alkyne click chemistry
Zhang et al. Fast and selective magnetic solid phase extraction of trace Cd, Mn and Pb in environmental and biological samples and their determination by ICP-MS
Yang et al. Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment
Zhang et al. Boronic acid functionalized magnetic nanoparticles via thiol–ene click chemistry for selective enrichment of glycoproteins
Sun et al. Hydrophilic Nb5+-immobilized magnetic core–shell microsphere–A novel immobilized metal ion affinity chromatography material for highly selective enrichment of phosphopeptides
Zhang et al. Preparation and characterization of iminodiacetic acid-functionalized magnetic nanoparticles and its selective removal of bovine hemoglobin
CN101054406A (zh) 采用金属氧化物磁性微球分离富集磷酸化肽段的方法
CN105148852A (zh) 一种巯基改性磁性MOFs吸附剂及其制备方法和应用
Min et al. Magnetite/ceria-codecorated titanoniobate nanosheet: A 2D catalytic nanoprobe for efficient enrichment and programmed dephosphorylation of phosphopeptides
Zhang et al. Facile synthesis of gallium ions immobilized and adenosine functionalized magnetic nanoparticles with high selectivity for multi-phosphopeptides
Li et al. Preparation of titanium-grafted magnetic mesoporous silica for the enrichment of endogenous serum phosphopeptides
Wang et al. Novel core–shell Cerium (IV)-immobilized magnetic polymeric microspheres for selective enrichment and rapid separation of phosphopeptides
Ni et al. Preparation of core–shell structure Fe3O4@ SiO2 superparamagnetic microspheres immoblized with iminodiacetic acid as immobilized metal ion affinity adsorbents for his‐tag protein purification
CN103145996B (zh) 一种聚多巴胺修饰石墨烯并在表面固定Ti4+纳米材料的合成方法及其应用
Long et al. Low-cost iron oxide magnetic nanoclusters affinity probe for the enrichment of endogenous phosphopeptides in human saliva
CN111617746B (zh) 聚离子液体改性纳米材料及其制备方法及其在富集磷酸化肽中的应用
Bae et al. Zinc ion-immobilized magnetic microspheres for enrichment and identification of multi-phosphorylated peptides by mass spectrometry
Wan et al. Magnetic metal–organic frameworks for selective enrichment and exclusion of proteins for MALDI-TOF MS analysis
CN101104526A (zh) 表面固定金属离子的氨基磁性纳米粒子及其制备方法
CN104109187B (zh) 一种胍基功能化石墨烯材料及其制备方法和应用
Liu et al. Selective removal of hemoglobin from blood using hierarchical copper shells anchored to magnetic nanoparticles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication