CN101099349A - 无线网格网络中用于基于干扰的路由方法和装置 - Google Patents
无线网格网络中用于基于干扰的路由方法和装置 Download PDFInfo
- Publication number
- CN101099349A CN101099349A CNA2005800463801A CN200580046380A CN101099349A CN 101099349 A CN101099349 A CN 101099349A CN A2005800463801 A CNA2005800463801 A CN A2005800463801A CN 200580046380 A CN200580046380 A CN 200580046380A CN 101099349 A CN101099349 A CN 101099349A
- Authority
- CN
- China
- Prior art keywords
- node
- route
- grouping
- nodes
- jumping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/12—Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
- H04W40/16—Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality based on interference
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
通过无线网格网络在源节点和目的节点之间的路由选择是基于使生成的干扰最小化的,以增加网络的容量。与从源节点到目的节点的多个路由中的每一跳上发送分组相关联的干扰能量被确定。合并每一跳的干扰能量以便为每一个路由生成合并的干扰能量。基于为每个路由所确定的干扰能量选择路由中的一个路由。
Description
技术领域
该技术领域一般涉及无线通信,更特别地涉及通过无线网格(mesh)网络来选择路由。
背景技术
由于能随由固定有线网络所提供的多种完善的应用提供移动性支持,无线网络变得越来越重要和受欢迎。无线网络包括传统的蜂窝网络,该蜂窝网络带有耦合至无线电网络基础结构的无线电基站。在范围内移动终端与一个或多个基站通信,当移动终端移出该范围,则可以执行向另一个基站的切换过程以维持持续的通信。另一种类型的无线网络是网格网络。网格网络处理多对多的连接,并且能够动态地优化这些连接。
无线网格网络通常作为无线“自组网(ad hoc)”网络而公知,其通常由移动的、电池操作的计算设备所构成,所述设备在无线媒质上通信。该网络不依赖于固定路由器,且所有节点都能够移动并能够以任意的方式被动态连接。每个节点都起到路由器的作用,在自组网网络中发现其他节点并维持至其他节点的路由。路由是用来将一个或多个分组在源节点和目的地节点之间传递的路径。路由可以包含一个或多个“跳”。一跳相当于从一个节点到另一个节点而无需任何中介节点的直接传输。带有自组网能力的无线技术的例子包括IEEE 802.11无线局域网(WLAN)以及蓝牙个人区域网(PAN)。
在无线网格网络中一般采用两种类型的路由协议:表驱动(table-driven)路由协议和源启动的按需路由协议。表驱动路由协议在网络中通过周期性地从网络中的所有其它节点更新,而将最新的路由信息从每个节点更新到该网络中的每一个其它节点,以试图维持一致性,而不管网络可能不是根据数据业务量而被激活的这一事实。对于按需的方法,用于到目的地的路由请求仅当源节点有数据分组要发送给所述目的地节点时才发送。表驱动的自组网路由协议的例子包括开放最短路径优先(OSPF)路由,目标序列距离矢量路由,簇首(clusterhead)网关交换路由和无线路由协议。源启动的按需路由的例子包括自组网按需距离向量或动态源路由,临时排序路由,基于关联性的路由和信号稳定性路由。
在开放最短路径优先(OSPF)路由中,每个无线节点维护一个描述网络拓扑的相同的数据库。从该数据库,可以通过构建最短路径树来计算路由表。最短路径是是具有最低累计“代价”的路径。对于无线电链路或跳,所述“代价”可以作为该无线电跳上的所期望的数据速率的倒数而测量。结果,由于低数据速率导致更长的时间来发送分组,所以其为高代价的。OSPF最初是为固定网络而设计的,而无线路由协议(WRP)和动态源路由(DSR)在它们对于无线网络的路由选择方法上是类似的。
无线自组网网络必须处理与无线通信介质相关联的某些限制,包括功率/干扰限制,低带宽、高差错率。由于无线网络节点是典型地电池操作的,且由于无线电通信网络的容量受限于共享的频谱,对于试图寻找最小能量路由路径的路由协议有特殊的关注。能量有效的路由方案可以很大地降低节点处的能量消耗,导致更长的电池寿命,还可以通过降低网络中的干扰而改善网络容量。在能量消耗方面表驱动路由方案通常比按需方案更昂贵,这是由于维护不同的表所要求的大的开销造成的。但是最小能量路由技术不应仅集中于节约移动节点的电池。这样的路由算法也应尝试改善网络容量。
大多数无线自组网络,特别是那些采用IEEE 801.11的网络,在时间上共享无线电频率,并且同样的频率被用来发送和接收两者。为了协调使用共享的频率媒介,采用了一些类型的协议。例如,带有冲突避免的载波侦听多路存取(CSMA/CA)要求想要发送分组的节点必须“侦听”以保证没有其它的节点正在发送。如果信道在某个时间段都是空闲的,则该节点可以直接发送分组;否则节点设置随机的“后退”定时器。当定时器到期,该节点发送。可以采用空闲信道评估(CCA)功能来确定公共频率是否可用。CCA功能通常包括载波侦听和能量检测两者。如果两者中任一被触发,则认为公共频率忙。当接收机能够检测到另一个节点所发送的信号时,则触发载波侦听。当接收的总能量(不管源)超出阈值,则触发能量检测机制。
本发明人认识到有若干的因素必须被考虑,以获得优化的能量路由方案。首先,重要的是减少由于遇忙指示(例如空闲信道评估(CCA)遇忙指示)节点不能在共用频率上发射而退回的数量。第二,也很重要的是减少每个节点能够在公共信道上发送之前所必须等待的时间长度。尽管选择最短长度路径作为最短时延路径可以改善电池节电,但是其不能优化网络容量。无线网络是干扰受限的。在大多数场景下传输功率不等于由在特殊功率的特殊传输所引发的干扰。实际上,节点受到基于传输的干扰的影响,即使它们不是位于正在发射的节点的范围/通信距离中,即这些节点仍处于干扰距离中。
第三个考虑是用于下一跳传输的特定传输条件。例如,基于当前的无线电条件,节点将选择适于那些当前条件的特殊的调制和编码方案用于传输。所述调制和编码方案建立的数据传输速率优选地被用来估计节点的传输时间和下一跳上的传输能量。
另一个重要的因素是考虑节点间的信令数量,为了保持每个节点更新为当前条件。这样的信令更新,尤其是如果频繁地发射,将耗费电池操作的节点的电量并增加网络中的干扰。消除或者至少减少由网格网络中的每个节点所生成的这种状态更新消息将会是令人满意的。
本发明人还认识到简单地估计将被特殊节点使用以用于分组的一跳的传输的能量,所述能量以功率和时间定义,而不考虑典型的自组网络的现实情况。现实的无线网络必须应对引起传播损耗的障碍物(建筑物,墙,自然物体,天气等)。所以传输能量并不是所引发干扰的适当测量。
发明内容
因此,使用考虑了上述因素的干扰能量模型为沿着从源节点到目的节点不同的路由的每个潜在的跳传输都进行干扰能量估计。将为每一跳确定的干扰能量进行合并以为每个路由产生合并的干扰能量。基于为每个路由的合并的干扰能量选择路由中的一个。例如合并干扰能量可以包括对干扰能量求和,并且具有最低求和的干扰能量的一个路由可以被选择。
在一个非限制性的示例实施方式中,与从源节点向目的节点的多个路由中的每个中的每跳上发送分组相关联的传输时间被确定。对于每跳,将受到跳上发送分组所产生的干扰的影响的节点数量被确定。传输时间和对于每跳受影响的节点的数量被合并以产生相应的跳结果。合并每个路由的跳结果,基于那些合并的结果选择一个路由。例如,传输时间和节点的数量可以相乘并对结果求和,以使得被选择的一个路由具有最小的求和结果。
传输时间优选地(尽管不是必需的)考虑下述的一个或多个:分组的大小,与发送该分组相关联的开销,与在跳上发送该分组相关联的比特速率(很可能基于跳的当前无线电相关的条件而确定),与跳上的发送相关联的重传概率。受影响的节点数量可以基于将在跳上发送分组的功率电平、影响其它节点的接收机阈值、以及将功率电平转换为引起影响周围一个或多个节点的引发的干扰的传播函数而估计。如果想要的话,另一个在传输时间期间内有数据要发送的节点实际上将受分组传输影响的概率,也可以考虑进来。
用于确定与一个或多个跳相关联的干扰能量的信息可以从来自其它节点的传输而获得。这种信息还可以通过监控其它节点之间的通信而获得。可选择地,每个节点在网格网络中的其它节点之间分布确定的跳干扰能量可能是有用的。
附图说明
前述的以及其它的本发明的目标、特征和优点可以通过参考下述描述并结合附图而更好地理解。
图1是图示网格网络实例的网络图;
图2是图示干扰区域概念的图;
图3是图示根据一个示例实施方式的过程的流程图;
图4是图示根据另一个示例实施方式的过程的流程图;
图5是示例无线节点的功能框图;和
图6图示了简单无线网格网络的路由选择示例。
具体实施方式
出于解释性而不是限制性的目的,为了提供对所描述的技术的理解,在下述描述中阐述了特定的细节,诸如特殊部件,电子电路,技术,协议,标准等等。例如一个有优点的应用是用于符合IEEE 802.11标准的无线局域网。但是其它标准以及其它的网络类型也是适用的,例如蓝牙PAN。进一步,对于本领域技术人员显而易见的是,除特定的细节之外其它实施方式也可实施。在其它例子中,省略了公知的方法、设备、技术等的描述,以避免不必要的细节模糊本发明。在图中示出了单独的功能块。本领域技术人员可以预见的是这些块的功能可以使用单独的硬件电路、结合可合适编程的微处理器或通用计算机的软件程序和数据,使用专用集成电路(ASIC),和/或使用一个或多个数字信号处理器(DSP)来实现。
图1示出了无线网格网络10,包括耦合至一个或多个其它网络14的一个或多个固定的无线基站节点12以及多个移动无线节点14。移动节点14与基站12以及彼此之间(经由基站或直接地)在无线接口上通信。相邻节点之间的每一跳用虚线表示。例如,用于无线通信的非限制性协议是IEEE 802.11b,其是当前最普遍使用的无线局域网(WLAN)通信标准。每个节点14与无线电频率通信范围内的节点使用相同的一个或多个无线电频率信道来传输和接收来通信。正如在背景技术中所描述的,可以使用各种协议来避免和解决分组在共用通信介质上发送时的冲突,所述协议例如是CCA等。由于无线电通信媒质是有限的资源,所以关键的是要有效地使用它以使得网络容量被最优化地使用。也很重要的是,节约典型地是电池操作的无线节点14的电池电量。
这些和其它的目标可以通过选择经由其穿过无线网格网络从源节点向目的节点发送分组的优化路由而得到满足。图1图示了从源节点A到目的节点G的两个路由例子。第一个可能的路由是沿着节点A,C,E和G。第二个可能的路由是沿着节点A,B,D,F和G。当然可以采用许多其它可能的路由来将分组从节点A传递到节点G。
有益的是以穿过无线网格网络的路由选择为基础,以使得与路由相关联的生成的或引发的干扰会对网络中其它节点造成的影响最小。以这种方式,可以增大网络的总容量以及节约网络节点14中的电池电量。干扰能量被用作确定就对于网络中其它节点的干扰(即“引发的干扰”)影响而言哪些跳或哪一路由(每个路由包括从源节点向目的节点传送分组的一个或多个节点跳)是更可取的或更不可取的度量。图2帮助图示了这点。示出了三个节点A,B和C,节点A以四个不同的功率电平P1,P2,P3和P4来发射。每个功率电平具有对应的干扰区域(IA)。随着传输功率的增大,干扰区域的影响的大小也增大,即引发的干扰更大。
通常,更高的功率电平意味着更高的能量和对于其它节点生成干扰的增大的可能性。但是功率和受影响的节点的数量通常并不是线性相关。例如将移动台的发射功率减少某一量而似乎受干扰的节点数量并不能减少相同的量。如图2所示,将功率从P3降低到P2将使受影响的节点数量从1一个受影响的节点B减少到零个受影响的节点。将功率进一步减小到P1将没有任何影响。本发明人确定,当节点均匀地分布时,一个节点的传输对于另一个节点传输干扰的可能性与和所述节点传输相关联的干扰区域有关。
干扰区域是所产生的干扰电平高于预定的干扰阈值的区域。干扰区域可以估计为干扰距离ri(也可能与诸如π的几何常量相乘)的平方,其中ri是干扰电平高于预定阈值Ithresh的最大距离。对于IEEE802.11,干扰阈值可以选择为CCA检测电平,其是能量检测阈值和抑制传输的载波侦听电平中的较低的值。基于以线性单位(瓦特)测量的发射功率P,以及通常使用的指数无线电传播函数:
G(r)=g1·r-α(线性单位)
其中g1和α是依赖于环境的参数,该函数把路径增益描述为距离的函数,干扰距离ri可以计算为:
其中G-1是传播函数的逆函数。
现在参考图3中流程图,其给出了根据一个非限制性实施方式的过程示例。确定干扰能量,所述干扰能量与从源节点到目的节点的多个路由中的每一个的每一个节点跳上发送分组相关联(步骤S2)。将路由中的每跳的干扰能量合并以便为所述路由生成合并的干扰能量(步骤S4)。分组然后在其上所发送的路由是基于每个路由的合并的干扰能量而选择的(步骤S6)。例如,可以选择具有最小合并的干扰能量的路由。
下述是结合在图4中的流程图而描述的非限制性实施方式的示例。每个节点确定传输时间,所述传输时间与从源节点向目的节点多个路由中的每跳上发送分组相关联(步骤S10)。为每个跳,确定会受到干扰影响的节点数量,该干扰与在该跳上发送分组相关联(步骤S12)。将传输时间和每跳上受影响的节点个数合并以生成对应的跳结果(步骤S14)。合并每个路由的跳结果(步骤S16)。基于合并的结果然后选择路由中的一个(步骤S18)。
一种确定大小为D的分组的传输时间U的方式可被估计为:
OHL1是与发送分组相关联的开销,包括例如分组首部等等。NCH是用于传输的频率信道数量。根据IEEE 802.11标准,仅使用一个这样的频率信道,但是有在若干个信道上执行传输的解决方案,例如两个20MHz的载波。还可以使用变化数量的OFDM子载波。RL1对应于为从节点传输所分配的比特速率,其基于由节点所选择的无线电链路调制和编码方案,所述方案在特定的跳上又基于当前无线电条件。块差错率(BLER)是由节点基于对先前分组传输所接收到的分组确认和/或否定确认的数量而确定的。传输时间U以秒度量。
将受到与在特定跳上发送分组相关联的干扰影响的节点数量可以根据下述通过采用通常使用的指数无线电传播函数而估计:
G(r)=g1·r-α(线性单位)
其中g1和α是依赖于环境的参数。作为结果的干扰区域与P2/α成比例,其中P是以瓦特测量的分组将被在跳上发送所采用的功率电平。来自于IEEE 802.11节点的发射功率典型地是固定的,例如100Mw,因此可以为节点所知。同样,在具有可变功率的功率控制的传输情况中,功率由发射节点所知。传播因子α是根据跳的无线电信号传播环境而设置的,并且可由用户手动设置,由将α值传送至各个节点的控制节点设置,或者由对环境做出各种测量以估计α的节点设置。其它的技术也能使用。
在一些情况中,诸如功率控制的传输,用对数单位来表示传输功率P更为方便,诸如dBW。对于受影响的节点数量的上述表示于是为:
当估计干扰区域时,超出想要的干扰阈值的传输功率P可以以dB测量,所述阈值例如是IEEE 802.11CCA检测电平。在一个例子中,α可以使用Okumura-Hata模型中所描述的传播常量B来确定,该模型描述了陆地移动无线电业务中传播损耗的经验公式。上述等式都是基于通常使用的指数无线电传播模型。但是其它任何的传播模型都能使用,诸如线性传播和断点模型(例如Keenan-Motley)。
在一个网格网络中,不同的函数(以及诸如α的参数设定)可以被混合。每个节点可以使用最佳地表示周围的无线电环境的函数。对于设备可以针对典型的环境设置工厂的默认选择,典型环境例如封闭的办公室,半开放办公室,开放办公室,室外等等。
干扰能量W然后根据下述确定:
W=U·P2/α
其中P用瓦特度量,U根据上面阐述过的公式确定,W以瓦特-秒度量。如果需要,对于一个跳上的分组传输的干扰可以进一步与该干扰实际上延迟了来自于受干扰的节点的传输的概率Pjam的估计相乘:
W=U·P2/α·Pjam
Pjam是在相同的传输时间内由于一个节点在该时间期间内将发送分组而另一个节点想要发送而不能发送的概率。该概率可以基于由发送节点所经历的平均信道活动而估计。例如Pjam概率能够由发送节点“侦听”其它节点的通信而估计。该等式的对数版本为:
干扰能量W被用作用于路由选择的每跳代价。对于每个从源节点到目的节点的可能路由,干扰能量路由代价通过将该路由中的每一跳的每跳代价求和(或其它适合的合并类型)而确定。具有最低干扰能量代价的路由被选择。由于干扰能量代价是每时间单位干扰区域的度量,所以这样的选择将最小化与所述路由上的分组传输相关联的引发的干扰,并由此增大了无线网格网络的容量。在上述IEEE 802.11所描述的情况中,带有与CCA被触发的电平相等的干扰阈值,干扰能量是相对于引发对于期望的传输的等待的每秒的节点数量的度量(区域乘以每m2的节点数量)。通过最小化该“等待节点秒”,可以在网格网络中共享的频率上同时发送的节点的数量被最大化了,从而网格的总容量也被最大化了。
每个节点可以通过直接测量从所有其它可到达节点(即,在范围内)所接收到的信号的通信质量,而估计那些其它节点的无线电链路质量,基于由其它节点所发射的导频或信标信号估计无线电通信质量条件,并在该范围内的其它节点之间的通信上侦听。每个节点还为每个潜在的节点跳通信确定或估计比特速率,块差错率和传输功率。
可以使用不同类型的路由协议来维护或分布每跳代价信息,所述协议例如开放最短路径优先(OSPF)协议和无线路由协议(WRP),其中每跳代价使用引发的干扰能量W来分配。在代价依赖于分组大小而显著地变化的情况中,对于每个分组大小的每跳代价可以被确定。在那个情况中,源启动的按需路由协议,像临时排序路由算法(TORA),可能是合适的。
现在参考图5,其以功能块的形式示出了非限制性的无线网格网络节点14的示例。该无线网格网络节点14可以是静态的节点或移动节点。移动节点的例子可以是便携式电信设备,诸如蜂窝电话、带有无线WLAN卡的膝上个人计算机等。节点14包括耦合到无线电收发电路22的处理电路20,所述无线电收发电路22耦合到诸如全向或方向性天线的天线24。处理电路20还耦合至一个或多个检测器36,用于测量一个或多个不同的无线电链路质量参数,以用于确定传输功率、块差错率、比特速率、信号强度等。处理电路20还耦合至存储器26,其包括由处理电路20所执行的干扰能量例行程序28,以根据上述公式中的一个来确定传输时间和受影响的用户的数量。存储器26还包括路由选择例行程序30,其基于每个可能的路由之中的跳干扰能量的合并来选择最佳路由。存储器26存储网格通信例行程序和协议32,例如WLAN IEEE 802.11。一个或多个缓冲器34被用来存储将在网格网络上被发射的分组以及接收的分组。
考虑图6所示出的路由选择示例。假设无线网格网络是在具有大量节点的开放式办公区域、会议或展出礼堂中使用的WLAN IEEE802.11b网格。在这种情况中,共享的无线电资源的容量必须被很好地管理并且希望是最大化。在图6中只示出了整个网格网络的具有四个节点的一部分,包括一个接入节点12和三个便携式节点14。假设分组被从节点A发送到节点B。有三种可能的路由,每个具有两跳或更少。从节点A直接到节点B的一跳路由具有2Mbps的最低比特速率,因为节点A和B由是四个节点中分开最远距离的节点。从接入点C到节点B的无线电跳具有11Mbps的最高数据速率,因为接入点C以比移动节点高得多的功率来发射--一瓦特(W)相比于在节点A和D发射的100毫瓦(mW)。每个其它跳具有数据速率5.5Mbps。
对于开放的办公区域,传播常量α可以预期在2.2附近。在下述表1中,根据上述的等式对于两个例子的分组大小计算所有跳的干扰能量W。假设考虑在每个跳上先前传输的媒质接入控制(MAC)确认/否定确认的IEEE 802.11物理开销而计算传输时间U。
表1
对于1500字节的分组,从A到D到B的路由生成对应于0.68mW的最小干扰能量。但是对于50字节的分组,从节点A到节点B的直接路径导致最小干扰能量0.12mW。如果最短时延尺度被用来选择路由,则这可能会导致穿过接入点C(ACB)的路由被选择。但是假设存在周围的节点共享该无线电频谱,来自节点C的高功率传输将在大得多的区域占用公共频率资源,这是因为在所述大区域的干扰电平要高于噪声阈值,例如将在周围的节点触发载波侦听。实际上,与从A到B的长路由上的0.12的干扰能量相比,路由ACB生成八倍(即,1/0.12=8.33)的干扰量。
在另一个比较中,如果使用纯带宽代价来选择路由,则会选择路由ACB,因为其具有最低的带宽代价,1/11+1/5.5。第二选择会是路由ADB。但是这样的路由选择方法不考虑分组开销,这对于像50字节大小的小分组尤其显著。
基于最小化每跳生成干扰的路由选择具有大量的优点,包括改善无线网格网络的容量,由于取得了低的传输功率降低便携式电池操作的设备中的电池消耗,并减小网格网络中的路由开销。此外,该基于最小化每跳生成干扰的路由选择方法可以在现有的标准中实现,诸如IEEE 802.11,并且可以用现有的路由协议,诸如OSPF,WRP和TORA实现。基于干扰的区域计算干扰的用户数量具有的优点是,无需获得可达范围内所有节点的路径增益测量,该测量在节点密度高时成本非常高。
尽管详细地示出和描述了各种实施方式,权利要求并不限于任何特定的实施方式。任何的上述描述都不能被认为暗示了任何必须被包含在权利要求范围内的特殊元件、步骤、范围或功能。本专利主题的范围仅由权利要求限定。法律保护的范围由在允许的权利要求和其等同形式中援引的词而限定。没有权利要求旨在调用35USC§112第6段除非使用了“用于...的装置”一词。
Claims (31)
1.一种为在源节点(A)和目的节点(B)之间穿过无线网格网络(图6)的分组选择路由的方法,其特征在于:
确定干扰能量,所述干扰能量与从源节点到目的节点的多个路由中的每一节点跳上发送分组相关联;
合并每一跳的干扰能量以便为每一路由生成合并的干扰能量;和
基于每一路由的合并的干扰能量选择路由中的一个路由。
2.权利要求1中的方法,其中合并干扰能量包括对干扰能量求和,以及
其中所述一个路由被选择,具有最低求和的干扰能量。
3.权利要求1的方法,进一步包括:
确定与从源节点到目的节点的多个路由中的每跳上发送分组相关联的传输时间;
对于每一跳,确定会受到与在该跳上发送分组关联的干扰的影响的节点的数量;
合并传输时间和对于每一跳受影响的节点的数量以产生相应的跳结果;
合并每个路由的跳结果;和
基于合并的结果选择路由中的一个路由。
4.权利要求3的方法,其中合并传输时间和节点的数量包括将传输时间与节点数量相乘;
其中合并跳结果包括对结果求和,以及
其中所述一个路由被选择,具有最低的求和结果。
5.权利要求3中的方法,其中传输时间考虑了分组的大小、与发送该分组相关联的开销、与在跳上发送该分组相关联且依赖于该跳的当前无线电条件的比特速率、以及与该跳上进行发送相关联的重传概率。
6.权利要求3中的方法,其中基于在该跳上发送分组所采用的功率电平和将该功率电平转换为对周围一个或多个节点引发的干扰的传播函数来估计受影响的节点数量。
7.权利要求3中的方法,其中基于在该跳上发送分组所采用的功率电平、干扰影响其它节点时的接收机阈值、以及将该功率电平转换为对周围一个或多个节点引发的干扰的传播函数而估计受影响的节点数量。
8.权利要求7中的方法,其中受影响的节点数量进一步基于被干扰影响的节点在受干扰的时间期间内有数据要发送的概率。
9.权利要求8中的方法,其中该概率是基于发送节点所经历的平均信道活动而被估计的。
10.权利要求3中的方法,其中传输时间U依照下式被确定:
其中D是分组的大小,OHL1是与分组发送相关联的开销,NCH是用于传输的信道数量,RL1是与在该跳上发送分组相关联且依赖于该跳的当前无线电条件的比特速率,BLER是对分组传输的块差错概率估计。
11.权利要求3中的方法,其中受影响的节点数量基于下式估计:
P2/α
其中P是在该跳上发送分组所采用的功率电平,α是把功率电平调整到对周围一个或多个节点引发的干扰的传播因子。
12.权利要求11中的方法,其中依照下式确定在一跳上传递分组的干扰能量W:
W=U·P2/α
13.权利要求11中的方法,其中依照下式确定在一跳上传递分组的干扰能量W:
W=U·P2/α·Pjam
其中Pjam是受干扰影响的节点在该节点被干扰的期间也有数据要发送的概率。
14.权利要求1的方法,其中用于确定与一个或多个跳相关联的干扰能量的信息从来自其它节点的传输而获得。
15.权利要求14的方法,其中用于确定与一个或多个跳相关联的干扰能量的信息由一个节点监控其它节点之间的通信而获得。
16.权利要求1的方法,进一步包括:
在多个节点之间分布确定的跳干扰能量。
17.一种为在源节点(A)和目的节点(B)之间穿过无线网格网络(图6)的分组选择路由的装置,其特征在于电子电路(20,26,36)被配置为:
确定干扰能量,所述干扰能量与从源节点到目的节点的多个路由中的每一节点跳上发送分组相关联;
合并每一跳的干扰能量以便为每一路由生成合并的干扰能量;和
基于每一路由的合并的干扰能量选择路由中的一个路由。
18.权利要求17中的装置,其中电子电路被进一步被配置为对干扰能量求和,并选择具有最低求和的干扰能量的一个路由。
19.权利要求17的装置,其中电子电路被进一步配置为:
确定与从源节点到目的节点的多个路由中的每跳上发送分组相关联的传输时间;
对于每一跳,确定会受到与在该跳上发送分组关联的干扰的影响的节点的数量;
合并传输时间和对于每一跳的受影响的节点的数量以产生相应的跳结果;
合并每个路由的跳结果;和
基于该合并的结果选择路由中的一个路由。
20.权利要求19的装置,其中电子电路被进一步配置为将传输时间与节点数量相乘;对结果求和,选择具有最低的求和结果的一个路由。
21.权利要求19的装置,其中传输时间考虑了分组的大小、与发送该分组相关联的开销、与在跳上发送该分组相关联且依赖于该跳的当前无线电条件的比特速率、以及与该跳上进行发送相关联的重传概率。
22.权利要求19的装置,其中电子电路被进一步配置为基于在该跳上发送分组所采用的功率电平和将该功率电平转换为对周围一个或多个节点引发的干扰的传播函数来估计受影响的节点数量。
23.权利要求19中的装置,其中电子电路被进一步配置为基于在该跳上发送分组所采用的功率电平、干扰影响其它节点时的接收机阈值以及将该功率电平转换为对周围一个或多个节点引发的干扰的传播函数来估计受影响的节点数量。
24.权利要求23的装置,其中受影响的节点数量进一步基于另一个在传输时间期间内具有数据要发送的节点将实际上受到分组传输影响的概率。
25.权利要求19的装置,其中传输时间U依照下式面被确定:
其中D是分组的大小,OHL1是与分组发送相关联的开销,NCH是用于传输的信道数量,RL1是与在该跳上发送分组相关联且依赖于该跳的当前无线电条件的比特速率,BLER是对分组传输的块差错概率估计。
26.权利要求19的装置,其中受影响的节点数量依照下式估计:
P2/α
其中P是在该跳上发送分组所采用的功率电平,α是把功率电平调整到对周围一个或多个节点引发的干扰的传播因子。
27.权利要求26的装置,其中依照下式确定在一跳上传递分组的干扰能量W:
W=U·P2/α
28.权利要求26的装置,权利要求10中的方法,其中依照下式确定在一跳上传递分组的干扰能量W:
W=U·P2/α·Pjam
其中Pjam是在传输时间期间有数据要发送的一个或者多个节点将实际上受到分组传输的影响的概率。
29.权利要求16的装置,其中电子电路被进一步配置为在多个节点之间分布确定的跳干扰能量。
30.权利要求16的装置,其中该装置在多个节点中的每一个中实现。
31.权利要求29的装置,其中多个节点中的一个节点是便携式通信设备(14)。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/032,237 | 2005-01-11 | ||
US11/032,237 US7554998B2 (en) | 2005-01-11 | 2005-01-11 | Interference-based routing in a wireless mesh network |
PCT/SE2005/002061 WO2006075942A1 (en) | 2005-01-11 | 2005-12-30 | Method and apparatus for interference-based routing in a wireless mesh network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101099349A true CN101099349A (zh) | 2008-01-02 |
CN101099349B CN101099349B (zh) | 2011-07-06 |
Family
ID=36653117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2005800463801A Active CN101099349B (zh) | 2005-01-11 | 2005-12-30 | 无线网格网络中用于基于干扰的路由方法和装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US7554998B2 (zh) |
EP (1) | EP1856854A4 (zh) |
JP (1) | JP4575461B2 (zh) |
CN (1) | CN101099349B (zh) |
CA (1) | CA2590691A1 (zh) |
RU (1) | RU2404525C2 (zh) |
WO (1) | WO2006075942A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102160423B (zh) * | 2008-07-29 | 2014-10-01 | 法国电信 | 适用多跳网络中的电磁环境的路由 |
CN106332107A (zh) * | 2016-10-21 | 2017-01-11 | 高道华 | 一种无线mesh的网络资源规划方法 |
Families Citing this family (239)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8296366B2 (en) * | 2004-05-27 | 2012-10-23 | Microsoft Corporation | Efficient routing of real-time multimedia information |
US8185653B2 (en) * | 2004-08-09 | 2012-05-22 | Johnny Yau | Method and apparatus for ad hoc mesh routing |
GB0502783D0 (en) * | 2005-02-10 | 2005-03-16 | Univ Edinburgh | Mobile ad-hoc network |
US20060223524A1 (en) * | 2005-03-29 | 2006-10-05 | Intel Corporation | Device, system and method of establishing a wireless communication link |
US20060268924A1 (en) * | 2005-04-01 | 2006-11-30 | Interdigital Technology Corporation | Method and apparatus for dynamically adjusting a deferred transmission level and a transmission power level in a wireless communication system |
US7570628B2 (en) * | 2005-05-06 | 2009-08-04 | Intel Corporation | Methods and apparatus for providing a dynamic on-demand routing protocol |
GB0511058D0 (en) * | 2005-05-31 | 2005-07-06 | Nokia Corp | A method of controlling power |
US20070041351A1 (en) * | 2005-08-17 | 2007-02-22 | Intel Corporation | Method and system effecting communications in a wireless communication network |
US7706320B2 (en) * | 2005-10-28 | 2010-04-27 | Hunt Technologies, Llc | Mesh based/tower based network |
US8335164B2 (en) * | 2005-11-02 | 2012-12-18 | Thomson Licensing | Method for determining a route in a wireless mesh network using a metric based on radio and traffic load |
US7706390B2 (en) * | 2005-11-07 | 2010-04-27 | Meshnetworks, Inc. | System and method for routing packets in a wireless multihopping communication network |
US20070214286A1 (en) * | 2005-11-10 | 2007-09-13 | Olympus Communication Technology Of America, Inc. | Network access control |
US20080151824A1 (en) * | 2006-01-31 | 2008-06-26 | Peter Shorty | Home electrical device control within a wireless mesh network |
US10326537B2 (en) | 2006-01-31 | 2019-06-18 | Silicon Laboratories Inc. | Environmental change condition detection through antenna-based sensing of environmental change |
US20080151795A1 (en) * | 2006-01-31 | 2008-06-26 | Peter Shorty | Home electrical device control within a wireless mesh network |
US8219705B2 (en) * | 2006-01-31 | 2012-07-10 | Sigma Designs, Inc. | Silent acknowledgement of routing in a mesh network |
US20150187209A1 (en) | 2006-01-31 | 2015-07-02 | Sigma Designs, Inc. | Method and system for synchronization and remote control of controlling units |
US20080154396A1 (en) * | 2006-01-31 | 2008-06-26 | Peter Shorty | Home electrical device control within a wireless mesh network |
US10277519B2 (en) | 2006-01-31 | 2019-04-30 | Silicon Laboratories Inc. | Response time for a gateway connecting a lower bandwidth network with a higher speed network |
US8509790B2 (en) * | 2006-01-31 | 2013-08-13 | Tommas Jess Christensen | Multi-speed mesh networks |
US8626251B2 (en) * | 2006-01-31 | 2014-01-07 | Niels Thybo Johansen | Audio-visual system energy savings using a mesh network |
US8194569B2 (en) * | 2006-01-31 | 2012-06-05 | Sigma Designs, Inc. | Static update controller enablement in a mesh network |
US8626178B2 (en) * | 2006-01-31 | 2014-01-07 | Niels Thybo Johansen | Audio-visual system control using a mesh network |
US8223783B2 (en) * | 2006-01-31 | 2012-07-17 | Sigma Designs, Inc. | Using battery-powered nodes in a mesh network |
US20070177576A1 (en) * | 2006-01-31 | 2007-08-02 | Niels Thybo Johansen | Communicating metadata through a mesh network |
US8300652B2 (en) | 2006-01-31 | 2012-10-30 | Sigma Designs, Inc. | Dynamically enabling a secondary channel in a mesh network |
US9166812B2 (en) | 2006-01-31 | 2015-10-20 | Sigma Designs, Inc. | Home electrical device control within a wireless mesh network |
US7680041B2 (en) * | 2006-01-31 | 2010-03-16 | Zensys A/S | Node repair in a mesh network |
US7916686B2 (en) * | 2006-02-24 | 2011-03-29 | Genband Us Llc | Method and communication network components for managing media signal quality |
CN101365879B (zh) * | 2006-03-29 | 2011-04-13 | 伊格尔工业股份有限公司 | 可变容量型压缩机用控制阀 |
KR100881462B1 (ko) * | 2006-06-07 | 2009-02-06 | 삼성전자주식회사 | 백본네트워크의 서브네트워크 간 릴레이 전송이 가능한네트워크 토폴로지 구축방법 |
US20080037661A1 (en) * | 2006-08-08 | 2008-02-14 | Adaptix, Inc. | Mobile communication system having multiple modulation zones |
US8054784B2 (en) * | 2006-08-16 | 2011-11-08 | Tropos Networks, Inc. | Wireless mesh network channel selection |
KR101210335B1 (ko) * | 2006-09-15 | 2012-12-10 | 삼성전자주식회사 | 무선 메쉬 네트워크에서 cca 기능을 수행하는 방법 및이를 이용한 이동 단말기 |
US8045562B2 (en) * | 2006-10-31 | 2011-10-25 | Hewlett-Packard Development Company, L.P. | Estimating link interference and bandwidth |
US7643429B2 (en) * | 2006-11-06 | 2010-01-05 | Fujitsu Limited | Interference measuring and mapping method and apparatus for wireless networks using relay stations |
US20080165741A1 (en) * | 2007-01-05 | 2008-07-10 | Industrial Technology Research Institute | Methods for interference measurement and prediction |
US8493945B2 (en) * | 2007-01-29 | 2013-07-23 | Tropos Networks, Inc. | Characterizing transmission of access nodes within a wireless network |
CN101647238B (zh) * | 2007-02-07 | 2013-05-08 | 汤姆逊许可公司 | 用于多无线收发装置多信道多跳无线网络的无线收发装置和带宽感知路由度量 |
US7830848B2 (en) * | 2007-04-25 | 2010-11-09 | Intel Corporation | Network-wide clear channel assessment threshold |
US8638806B2 (en) | 2007-05-25 | 2014-01-28 | Hand Held Products, Inc. | Wireless mesh point portable data terminal |
US8428065B2 (en) * | 2007-06-18 | 2013-04-23 | International Business Machines Corporation | Group communication system achieving efficient total order and state synchronization in a multi-tier environment |
US8218549B2 (en) * | 2007-06-18 | 2012-07-10 | International Business Machines Corporation | Synchronization of message stream in a multi-tier messaging system |
US20090067368A1 (en) * | 2007-08-24 | 2009-03-12 | Mcandrews Michael Patrick | Method and Apparatus for Selecting a Radio Access Technology for Communication |
JP4517060B2 (ja) * | 2007-10-25 | 2010-08-04 | 日本電気通信システム株式会社 | 無線装置およびそれを備えたメッシュ型ネットワーク |
KR100990366B1 (ko) | 2007-12-10 | 2010-10-29 | 광주과학기술원 | 무선 네트워크에서의 패킷 전송 스케줄링 방법과 그를이용한 패킷 전송 방법 |
US9232389B2 (en) * | 2008-06-11 | 2016-01-05 | Marvell World Trade Ltd. | Mixed mode security for mesh networks |
CN101741715B (zh) * | 2008-11-20 | 2013-03-20 | 华为技术有限公司 | 发送消息的方法、接入路由节点设备和数据缓存系统 |
US8094637B1 (en) | 2008-12-01 | 2012-01-10 | Marvell International Ltd. | Avoiding mesh path discovery in wireless mesh networks |
US20130121205A1 (en) * | 2009-01-26 | 2013-05-16 | Floyd Backes | Method for Selecting an Optimum Access Point in a Wireless Network on a Common Channel |
US8904177B2 (en) * | 2009-01-27 | 2014-12-02 | Sony Corporation | Authentication for a multi-tier wireless home mesh network |
US8116336B2 (en) * | 2009-01-27 | 2012-02-14 | Sony Corporation | Distributed IP address assignment protocol for a multi-hop wireless home mesh network with collision detection |
US7961674B2 (en) * | 2009-01-27 | 2011-06-14 | Sony Corporation | Multi-tier wireless home mesh network with a secure network discovery protocol |
US8964634B2 (en) * | 2009-02-06 | 2015-02-24 | Sony Corporation | Wireless home mesh network bridging adaptor |
US7990897B2 (en) * | 2009-03-11 | 2011-08-02 | Sony Corporation | Method and apparatus for a wireless home mesh network with network topology visualizer |
CN101848523B (zh) * | 2010-03-05 | 2012-12-26 | 北京北大众志微系统科技有限责任公司 | 一种多信道无线网状网络中的路径选择方法及装置 |
CN101867995B (zh) * | 2010-06-24 | 2012-10-03 | 四川平安都市通讯科技有限公司 | 无线网状网路由方法 |
US20130182621A1 (en) * | 2010-11-30 | 2013-07-18 | Nec Corporation | Information collection system, terminal and sink node using wireless multihop network, and communication method for the same |
US8699382B2 (en) | 2011-02-01 | 2014-04-15 | Cisco Technology, Inc. | Network topologies for energy efficient networks |
US9124449B2 (en) * | 2011-02-01 | 2015-09-01 | Cisco Technology, Inc. | Network topologies for energy efficient networks |
CN102843220B (zh) * | 2011-06-21 | 2014-12-24 | 华为技术有限公司 | 错误恢复方法、接入点设备、站点设备及其系统 |
KR101207615B1 (ko) | 2011-11-22 | 2012-12-03 | 연세대학교 산학협력단 | 노드 및 이의 신호 수신 제어 방법 |
US20130235728A1 (en) * | 2012-03-08 | 2013-09-12 | Khiem Le | Estimation of access quality in mobile communication systems |
EP2728955B1 (en) * | 2012-11-05 | 2015-04-08 | Fujitsu Limited | Communications path selection in wireless communications systems |
US10009065B2 (en) | 2012-12-05 | 2018-06-26 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US9113347B2 (en) | 2012-12-05 | 2015-08-18 | At&T Intellectual Property I, Lp | Backhaul link for distributed antenna system |
US9713078B2 (en) * | 2013-03-14 | 2017-07-18 | Veloxity, Inc. | System and method for determining mobile data quality over a network |
US20140280715A1 (en) * | 2013-03-15 | 2014-09-18 | First Principles, Inc. | Real time remote desktop |
MY172548A (en) | 2013-05-13 | 2019-12-02 | Mimos Berhad | A method of spectrum aware routing in a mesh network and a system derived thereof |
US9525524B2 (en) | 2013-05-31 | 2016-12-20 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9674845B2 (en) * | 2013-11-04 | 2017-06-06 | Qualcomm Incorporated | Soft buffer management |
US8897697B1 (en) | 2013-11-06 | 2014-11-25 | At&T Intellectual Property I, Lp | Millimeter-wave surface-wave communications |
US9209902B2 (en) | 2013-12-10 | 2015-12-08 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
US9401863B2 (en) * | 2013-12-20 | 2016-07-26 | Cisco Technology, Inc. | Dynamic source route computation to avoid self-interference |
US10637681B2 (en) | 2014-03-13 | 2020-04-28 | Silicon Laboratories Inc. | Method and system for synchronization and remote control of controlling units |
US9692101B2 (en) | 2014-08-26 | 2017-06-27 | At&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire |
US9768833B2 (en) | 2014-09-15 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US10063280B2 (en) | 2014-09-17 | 2018-08-28 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9628854B2 (en) | 2014-09-29 | 2017-04-18 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing content in a communication network |
US9615269B2 (en) | 2014-10-02 | 2017-04-04 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
US9503189B2 (en) | 2014-10-10 | 2016-11-22 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9973299B2 (en) | 2014-10-14 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9762289B2 (en) | 2014-10-14 | 2017-09-12 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting or receiving signals in a transportation system |
WO2016064169A2 (ko) * | 2014-10-20 | 2016-04-28 | 엘지전자(주) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 이를 위한 장치 |
US9520945B2 (en) | 2014-10-21 | 2016-12-13 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9627768B2 (en) | 2014-10-21 | 2017-04-18 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9577306B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
US9564947B2 (en) | 2014-10-21 | 2017-02-07 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with diversity and methods for use therewith |
US9653770B2 (en) | 2014-10-21 | 2017-05-16 | At&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
US9312919B1 (en) | 2014-10-21 | 2016-04-12 | At&T Intellectual Property I, Lp | Transmission device with impairment compensation and methods for use therewith |
US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
US9654173B2 (en) | 2014-11-20 | 2017-05-16 | At&T Intellectual Property I, L.P. | Apparatus for powering a communication device and methods thereof |
US9461706B1 (en) | 2015-07-31 | 2016-10-04 | At&T Intellectual Property I, Lp | Method and apparatus for exchanging communication signals |
US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
US9680670B2 (en) | 2014-11-20 | 2017-06-13 | At&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US9544006B2 (en) | 2014-11-20 | 2017-01-10 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
US9819583B2 (en) * | 2015-01-29 | 2017-11-14 | Dell Products Lp | Systems and methods for energy cost aware routing |
US10144036B2 (en) | 2015-01-30 | 2018-12-04 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium |
US9722874B2 (en) * | 2015-01-30 | 2017-08-01 | Metaswitch Networks Ltd | Inference-based network route control |
US9876570B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US10224981B2 (en) | 2015-04-24 | 2019-03-05 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9793954B2 (en) | 2015-04-28 | 2017-10-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US9948354B2 (en) | 2015-04-28 | 2018-04-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US9490869B1 (en) | 2015-05-14 | 2016-11-08 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US10679767B2 (en) | 2015-05-15 | 2020-06-09 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US10103801B2 (en) | 2015-06-03 | 2018-10-16 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US10812174B2 (en) | 2015-06-03 | 2020-10-20 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US10348391B2 (en) | 2015-06-03 | 2019-07-09 | At&T Intellectual Property I, L.P. | Client node device with frequency conversion and methods for use therewith |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US10154493B2 (en) | 2015-06-03 | 2018-12-11 | At&T Intellectual Property I, L.P. | Network termination and methods for use therewith |
US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US10142086B2 (en) | 2015-06-11 | 2018-11-27 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US9608692B2 (en) | 2015-06-11 | 2017-03-28 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9667317B2 (en) | 2015-06-15 | 2017-05-30 | At&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US9640850B2 (en) | 2015-06-25 | 2017-05-02 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US9509415B1 (en) | 2015-06-25 | 2016-11-29 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9628116B2 (en) | 2015-07-14 | 2017-04-18 | At&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
US9722318B2 (en) | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US9836957B2 (en) | 2015-07-14 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating with premises equipment |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US10320586B2 (en) | 2015-07-14 | 2019-06-11 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
US10033108B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US10341142B2 (en) | 2015-07-14 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor |
US10170840B2 (en) | 2015-07-14 | 2019-01-01 | At&T Intellectual Property I, L.P. | Apparatus and methods for sending or receiving electromagnetic signals |
US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US10033107B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US9793951B2 (en) | 2015-07-15 | 2017-10-17 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9608740B2 (en) | 2015-07-15 | 2017-03-28 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US10784670B2 (en) | 2015-07-23 | 2020-09-22 | At&T Intellectual Property I, L.P. | Antenna support for aligning an antenna |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
US10020587B2 (en) | 2015-07-31 | 2018-07-10 | At&T Intellectual Property I, L.P. | Radial antenna and methods for use therewith |
EP3337274B1 (en) * | 2015-08-11 | 2023-11-15 | LG Electronics Inc. | Method for transmitting/receiving wireless signal in wireless communication system and device therefor |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
US10051629B2 (en) | 2015-09-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an in-band reference signal |
US10009063B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal |
US10136434B2 (en) | 2015-09-16 | 2018-11-20 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel |
US9705571B2 (en) | 2015-09-16 | 2017-07-11 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system |
US10079661B2 (en) | 2015-09-16 | 2018-09-18 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a clock reference |
US10009901B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations |
US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US10074890B2 (en) | 2015-10-02 | 2018-09-11 | At&T Intellectual Property I, L.P. | Communication device and antenna with integrated light assembly |
US9882277B2 (en) | 2015-10-02 | 2018-01-30 | At&T Intellectual Property I, Lp | Communication device and antenna assembly with actuated gimbal mount |
US10665942B2 (en) | 2015-10-16 | 2020-05-26 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting wireless communications |
US10051483B2 (en) | 2015-10-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for directing wireless signals |
US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
CN105636022B (zh) * | 2015-12-30 | 2019-04-05 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | 一种基于rssi的低功耗无源无线节点组网的方法 |
TWI631832B (zh) | 2016-08-06 | 2018-08-01 | 新加坡商雲網科技新加坡有限公司 | 一種可感知干擾源的系統及方法 |
US9912419B1 (en) | 2016-08-24 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for managing a fault in a distributed antenna system |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
US10291311B2 (en) | 2016-09-09 | 2019-05-14 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating a fault in a distributed antenna system |
US11032819B2 (en) | 2016-09-15 | 2021-06-08 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a control channel reference signal |
US10340600B2 (en) | 2016-10-18 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
US10135146B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
US10135147B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
US9991580B2 (en) | 2016-10-21 | 2018-06-05 | At&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
US10374316B2 (en) | 2016-10-21 | 2019-08-06 | At&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US9876605B1 (en) | 2016-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
US10637673B2 (en) | 2016-12-12 | 2020-04-28 | Silicon Laboratories Inc. | Energy harvesting nodes in a mesh network |
US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
US11516723B2 (en) | 2018-10-19 | 2022-11-29 | Carrier Corporation | Energy-balanced and latency-constrained routing methods in wireless network |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2356947A1 (en) | 1998-12-23 | 2000-07-06 | Nokia Wireless Routers, Inc. | A unified routing scheme for ad-hoc internetworking |
US7702280B2 (en) * | 2002-05-27 | 2010-04-20 | Ntt Docomo, Inc. | Mobile communication system, transmission station, reception station, relay station, communication path deciding method, and communication path deciding program |
US7215928B2 (en) * | 2003-05-02 | 2007-05-08 | Nortel Networks Limited | Path selection in wireless networks |
GB0304216D0 (en) * | 2003-02-25 | 2003-03-26 | Koninkl Philips Electronics Nv | Wireless network |
-
2005
- 2005-01-11 US US11/032,237 patent/US7554998B2/en active Active
- 2005-12-30 WO PCT/SE2005/002061 patent/WO2006075942A1/en active Application Filing
- 2005-12-30 CA CA002590691A patent/CA2590691A1/en not_active Abandoned
- 2005-12-30 CN CN2005800463801A patent/CN101099349B/zh active Active
- 2005-12-30 EP EP05821893A patent/EP1856854A4/en not_active Withdrawn
- 2005-12-30 JP JP2007550326A patent/JP4575461B2/ja not_active Expired - Fee Related
- 2005-12-30 RU RU2007130714/09A patent/RU2404525C2/ru not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102160423B (zh) * | 2008-07-29 | 2014-10-01 | 法国电信 | 适用多跳网络中的电磁环境的路由 |
CN106332107A (zh) * | 2016-10-21 | 2017-01-11 | 高道华 | 一种无线mesh的网络资源规划方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2006075942A1 (en) | 2006-07-20 |
CN101099349B (zh) | 2011-07-06 |
US7554998B2 (en) | 2009-06-30 |
CA2590691A1 (en) | 2006-07-20 |
US20060153081A1 (en) | 2006-07-13 |
JP2008527843A (ja) | 2008-07-24 |
EP1856854A1 (en) | 2007-11-21 |
EP1856854A4 (en) | 2011-08-10 |
RU2007130714A (ru) | 2009-02-20 |
RU2404525C2 (ru) | 2010-11-20 |
JP4575461B2 (ja) | 2010-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101099349B (zh) | 无线网格网络中用于基于干扰的路由方法和装置 | |
Genetzakis et al. | A contention-aware routing metric for multi-rate multi-radio mesh networks | |
Lee et al. | BeaconRider: Opportunistic sharing of beacon air-time in densely deployed WLANs | |
Zhang et al. | Lower bound of energy-latency tradeoff of opportunistic routing in multihop networks | |
Ahmed et al. | Mitigating the effect of interference in wireless sensor networks | |
Cao et al. | User association for load balancing with uneven user distribution in IEEE 802.11 ax networks | |
Ma et al. | Interference aware metric for dense multi-hop wireless networks | |
Chowdhury et al. | XCHARM: A routing protocol for multi-channel wireless mesh networks | |
Ma et al. | A power controlled interference aware routing protocol for dense multi-hop wireless networks | |
Kowalik et al. | Making OLSR aware of resources | |
Gokturk et al. | Cooperative MAC protocol with distributed relay actuation | |
Zhang et al. | Energy efficiency analysis of channel aware geographic-informed forwarding (CAGIF) for wireless sensor networks | |
Blomer et al. | Opportunistic Routing in Ad Hoc Networks: How many relays should there be? What rate should nodes use? | |
Omer et al. | A dual channel routing protocol based on energy and link quality indicator in wireless body area networks | |
Sokullu et al. | Comparative Performance Study of ADMR and ODMPR in the Context of Mobile Ad Hoc Networks and Wireless Sensor Networks | |
Mehta et al. | Enabling adaptive rate and relay selection for 802.11 mobile ad hoc networks | |
Wei et al. | An AODV-improved routing based on power control in WiFi mesh networks | |
Tabatabaei | Multiple criteria routing algorithms to increase durability path in mobile ad hoc networks | |
Singh et al. | Analysis for power control and security architecture for wireless ad-hoc network | |
Colizza et al. | Performance of OLSR in MANETs with Cross-Layer Metrics and TCP/UDP flows | |
Lima et al. | On the tuning of wireless heterogeneous routing | |
Chaudhry et al. | Channel Assignment Using Topology Control Based on Power Control in Wireless Mesh Networks | |
Spachos et al. | Evaluating the impact of next node selection criteria on Quality of Service dynamic routing | |
Krishnan et al. | Link characteristics aware wireless protocol design | |
Ding et al. | Reliability of Cooperative Transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |