CN1011018B - 极值编码的信号数字化方法和设备 - Google Patents
极值编码的信号数字化方法和设备Info
- Publication number
- CN1011018B CN1011018B CN85109755A CN85109755A CN1011018B CN 1011018 B CN1011018 B CN 1011018B CN 85109755 A CN85109755 A CN 85109755A CN 85109755 A CN85109755 A CN 85109755A CN 1011018 B CN1011018 B CN 1011018B
- Authority
- CN
- China
- Prior art keywords
- signal
- analog
- digital
- code
- noise
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/66—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B14/00—Transmission systems not characterised by the medium used for transmission
- H04B14/02—Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation
- H04B14/06—Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using differential modulation, e.g. delta modulation
- H04B14/062—Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using differential modulation, e.g. delta modulation using delta modulation or one-bit differential modulation [1DPCM]
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Analogue/Digital Conversion (AREA)
- Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
Abstract
将模拟输入波形转换成数字信号的系统。它将传输信号速率降低,使接收机接到的再现模拟信号对人的听觉仍有主观的高质量。它包括极值编码器,将极值出现的时间或输入波形的极大极小值,包括自然产生或引入的基本上是随机宽带噪声出现时间,进行编码。将极值编码器的输出耦合到采用△调制器的连接线路,将连接线路的输出送到数字转换装置,将数字转换装置的输出耦合到传输信道,以传输到接收机。接收机有译码电路以再现原来的模拟信号。
Description
本发明涉及到信号处理技术领域,特别是涉及到这样一种信号处理技术领域,即以一种方式将模拟信号波形编码成数字信号,从而使该数字信号能够在压缩了带宽的传输信道上传输,并且信号的带宽压缩后仍能保持其高的主观的信号质量。尤其是,该发明涉及到电子信号处理的技术领域,其中将模拟信号波形的极值或最大和最小点所发生的时间进行编码。本发明还涉及到信息(该信息是送到人的感官系统或送至模拟人的感官系统的机构)的编码、传输和译码的方法。例如,本发明可应用到话音编码、音乐编码和视频编码技术上,并可以实用到编码译码器(CODEC)系统上。例如,本发明可用于以4.8-32Kbits/S的速率对话音信息进行数字化编码。采用本发明音乐信息也可以以16Kbits/S这样低的速率进行数字化编码,并且采用本发明时,比特速率还可以降低,而且视频信息也可以在以56Kbits/S-1.544MKbits/S的速率进行编码。
近几年来,人们提出了多种不同的将模拟信号转换成数字信号的系统。
总的来说,这些技术主要是设法保持近似于原来的模拟信号,至少在模拟信号输送到数字转换装置这点上近似于原来模拟信号,大多数这些设计都是基于下列方法。
第一种技术是一种公知的脉冲编码调制:(PCM),其中信息波形振辐的取样是在有规律的时间间隔下进行的。每秒取样的次数是根据奈奎斯特(Nyquist)关系式(即取样速率至少必须为被编码的模拟信号的最高视频分量的两倍),是由输入信号的带宽来决定的,这种方法的精度还取决于每次取样振幅的分辨率,要求的精度越高,则所需的信息的比特数就越多。一般来说,通过将每一次取样值同许多预定的电平进行比较,而将各振幅量化。
第二种技术是公知的增量调制,以下称△调制(△M)。△调制不是将波形的振幅进行不连续的取样,相反,它是将输入信号同另一信号进行连续比较,该另一信号是由一个数字形式的信号快速地重新形成的,该数字形式的信号通常是送到一个积分电路上。例如,在△调制中,典型地是将输入信号的目前值与和前一次取样值有关的信号进行比较,并且形成一个代表该二者差值的数字信号。如果重新构成的信号的幅度低于该输入信号的话,则△调制器的输出是例如为“1”,否则输出为“0”。
△调制法的精度也取决于所采用的每秒的比特数。在这种情况下比特速率同样也取决于输入信号的最大带宽。然而,在△调制中,和在PCM中一样,采用一个未加权编码,即“一组”码或一个字,并不代表一个取样的振幅。但是用△调制器进行比较时,以一个“1”或一个“0”简单地表示这种比较的结果。
无论是PCM还是△M的性能均取决于其允许的比特速率。采用高的比特速率由于其电路较复杂性,和由于信道必须具有高的质量,以便通过高的比特速率,故其造价昂贵。另外,传输高速率所必须的质量的时分信道并非用简单的方法就可以实现的。人们多次设法以求在低的速率下达到PCM和△M在高速率下所能达到的同样性能。
如果输入到PCM或△M上的信号的振幅只在有限的动态范围内变化,则在比较低的速率下,其性能尚会是好的。这是因为实际上,就信息而言,或就量化的噪声而言,一个变化较小的信号用较少的比特数就能予以代表。在线性的PCM或△M中,把低电平的变化同为数甚少的振幅进行比较,因此其精度不高。如果将高电平的变化同多个电平相比较,则其误差率就比较低。如果在低电平输入情况下,要改善信号对量化噪声的比,则需要增加传输的比特速率。
一种公知的解决方法,叫做压缩法,但该方法有其局限性和缺点。采用一个非线性压缩电路来提高低电平的强度,然后将其与为数众多的量化电平数值进行比较,高的输入振幅先被衰减,以便与低的量化电平数目进行比较,从而无论是低强度还是高强度的输入模拟信号,都具有相同的编码分辨率。压编法的反面即所谓的扩展法是在译码器中进行的。
诸如A律PCM、μ律PCM和压缩△调制非线性编码技术,同样是公知的技术,但是这些技术仍然要求相当高的比特速率才能在编码精度上取得实际的效果。
由称之为自动增益控制法(AGC)和自适应量化法的技术中提供了另一种比特速率减缩的方法,例如在PCM中,这些系统就导致自适应PCM在相应的△调制技术中则称为连续变化斜率△调制(CUSD)和数字控制△调制。
这些技术采用变化的各量化电平或变化的各步距电平,这些电平是在一个特定时间点上,由信号变化的能量大小所确定的。此种方法可把数字转换器调整得适合于各种形式的信号电平,以便更精确的量化。
AGC量化和自适应量化法有几个主要的缺点。第一、系统相对于输入信号的调整需要时间,这段时间使该系统的效率降低。第二个缺点是所使用的能量只能从信号中获得。经常是,这些信号存在有高度的干扰或噪声,在这种情况下,该系统自行调制到干扰或噪声上。而所要求的信号则可能被衰减了。
另外,PCM和△调制系统的数据速率的降低,已经在预测编码方法予以说明过了。在这些技术中,某些波形的冗余部分,例如,某些特征的重复部分,可以做为必须传输信息的可压缩部分,这些方法不是广泛采用的,只是在很窄的领域内应用。
提出的另一技术是采用双信道来传送信息。美国专利4047108中介绍了这种系统,该系统是把话音信号以低比特速率数字传输的,在该系统中,频率信息经第一信道进行传输,幅度信息经第二信道进行传输的。
另一个技术是极值编码,极值编码利用了人类感觉系统的某些特性,将传输信息所需的数据速率在很大程度上予以降低。
极值编码是依据这样的事实,即只需把激发的信号波形的某些时间特征(如极值)以使人的感觉器官感觉不到与原来的信号有什么不同的方式,重新构成一个送到人的感官系统的信号波形。
通过只将这些时间特征的信息予以编码。可以使原来信号波形中该信息的绝大部分(可达95%)成为冗余部分。极值编码技术可使数据速率的降低系数为从2到20,这样,极值编码本身并非是一种模拟-数字转换方法。然而,实际的实施方案可以用于以二进制形式表示模拟信号的全部有关信息。然后这样的二进制序列可以完全地进行数字化,下面将予以详细介绍。
一种将极值编码信息进行数字化或同步转换成一数字信号的方法,是采用简单的D触发器将极值编码信号与一预定的时钟信号同步。
虽然这种技术是简单的,并且提供了高清晰度的话音处理用信号,但是用这种技术在低时钟速率
下获得的信号质量却是相当低的。
极值编码在很大程度上取决于在编码二进制信号的各转换状态之间存在的短距离(这是由于原来存在于信号中的或是附加在信号上的宽频噪声作用的结果)。这些短距离在低比特速率下用简单的D触发器同步技术并不能很好地进行编码。在低时钟速率情况下,有误差的编码距离可以引起原来模拟波形主观上地质量的降低,一般是在比特速率低于24Kbits/S的情况下。
本发明的一个目的是提供一个用于将模拟信号进行数字编码的方法和设备,使该信号可以以低于至今实际的数据传输建立下予以传输,同时在主观上还具有高的传输质量。
本发明的另一个目的是提供一个用来处理模拟波形的数字信号处理技术,这种技术是将普通的模拟-数字转换技术同极值编码技术结合在一起。
本发明提供一种信号处理的方法和设备,利用这种方法和设备可以减少或消除由于模拟信号的数字化而产生的主观的质量降低,在一般情况下由PCM和△M所造成的宽幅度动态范围和带宽的波形产生的种种问题,均可以由于采用限制动态范围,带宽或者恒定斜率的极值编码信号做为输入信号,输入到常规的模拟-数字编码级,例如PCM或△调制器上,而使这些问题减少。
本发明的上述各种目的是由下述设备实现的,该设备包括有第一装置,该装置用于仅仅将模拟波形的最大和最小值的发生时间,包括宽带的最大和最小值的发生时间(它实际上是叠加在模拟波形上的噪声),编成编码信号,该编码信号具有一串位于两个电平之间变换状态的脉冲,这种变换状态代表极值发生的时间;第二装置,它与第一装置相连接且具有以提供一个第二信号的做为输入信号的编码信号,其中该编码信号的带宽是已压缩了的;和第三装置。用于将第二信号变换为一个数字信号并将该数字信号通过传输信息道传输到一个接收站。
在本发明的范围内还包括一种将模拟信号的波形进行数字转换的方法。
本发明的其它目的,特点和优点将从以后的说明书明显地看出来。
从下面(参照附图的)更详细的说明中,将本发明做更详细地描述,附图如下:
图1是按照本发明的系统的总体方框图;
图2为按照本发明,利用一个△调制器数字转换装置的实施例详细的方框图;
图3是如图2所示的系统的电路实施方案原理图;
图4是如图2和图3所示的系统部分信号的波形图;
图5是利用一个PCM数字转换输出级的系统的第二实施方案的方框图;
图6是如图5所示发送器部分的一部分电路的实施方案;
图7是如图5所示的PCM编码器部分电路的实施方案。
图8是如图5中所示的接收机部分电路的实施方案。
参照附图,图1中示出了按照发明系统的总体方框图。该系统的发射器部分包括有极值编码器10。连接电路50和数字化装置100,连接电路50将极值编码信号连接到数字化装置100上、该数字化装置是可以是常规的△调制器,PCM编码器,或者是其他类型的模拟-数字变换装置。然后将数字化装置100的数字输出信号耦合到传输信道150上,并由位于接收端的译码器200所接收。该译码器包括有一个数字-模拟变换器,该变换器应与位于发送端的数字化装置的类型相兼容。
图2中所示的本发明的一个实施方案的更详细的方框图,该实施方案中采用一个△调制器型的数字转换装置。模拟输入信号f(t)首先被送入到带通滤波器5,例如是一个从300Hz到3KHz的带通滤波器,或者利用一个3KHx截止频率的低通滤波器。然后将该滤波器的输出信号送到一个如上所述的极值编码装置中。该极值编码器可包括有例如微分装置12,混合或加法装置20,其中如果输入的模拟信号中不存在足够带宽的随机噪声的话,则将从噪声发生器25中发出的随机噪声加到该微分信号上,和宽频带限幅装置30。该极值编码装置将在模拟输入信号中的极值发生时间变换的一系列瞬变的脉冲输出。因此来自宽带限幅器的输出信号m(t)是一个二进制信号,其中正的和负的信号电平(或者反之)之间的每次转变状态都代表着一个极值,即原来模拟输入信号中的最大或最小值。这种极值是对该信号第一次微分而取得的,这样加
强了原来模拟输入信号(包括叠加在其上的宽带噪声)的高频分量,并将在该模拟信号和噪声中的全部的最大和最小值变换为零交叉点,从噪声发生器25发出的噪声在微分前或者在微分后,均可以加到模拟输入信号上,并且如果在该模拟信号中存在的宽带随机噪声不够时,一般是将噪声发生器的噪声加到模拟输入信号上。如图2所示,噪声是在微分器之后加上去的。因此,混合装置20输出端的信号是一个这样的信号,即输入模拟信号(包括叠加在输入模拟信号上的宽频带噪声)的全部极值已经被降低到零交叉点,限幅装置30的作用是在每一个零交叉点上的两个不同电平之间形成了一个急剧的瞬变,从而加强了该零交叉点。因此,在极值编码输出信点m(t)中的转变状态代表该原来模拟输入信号和叠加在该模拟信号上的噪声的极值。
然后宽带削波装置30的输出信号被输送到积分装置50,该积分装置提供一个输出信号,由于限幅装置的输出信号是只有两个电平的二进制信号,故该信号具有绝对恒定的斜率(正的或负的),然后积分器的输出信号被送至一个常规的△调制器100,该调制器可包括有一积分器110,转换装置或同步装置120,例如是D触发器,宽带限幅器130以及求和或判决装置140,这些装置一起可以构成一个比较器,用来比较输入极值编码信号和来自积分器110的重新形成的信号,一个时钟输入信号被送到转换装置120,使△调制信号与该时钟信号同步。该△调制器将输入积分极值编码信号与一个积分的或重新形成的△调制输出信号的变形信号进行比较,然后将△调制的输出信号输送到有限容量信道150,并传输到包含有译码器200的接收机。
由时钟信号控制使△调制器100的输出信号近似于输入信号。通常该输出信号的形状象一个具有绝对恒定斜率的三角形波形。
在一般情况下,输入到△调制器的信号具有变化的斜率,对于具有有限带宽的高强度信号而言,在最大斜率(即在最高频率时最大强度信号的最大斜率)方面有一定的限制。如果没有失真和斜率过载发生的话,则△调制器的输出应该随着这一变化而变化。另外,对于低强度信号,该斜率可能趋于零值,或随输入噪声而变化。如果该输入信号低于△调制器的判决门限值时,则该系统将会产生由若干“0”和“1”组成的恒定码流,但是经常是产生一个不对称的码流,这就是所谓空闲信道噪声或空闲噪声。
图2中,从宽带限幅装置30输出的二进制信号m(t)包括有输入信号波形中适应人的感官系统所需要再现的模拟输入信号的全部信息。
信号m(t)具有宽的频谱。在各转变状态之间的许多短的距离是由于噪声波形(是外加在系统上的或者是在输入模拟信号中原来就存在的)的转变状态所造成的。在编码过程中,由于经常可以允许有一定的误码率,可以在编码过程中并非总是需要所有这些距离的。一般来说,整个二进制序列可在非常低的误码率下使信号恢复,然而为了压缩必须传送到信息信道上的信息,某些上述的转变状态可以去掉。
积分装置50滤掉了在极值编码信号m(t)中的许多比较短的距离,并进一步提供如上所述的具有有限绝对恒定斜率的信号,这是将输入信号送到△调制器的最理想情况。由于输入到△调制器的输入信号具有一个有限的绝对恒定斜率,所以高强度输入信号就不会引起斜率的过载,因此,△调制器会提供一个数字输出信号,该信号会极准确地随着输入信号而变化。如果提供一个高比特速率,即时钟信号是高频率的,则各低强度输入信号(在各转变状态之间形成短的距离)将会以高的分辨率进行编码,因此,会得到一个非常高的总的信号噪声比。
在低比特速率情况下,例如低于约12Kbits/S的语言,则较短的距离将会引起某些误差。然而这种形式的量化噪声是受下列因素所限制的。
首先,极值编码信号处理器10可以以背景噪声的形式提供关于原来信号的背景信息,甚至在积分之后,该背景噪声可以是一个具有足够长度而易于表示的斜率的噪声信号。试验表明,在数据速率降低于8Kbits/S以下时,采用图2中所示的系统仍能提供具有电话质量的话音。由于有效地提供了噪声信号m(t)的适宜的大小,所以虽然增加了背景噪声但对信号的质量不会有明显的降低。
第二,如果在没有输入信号时,加到输入端上的噪声信号可具有这样的特性,即斜率将呈现出随机的形状,不会出现不希望的空闲信道噪声。将某
些形式的噪声或其它信号附加到△调制器上,以便消除空闲信道噪声的方法在美国专利3655555和4142066中已经予以建议。
因为输入到△调制器的输入信号具有绝对恒定的斜率,并且此后由△调制器将其数字化。因此在接收端的译码器可以包括有简单的积分器210和带通滤波器220(其带范围从300Hz到3KHz),或者,用一个截止频率为3KHz的低通滤波器来代替该带通滤波器。译码器也可以装有滤波器230(该滤波器包括有两个延迟装置235和240以及混合装置250)。这种类型的两个延迟滤波器,在低比特速率情况下,比其它的滤波器(例如陷波滤波器、梳状滤波器)更为实用。
图2中所示的数字转换设备具有若干优点。首先,采用的△调制数字转换器只需要在一个有限的动态范围中以绝对恒定的输入斜率来进行操作。这样,就简化了△调制装置的设计。第二,因为采用了极值编码器,由于模拟输入信号的全部数值可转换成二进制信号的转变状态,所以该输入模拟信号可具有高的输入动态范围。第三,上述系统可以在线性的PCM或△调制系统正常传输速率的25%到40%变化情况下工作,因此并不存在系统自动增益控制型的系统所遇到的问题。因为只有输入信号的极值。例如话音信号波形才能提供模拟信号的相应的定时信息,可以算出,低到7.2Kbits/S的数据速率仍能足够传输主观上的电话质量的话音信号,然而极值编码估为一种方法一般是不能提供足够的信息以重新形成一个没有振幅误差的输入信号,但是,可以应用一种特殊技术以减少这个误差,在这个特殊的技术中,采用足够高的比特速率以实现高的输入/输出信号噪声比。
按照本发明的系统,在高噪声环境中也能获得良好的效果,这是由于极值编码的特性所决定的,因为极值编码在编码过程中依赖于噪声。另外,由于采用了△调制器的输出级(该调制器输出级输出一个简单的一位非加权二进制码),所以该系制对信道噪声具有高的抗干扰性。
此外,实现如图2所示的系统电路,其价格相当低廉,并且使用较少的元器件。该电路的实施方案示于图3中。如图3所示,模拟输入信号f(t)进入带通或低通滤波器5(图中未予详细表示),经滤波后的模拟输入信号然后被耦合到增益约为10dB的混合器/前置放大器装置20,该装置可以由一个LM387型放大器组成。随机噪声信号是从由晶体管26的基极-发射极噪声结所组成的随机噪声发生器25中产生的,并且耦合到运算放大器14的反相输入端,以便与滤波后的模拟信号混合。噪声电压的有效值(RMS)大约为10mV,运算放大器14起着电压放大的作用。运算放大器14的输出信号耦合到第二个运算放大器16上,第二个运算放大器也可以采用LM387,这一级将放大滤波后的模拟输入信号和噪声信号予以微分。然后运算放大器16的输出信号耦合到限幅装置30,该装置可以由LM319型运算放大器比较器所构成,电位器34用于调节宽带限幅装置的门限值。该宽带限幅器30的输出信号耦合到积分装置50,该积分装置可以由例如:LM741型的运算放大器52所构成。该积分装置的输出然后耦合到△调制器的输入端,该调制器可以由LM319型运算放大器比较器(该运算放大器比较器起宽带限幅电路130和混频器140的作用),同步电路120(该电路可以由一个D触发器所组成)和反馈积分电路110。电位器112用于调节该△调制器空闲信道的噪声值,△调制器的触发器级120的一个输出端被耦合到低容量信道150,该信道用于将信号传输到接收机200)。
接收器200包括有滤波器230的译码器,该滤波器230包括有两个延迟级235和240。第一延迟级235的输出信号耦合到第二延迟级240上,并且还耦合到混合网络250上。每一延迟级提供的延迟量等于时钟信号频率fc的一个时钟周期。来自延迟级240的两次延迟信号也耦合到混合网络250上。混合网络250的输出耦合到积分级210(由例如LM741型的运算放大器211所构成)的反相输入端。该延迟级235和240如图所示可以由D触发器构成。触发器235对数字输入信号提供了第一延迟量,触发器240提供第二延迟量。该第一延迟信号和第二延迟信号通过各自的混合电阻R213和R214耦合到积分器210上。
下面将滤波器230的操作方式参照图4予以说明。图4中(a)至(e)表示图3中所标记的波形,图4(a)表示输入的字信号。图4(b)表示延迟了一个时钟周期的输入数字信号,即在触发器235的输出端的信号。图4(c)表示触发器240输
出端的信号,该信号被延迟了两个时钟周期。混合级250总的输出表示在图4(d)中,是三个电平的信号。如果输入数字信号转变状态之间的距离小于一个时钟周期,则在一个时钟周期内将保持零电平,各转变状态之间的距离大于一个时钟周期时,则该距离被缩短在一个时钟周期之内,在缩短的期间,该信号仍保持为零电平。
用积分器210把如图4(d)中所示的信号进行积分,积分后的信号示于图4(e)中。fc2频率分量已被去掉,所有其它频率分量均被积分器所保持和加以利用。此外,当斜率仅随一个时钟周期的零值部位进行反相时,滤波器会使该波形变得平滑。
滤波器230是做为消除△调制器空闲信道噪声用的最好的滤波器。例如,如果△调制的时钟频率是9.6Kbits/S,则产生空间信道噪声为时钟频率的一半或4.8Kbits/S,因此,在时钟频率的一半或4.8Kbits/S的频带上具有高衰减量的滤波器,将会把发生在声频范围内的空闲信道噪声消除掉,用上述的滤波器在时钟速率一半的频率上可取得高衰减量。如果时钟速率是9.6Kbits/S,则可在4.8Kbits/S,即在空闲信道噪声频率下,得到高的衰减量,因此,能够除掉这种噪声。
因此,用于模拟信号例如:话音或音乐信号,上述的数字转换器提供比于今公知的系统低得多的传输比特速率,但是在接收机中接收到的信号质量并不比其它高传输比特速率的数字转换系统所提供的信号质量差。这是通过使用了极值编码处理装置和连接电路装置未完成的,该处理装置除了在原来模拟信号的极值发生时间中的信息和叠加在其上的噪声之外,消除了全部存在于模拟信号中的其余信息;该连接电路装置可包含一个积分器,该积分器缩减了极值编码信号中的转变状态的数量,可使在经过数字转换之后仍能在极值编码信号中保存足够的信息量,因此信号可以在低速率下传输,但在接收端还可以重现高质量的模拟信号。这种数字转换装置可以是例如如上所述的,一个标准的△调制器,这个调制器将一个未加权的二进制码耦合到传输信道。
图3所示系统的元器件规格如表1所示,全部电阻单位均为欧姆。
表1
参考号码 规格
26 bc 239b
14 LM 387
16 LM 387
32 LM 319
52 LM 741
130 LM 319
120 CD 4013
111 LM 741
240 CD 4013
211 LM 741
R16.8K
R2100K
R327K
R427K
R527K
R682K
R715K
R868K
R922K
R1015K
R114.7K
R125K
R13470
R1415K
R1539K
R1639K
R1715K
R1810K
R1920K
R2015K
R2120K
R213220K
R214220K
R21533K
R21639K
R21739K
C147μF
C25nF
C31μF
C4100nF
C51nF
C6100nF
C7470μF
C85nF
C95nF
C21247nF
C212220nF
图5表示了本发明的另一实施方案的方框图,在该实施方案中,PCM信号是经过输信道传输的。如图所示,该系统包括有带通滤波器或低通滤波器5(该滤波器与图2和图3中所示的相应的带通滤波器或低通滤波器相类似)极值编码器10(类似于图2和图3中所示的极值编码器)带通或低通滤波器的连接电路装置50′,和一个PCM数字转换器100′。滤波器50′的规格最好是带通从300Hz到2KHz,如果采用低通滤波器,则其截止频率为2KHz。PCM数字转换器将经带通滤波或经低通滤波的极值编码输入信号进行取样,且将该输入信号转换成二进制加权数字输出信号,这一输出信号经传输信道150传输到接收机,该接受机包括有PCM译码器200′和带通或低通滤波器220′(与图3中所示的相应带通或低通滤波器220类似)。带通或低通滤波器50′将低强度信号(该信号用极值编码信号中的各转变状态之间的短距离来表示的)的强度升高,并将高强度信号(该信号是用极值编码信号中各转变状态之间的长距离来表示的)予以衰减。
影响PCM编码器的比特速率的主要因素之一是所使用的取样频率。按照奈奎斯特(Nyquist)理论,这一频率至少应选择为被编码形的最高频率分量的两倍。
在PCM编码之前的模拟信号极值编码能基本上降低了该模拟信号数字式传输所需的比特速率。极值PCM编码方法取决于下列两个因素。
第一、根据极值编码的原理,在人的感觉过程中幅度是无关紧要的。由于这个原因,每次取样的比特数,例如可用一个系数(a)将其压缩(一般可取系数为2)。然而,可将总的必须检测的信号范围予以保持,以便客观对声音变化的某种预测,可能的要求是能从静寂信道中,简单的测定能量水平的方式测定语音,这可对该方法起到一种改善作用。
当将宽带信号进行极值编码时,并将其在低速率媒介传输时,因为低频时钟信号会与背景噪声中的低频分量相同步。所以在信号中的静寂期间一般不能保持的很好,该背景噪声对人的感官系统来说是敏感的,即它在声频范围内。然后由于保持了许多个量化电平(代替上述的美国专利申请号372538中所述的一种方法,该信号电平的主观自然动态范围也被保持。但是,由于提供了极值编码预处理方法,量化电平的数目和每次取样的比特数均可以降低。
第二、PCM编码器取样频率是由输入信号的最高频率分量来确定。确定最高频率分量的方法是取一个信号并尽量地压缩其带宽(即在保持适宜的信号质量或者清晰度的情况下,用滤波法压缩其带宽)。对于在电话系统中的话音信号来说,当给定的取样速率约为8KHz时,该值大约为3400Hz。
由于使用极值编码,可以根据主观的带宽扩展作用来降低所需的带宽。该作用可以做如下解释:
人的听觉系统能听到的信号频率在20Hz到20KHz范围内,最敏感的听觉范围是500到5000Hz。从上述解释的极值编码的听觉模式中可以看出并不需要采用全部幅度和频率的信息,而只将声波波形的某些定时特点,即极值,作为重要的信息予以采用。
人的听觉系统具有一定的容量范围,某些具有许多定时特点的信号,但这些信号超出了人听觉系统有效听觉范围,所以这些信号完全可以不用编码。频率高于5000Hz的频率波形或复杂的语音波形只需用适合于极值编码的类似值机取样方式进行分析。
一个在300~3400Hz范围内(或在3000Hz内被低通滤波的)被带通滤波的话音信号,该信号仍包括有其频谱范围内的原来波形的主要特点。当再一次比如说以2000Hz来限制这一信号时,大部分相关的话音信息将被删掉,而且高清晰度的话音也将损失掉。
当一个经300~3400Hz带通滤波的话音信号进行极值编码时,其波形的全部定时特点(原则上是可以测定的),仍存在于其极值编码信号中。
然后,当该限制带宽极值编码信号时许多定时特点将会损失掉。如果将该极值编码的信号经2000Hz的带通或低通滤波,在2000~3400Hz范围内的全部特点或信号并非被完全去掉。由于主观
带宽扩展,所以某些特点仍能保留下来,但在300~2000Hz范围内的信息也会由于掩蔽过程而大大地被减弱,掩蔽过程即低频信号被高频信号(该信号由于主观的带宽扩展过程中而引入通带的)所掩蔽。
整个结果是得到一个比2000Hz带宽限制的非极值编码话音信号在清晰度和音质上要好得多的一个信号。有人认为这种限制一系列特点的方法是近似于人的听觉系统所使用的方法,它能稳定地实现各种形式的语音压缩,而实际上并不损失有关的信息。
这种窄带信号然后就可以进行数字转换,主观带宽扩展方法考虑可用压缩系数(b),在特定的情况下该系数可高达到3,在这种情况下取样速率和信号的传输速率均可为原来的三分之一。由于用bits/S表示的取样频率fc可以由下列公式得出:fc= (2fmax·n)/(a·b) ,其中fmax为模拟信号的最高频率分量;n为每次取样的比特数;a为用极值编码法来去掉振幅信息的压缩系数和b为用极值编码法的主观带宽扩展压缩系数。
试验表明,如图5中所描述的模拟信号波形字转换器(它采用一种PCM数字化输出装置)能以8KHz取样速率和使用了比特码以24Kbits/S的速率向传输信道150上提供数字码流来处理话音信号而无显著的话音质量下降。在比特速率低至12Kbits/S至16Kbits/S,相应采用了3或4比特码和4KHz取样速率,也能取得令人满意的信号。
PCM数字转换器100的输出信号在传输到传输信道150之前还可以耦合到一个自适应预测编码(APC)装置或一个线性预测编码(LPC)装置上。由于在PCM数字转换器的输出端由PCM极值编码信号提供的较低比特速率的信号,采用APC或LPC的信号处理也简化了,而且还改善了抗高强度噪声特性。由于采用数字转换的极值编码信号,而简化了输入信号模拟波形,所以上述系统还可以应用在语音识别系统中。此外,如上所述,本发明还可以应用到视频信息系统中并且也可以应用在最大平均信息量编码(Maximum entropy coding)和变换编码(transform coding)的系统中。
一种PCM编码器(该编码器具有极值编码预处理能力和4KHz取样速率)的电路实施方案示于图6、7和8中。
图6示出了极值编码预处理电路,该电路与图3中的△M实施方案所用的预处理电路类似,它包括噪声源25,该噪声源提供按高斯概率密度分布的宽频带噪声信号和具有有效值约为10MV的噪声电压。
如在图3中所示一样,用电阻网络R3-R4将噪声信号与输入信号混合,且用适算放大器14将其放大。放大器14的增益大约为10dB数量级,由于用低的增益系数,所以该电路的带宽将超过1MHz。因为宽频带的噪声信号必须输送到下一级去,所以这样宽的带宽是必要的。加上电容器C2可以低频干扰。由一个有源微分器电路12将放大器14的输出予以微分,该有源微分器的电路包括有一个运算放大器16,电容器C5和电阻器R7、R8和R9。
微分器的输出信号输送至宽带限幅电路30,该电路包括有比较器32,该比较器可以用LM3.9。利用一个多圈电位器R12可将零电平准确地进行调整(在零电平点上该比较器进行触发)。从限幅器输出的二进制信号被送到一个带通滤波器或低通滤波器50′。在图6中所示为一个三级低通滤波器在1500Hz点上为-9dB,适用于4000Hz取样频率。在2000Hz点上,其衰减量将会超过20dB。滤波器的输出信号被送到一个PCM编码器。
图7中所示为一种PCM编码器的实施方案。由17个电阻器RR1′-R17′组成的梯形网络上具有16个电压点,这16个电压点连接到16个比较器电路A1-A16上。将这些直流电平数值进行计算得出一个扩展的输入特性。对于比较低的电平来说,许多参考电平都可以使用。在高电平时,只有少量可用的参考电平。
从图6中的低通滤波器50′来的信号输送到图7中的点60上。它是按如下方式进行的,即对于在零至12伏之间的全部输入电平来说,必定会有一个比较器动作并且给出一个“1”输出。
线16到线4的多路复用器62将给出“1”的比较器的输出编码为一个四比特的二进制码字。当输入电平变化,不同的比较器被触发时,则四比特二进制码字也会改变。该四比特码字由四个D触发
器66(可用74175)使其与4000Hz时钟信号同步。该触发器的输出将提供一个四比特的码字,它只在末时钟脉冲时改变,而时钟脉冲必定是在取样速率下出现。
将一串四比特位数码字传输或存贮,但也能处理,例如在语音识别系统中就将其处理。在存贮或传输情况下,必须将该数字信号译码成为模拟波形。图8中所示为PCM译码器的一种实施方案,该译码器可用来同上述的连有一个低通滤波器的PCM编码器连在一起。
这个四比特码字的数字信号在接收机中,用多路分割电路70。例如是CD4066。将该四比特码字的数字信号译码,使之变为十六条线的输出信号。当该16个输出线中的任何一个输出为负值时,则必须触发该16个模拟开关S1-S16(可以是CD4066)中的一个。当一个开关闭合时,则加法网络R21-R36与一特定的电压(由16个分压网络RA1-RB1至RA16-RB16供给的)相连通。经计算的各分压网络给出各相应于平均电压电平的电压值,该平均电压电平可以编码产生十六个输出电压中特定的一个。未被触发的模拟开关会具有一个很高的阻抗。用这种方式,在16个输出电压中,只可能有一个与相加网络相接通。
低通滤波器220′包括有运算放大器222、224和226,该滤波器220′的特性与图6中所示的滤波器50′的特性相类似,不同之处只是可采用稍宽的带宽。
放大器222的输出是一个模拟信号,该信号与输送到PCM编码器中的信号相类似。信号对量化噪声的比值将实质上低于更精神的256电平一般用于电话话音上的。PCM的信号对量化噪声的比值,但是对于人的听觉系统的感觉来说,二者之差别实际是不明显的。
极值编码的频带扩展和采样频率降低至4000Hz的情况下,如果采用高质量的传声器时,其结果会感到使主观的质量产生微小的下降,然而,如果采用普通的电话设备时,则其质量下降就不明显了。
图6、图7和图8中所示的电路中的元器件的规格均列于表2,全部的电阻单位均为欧姆。
表2
参考符号 规格
26 bc2396
14 LM387
16 LM387
32 LM319
54 TL081
55 TL081
56 TL081
A1-A16LM339
62 2×74148
66 74175
70 74154
S1-S16CD4066
222 LM741
224 LM741
226 LM741
R168K
R2100K
R327K
R427K
R527K
R682K
R715K
R868K
R922K
R1015K
R114.7K
R125K
R13470
R14100K
R15-R2010K
R21-R25100K
R1′ 120K
R2′ 68K
R3′ 33K
R4′ 15K
R5′ 68K
R6′ 3.9K
R7′ 2K
R8′ 1K
R9′ 470
R10′ 1K
R11′ 2K
R12′ 3.9K
R13′ 6.8K
R14′ 15K
R15′ 33K
R16′ 68K
R17′ 120K
R18′-R33′ 1K
R21-R36100K
R37-R3810K
Rx10K
Ry100K
Cx1n
C147μF
C25nF
C31μF
C4100nF
C51nF
C6100nF
C7470μF
C21-C231nF
如前所述,本发明已通过专供说明的实施例进行了介绍。然而,很明显的是可以根据上述介绍在本发明的精神和附加的权利要求中所提的范围内进行修改和变化。因此,本说明和附图应被看做是说明性的而非限制性的文件。
Claims (27)
1、用于将一个模拟信号波形数字化的设备,包括:
只将该模拟信号波形出现最大值和最小值的时间,其中包括叠加在模拟信号波形上的,基本上是随机噪声的宽频带信号的最大值和最小值的发生时间,编码成为一种编码信号的第一装置,上述编码信号含有在两个电平之间变换状态的一系列脉冲,所说的变换状态代表着上述的最大值和最小值所发生的时间;
其特征在于还包括:
连接到上述第一装置上的第二装置并具有所说的编码信号作为其输入信号,并且产生一个把所说的编码信号的带宽予以压缩的第二信号;和
用于将所说的第二信号变换为一个数字信号,并通过一条传输信道将该数字信号传输到接收机的第三装置。
2、如权利要求1中所述的设备,其中所说的第一装置包括有:对所述最大值和最小值的出现时间进行转换的微分装置,该出现时间具有一个绝对值基本不变的斜率;和限幅装置,用于将时间轴零交叉点编码成为所说的二进制信号的转变状态。
3、如权利要求1中所述的设备,其中所说的第三装置包括有△调制装置。
4、如权利要求3中所述的设备,其中所说的第二装置包括有积分装置,用于将所说的编码信号转换成积分信号,该积分信号具有一个绝对值基本不变的斜率。
5、如权利要求1中所述的设备,其中所说的接收机包括有数字-模拟转换装置,用于将所说的数字信号转换为再现的模拟信号。
6、如权利要求3中所述的设备,其中所说的接收机包括有△调制器译码装置。
7、如权利要求6中所述的设备,其中所说的△调制器译码装置包括有与积分装置相耦合的滤波装置。
8、如权利要求7中所述的设备,其中所说的滤波装置包括有第一装置,该装置接收一个时钟频率信号,用于将所说的数字信号延迟一段时间,这段时间等于所说的时钟频率信号的周期;第二装置,该装置接收所说的时钟频率信号,用于延迟所说的数字信号以第二段时间,这段时间等于所说的时钟频率信号的周期和一个用于组合该被延迟的二信号的装置,从而将具有二分之一时钟频率的数字信号的频率分量基本上消除掉。
9、如权利要求5中所述的设备,还包括有滤波装置,用于限制所说的模拟信号的带宽和其中所说的接收机也包括有滤波装置用于限制所说的再现的模拟信号的带宽。
10、如权利要求1中所述的设备,还包括有噪声发生装置,当所说的模拟信号中所存在的自然噪声不充分时,则将随机的宽带噪声馈送到所说的第一装置中。
11、如权利要求1中所述的设备,其中所说的第三装置包括有脉冲码调制装置,用来把所说的第二信号转换成一个加权数字信号,以便传输到所说的传输信道上。
12、如权利要求11中所述的设备,其中所说的第二装置包括有滤波装置用于限制所说的编码信号的宽带。
13、如权利要求12中所述的设备,其中所说的接收机包括有脉冲码调制译码装置,用于把所说的加权数字信号转换成再现的模拟信号。
14、一种将模拟波形进行数字转换的方法,包括有:
只将模拟波形的最大和最小值出现的时间,包括宽带最大和最小值发生的时间,编码成为编码信号。该宽带基本上是叠加在模拟波形上的随机噪声,所说的编码信号具有一系列位于两个电平之间的转换状态,所说的转变状态表示所说的最大值和最小值所出现的时间;
其特征在于下列方法步骤:
由所说的被编码的信号提供一个第二信号,其中所说的编码信号的带宽被压缩了;和
将所说的第二信号转换成数字信号和将所说的数字信号经一条传输信道传输到接收机。
15、如权利要求14中所述的方法,其中所说的编码步骤包括:
把所说的模拟信号和噪声进行微分,以便对所述的最大值和最小值的出现时间进行转换,该出现时间具有一个绝对值基本不变的斜率;和
将微分过的信号进行限幅,以便于把时间轴零交叉点编码成所说的二进制信号的转换状态。
16、如权利要求14中所述的方法,其中所说的转换步骤包括有将所说的第二信号用△调制装置进行调制。
17、如权利要求16中所述的方法,其中所说的提供第二信号的步骤包括有将所说的编码信号转换成具有一个绝对值基本不变的斜率的积分信号。
18、如权利要求14中所述的方法,还包括有在所说的接收机上将所说的数字信号转换成再现的模拟信号的步骤。
19、如权利要求18中所述的方法,其中所说的在接收机上进行的转换步骤包括用△调制译码装置将所说的数字信号进行译码。
20、如权利要求19中所述的方法,其中所说的在接收机上进行的转换步骤包括有将可说的数字信号滤波和将所说的数字信号积分。
21、如权利要求20中所述的方法,其中所说的滤波步骤包括使所说的数字信号通过一个滤波装置,将与所说的数字信号有关的,具有二分之一时钟频率的数字信号的频率分量予以滤除。
22、如权利要求18中所述的方法,还包括在所说的编码步骤之前,限制所说的模拟信号的带宽,和在所说的接收机上限制所说的再现的模拟信号的带宽的步骤。
23、如权利要求14中所述的方法,还包括在所说的编码步骤时,如果在所说的模拟信号中自然产生的噪声的量值不够,则将随机的宽带噪声引入。
24、如权利要求14中所述的方法,其中所说的转换步骤包括有把所说的第二信号转换成加权数字信号,以便将该数字信号传输到所说的传输信道上。
25、如权利要求24中所述的方法,其中所说的提供步骤包括将所说的编码信号通过滤波装置以便于限制所说的编码信号的带宽。
26、如权利要求25中所述的方法,还包括把所说的加权数字信号在所说的接收机上转换成一个重现的模拟信号。
27、如权利要求24中所述的方法,其中所说的加权数字信号包括有一脉冲码调制信号。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US683,640 | 1984-12-19 | ||
US06/683,640 US4700360A (en) | 1984-12-19 | 1984-12-19 | Extrema coding digitizing signal processing method and apparatus |
US683.640 | 1984-12-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN85109755A CN85109755A (zh) | 1987-04-08 |
CN1011018B true CN1011018B (zh) | 1990-12-26 |
Family
ID=24744883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN85109755A Expired CN1011018B (zh) | 1984-12-19 | 1985-12-19 | 极值编码的信号数字化方法和设备 |
Country Status (8)
Country | Link |
---|---|
US (1) | US4700360A (zh) |
EP (1) | EP0186151A3 (zh) |
JP (1) | JPS61199333A (zh) |
KR (1) | KR930007045B1 (zh) |
CN (1) | CN1011018B (zh) |
AU (1) | AU578574B2 (zh) |
BR (1) | BR8506399A (zh) |
IN (1) | IN164508B (zh) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4630030A (en) * | 1984-06-28 | 1986-12-16 | Wang Laboratories, Inc. | Compression of data for storage |
US4969193A (en) * | 1985-08-29 | 1990-11-06 | Scott Instruments Corporation | Method and apparatus for generating a signal transformation and the use thereof in signal processing |
US4870685A (en) * | 1986-10-26 | 1989-09-26 | Ricoh Company, Ltd. | Voice signal coding method |
US4819199A (en) * | 1987-04-24 | 1989-04-04 | Extrema Systems International Corporation | Extrema coder employing noisy limiting amplifier stages |
US4860356A (en) * | 1988-02-22 | 1989-08-22 | Extrema Systems International Corp. | Adaptive extrema coding signal processing system |
DE3842831A1 (de) * | 1988-12-20 | 1990-06-21 | Bosch Gmbh Robert | Verfahren und vorrichtung zur reduzierung der nutzbandbreite eines bandbegrenzten signals durch kodieren desselben und verfahren und vorrichtung zum dekodieren des kodierten bandbegrenzten signals |
GB2234078B (en) * | 1989-05-18 | 1993-06-30 | Medical Res Council | Analysis of waveforms |
US5025471A (en) * | 1989-08-04 | 1991-06-18 | Scott Instruments Corporation | Method and apparatus for extracting information-bearing portions of a signal for recognizing varying instances of similar patterns |
DE3935308C1 (en) * | 1989-10-24 | 1991-01-10 | Gebhard Prof. Dr. 7743 Furtwangen De Radi | Speech recognition method by digitising microphone signal - using delta modulator to produce continuous of equal value bits for data reduction |
US5056054A (en) * | 1990-05-02 | 1991-10-08 | National Semiconductor Corporation | Digital phase locked loop utilizing a multi-bit phase error input for control of a stepped clock generator |
US5136375A (en) * | 1990-07-17 | 1992-08-04 | Zenith Electronics Corporation | Spectrum compatible-HDTV data transmission system |
US5337042A (en) * | 1992-09-28 | 1994-08-09 | Chrysler Corporation | Vehicle communications network transceiver, transmitter circuit therefor |
FI107855B (fi) * | 1993-09-10 | 2001-10-15 | Nokia Mobile Phones Ltd | Vt-signaalin demodulointi sigma-delta-muuntimella |
US5819215A (en) * | 1995-10-13 | 1998-10-06 | Dobson; Kurt | Method and apparatus for wavelet based data compression having adaptive bit rate control for compression of digital audio or other sensory data |
US5877907A (en) * | 1995-11-22 | 1999-03-02 | Fujitsu Limited | Apparatus and method for demodulating data signals read from a recording medium |
US7039125B2 (en) * | 2001-03-12 | 2006-05-02 | Analog Devices, Inc. | Equalized SNR power back-off |
US7177364B2 (en) * | 2002-01-10 | 2007-02-13 | The Boeing Company | System, decoder and method for transmitting, receiving and decoding high-speed digital data signals with reduced electromagnetic emissions |
US20030220801A1 (en) * | 2002-05-22 | 2003-11-27 | Spurrier Thomas E. | Audio compression method and apparatus |
US8086451B2 (en) | 2005-04-20 | 2011-12-27 | Qnx Software Systems Co. | System for improving speech intelligibility through high frequency compression |
US7813931B2 (en) * | 2005-04-20 | 2010-10-12 | QNX Software Systems, Co. | System for improving speech quality and intelligibility with bandwidth compression/expansion |
US8249861B2 (en) * | 2005-04-20 | 2012-08-21 | Qnx Software Systems Limited | High frequency compression integration |
US8311840B2 (en) * | 2005-06-28 | 2012-11-13 | Qnx Software Systems Limited | Frequency extension of harmonic signals |
US7546237B2 (en) * | 2005-12-23 | 2009-06-09 | Qnx Software Systems (Wavemakers), Inc. | Bandwidth extension of narrowband speech |
US7912729B2 (en) * | 2007-02-23 | 2011-03-22 | Qnx Software Systems Co. | High-frequency bandwidth extension in the time domain |
CN103986404B (zh) * | 2014-06-04 | 2016-03-30 | 哈尔滨工业大学 | 用于信号重构的方法和装置 |
CN107147605A (zh) * | 2017-04-28 | 2017-09-08 | 深圳芯珑电子技术有限公司 | 一种宽窄带结合的ofdm通讯方法及系统 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2669608A (en) * | 1950-10-27 | 1954-02-16 | Bell Telephone Labor Inc | Noise reduction in quantized pulse transmission systems with large quanta |
US3136949A (en) * | 1960-10-20 | 1964-06-09 | Motorola Inc | Speech modulation system utilizing two spaced frequencies |
US3294918A (en) * | 1962-05-18 | 1966-12-27 | Polaroid Corp | Electronic conversions of speech |
US3327063A (en) * | 1966-01-14 | 1967-06-20 | Ibm | Transmission of information in powercoded bipolar waveforms |
US3273141A (en) * | 1963-03-19 | 1966-09-13 | Ball Brothers Res Corp | High speed analog-to-digital converter |
US3505601A (en) * | 1966-10-04 | 1970-04-07 | Gen Dynamics Corp | Sampled clipped speech tdm transmission system |
US3528011A (en) * | 1967-12-22 | 1970-09-08 | Gen Electric | Limited energy speech transmission and receiving system |
US3855555A (en) * | 1970-09-04 | 1974-12-17 | Industrial Research Prod Inc | Delta modulator having low-level random noise characteristic |
FR2250239B1 (zh) * | 1973-10-23 | 1976-07-02 | Ibm France | |
NL7410763A (nl) * | 1974-08-12 | 1976-02-16 | Philips Nv | Digitaal transmissiestelsel voor het met een lage pulsfrequentie(bit-rate)overdragen van gespreks- signalen en een zender voor toepassing in zulk een stelsel. |
US4545065A (en) * | 1982-04-28 | 1985-10-01 | Xsi General Partnership | Extrema coding signal processing method and apparatus |
DE3278303D1 (en) * | 1982-05-05 | 1988-05-05 | Arie Visser | Extrema coding signal processing method and apparatus |
-
1984
- 1984-12-19 US US06/683,640 patent/US4700360A/en not_active Expired - Fee Related
-
1985
- 1985-12-17 AU AU51324/85A patent/AU578574B2/en not_active Ceased
- 1985-12-18 IN IN909/CAL/85A patent/IN164508B/en unknown
- 1985-12-19 CN CN85109755A patent/CN1011018B/zh not_active Expired
- 1985-12-19 JP JP60286821A patent/JPS61199333A/ja active Pending
- 1985-12-19 KR KR1019850009572A patent/KR930007045B1/ko active IP Right Grant
- 1985-12-19 BR BR8506399A patent/BR8506399A/pt not_active IP Right Cessation
- 1985-12-19 EP EP85116298A patent/EP0186151A3/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
BR8506399A (pt) | 1986-09-02 |
US4700360A (en) | 1987-10-13 |
AU5132485A (en) | 1986-06-26 |
KR930007045B1 (ko) | 1993-07-26 |
IN164508B (zh) | 1989-04-01 |
EP0186151A3 (en) | 1988-07-27 |
CN85109755A (zh) | 1987-04-08 |
AU578574B2 (en) | 1988-10-27 |
EP0186151A2 (en) | 1986-07-02 |
KR860005497A (ko) | 1986-07-23 |
JPS61199333A (ja) | 1986-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1011018B (zh) | 极值编码的信号数字化方法和设备 | |
CN1101087C (zh) | 信号编码方法及装置、信号解码方法及装置和信号传送方法 | |
CN1030129C (zh) | 高效数字数据编码和译码装置 | |
CN1236563C (zh) | 高速数据编码和解码方法 | |
EP0737350B1 (en) | System and method for performing voice compression | |
CN1281006C (zh) | 信息编码/译码方法和装置和信息传输方法 | |
CN1256715C (zh) | 编码方法、编码装置、解码方法、和解码装置 | |
CN1183685C (zh) | 用于熵编码信号量化变换系数的系统和方法 | |
US4507791A (en) | Analog and digital signal apparatus | |
CN1288626C (zh) | 利用减少的带宽在传输通道上传输宽带音频信号的方法 | |
CN1139842A (zh) | 数字信号处理方法及装置,数字信号解码方法及装置,数字信号传输方法及记录介质 | |
CN1357136A (zh) | 不损失译码器兼容性下低比特率音频编码系统的音质提高 | |
CN1215510A (zh) | 宽频带声音信号编码装置、宽频带声音信号解码装置、宽频带声音信号编码解码装置和宽频带声音信号记录媒体 | |
CN1702974A (zh) | 用于对数字信号编码/解码的方法和设备 | |
US6498811B1 (en) | Lossless encoding/decoding in a transmission system | |
JPH0516599B2 (zh) | ||
CN1707955A (zh) | 编码/解码音频信号的设备和方法 | |
CN1232951C (zh) | 编码装置和译码装置 | |
CN1682280A (zh) | 控制用来传送语音的信号中可能有害的信号的方法与系统 | |
Ding | Wideband audio over narrowband low-resolution media | |
AU762152B2 (en) | Prediction on data in a transmission system | |
TW423244B (en) | Method and apparatus for speech coder output transformation | |
Stuart | Coding high quality digital audio | |
JPS5921144A (ja) | 信号伝送方式およびその装置 | |
JP3416477B2 (ja) | デルタ・シグマ型d/a変換器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C13 | Decision | ||
GR02 | Examined patent application | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |