CN101065871A - 燃料电池 - Google Patents

燃料电池 Download PDF

Info

Publication number
CN101065871A
CN101065871A CNA2005800403548A CN200580040354A CN101065871A CN 101065871 A CN101065871 A CN 101065871A CN A2005800403548 A CNA2005800403548 A CN A2005800403548A CN 200580040354 A CN200580040354 A CN 200580040354A CN 101065871 A CN101065871 A CN 101065871A
Authority
CN
China
Prior art keywords
cooling
side manifold
anode
stream
entrance side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800403548A
Other languages
English (en)
Other versions
CN100527503C (zh
Inventor
鹈木重幸
竹口伸介
武部安男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN101065871A publication Critical patent/CN101065871A/zh
Application granted granted Critical
Publication of CN100527503C publication Critical patent/CN100527503C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

在发电中受到电池的发热部的温度的影响,入口侧多支管内的冷却流体温度升高。由此造成燃料电池的电池组中的各单电池的温度出现偏差,产生溢流和输出电压的变化。本发明提供一种燃料电池,可以抑制入口侧多支管内的冷却流体的温度升高,耐久性优良,实现稳定的输出电压。所述燃料电池中,再阴极侧隔板和阳极侧隔板尚,具有连接冷却流体的入口侧多支管和出口侧多支管的冷却流体的流路,该冷却流体的流路由对电池的发热部、即与阴极和阳极对应的区域进行冷却的第一冷却部和位于第一冷却部和冷却流体的入口侧多支管之间的第二冷却部构成。

Description

燃料电池
技术领域
本发明涉及用于家庭用热电同时供给系统(cogeneration system)、摩托车、电动汽车、混合型电动汽车等的燃料电池,特别是高分子电解质型燃料电池。更详细地说,本发明涉及通过降低燃料电池的电池组中的各单电池的温度波动,得到难以产生溢流,具有优良的耐久性的燃料电池。
背景技术
使用具有阳离子(氢离子)传导性的高分子电解质的燃料电池,是通过使含有氢的燃料气体和含有空气等氧的氧化剂气体进行电化学反应,同时产生电和热的电池。该燃料电池基本上由具有选择性输送氢离子的氢离子传导性的高分子电解质膜、和配置在高分子电解质膜两面上的一对电极构成。这对电极包括:以载持有电极催化剂(例如铂等的金属催化剂)的导电性碳粉为主要成分的催化剂层;和由在该催化剂层的外侧上形成的兼具通气性和电子导电性的气体扩散层(例如实施过防水处理的碳纸)构成的气体扩散电极。将其称为膜电极结合体(MEA)。
在电极的周围配置夹持有高分子电解质膜的气体密封材料和密封垫圈,使提供的燃料气体和氧化剂气体(反应气体)不向外部泄漏或相互混合。这样的密封材料和密封垫圈与电极和高分子电解质膜预先组装成一个整体。在MEA的外侧配置有导电性的隔板,将其机械式固定并且将相邻的MEA相互电串联连接。在隔板的与MEA接触的部分形成气体流路,用于向电极面提供反应气体,输送生成气体和剩余气体。气体流路也可以与隔板分别设置,但一般采用在隔板表面设计槽作为气体流路的方式。
一般的层叠电池的结构是将这些MEA和隔板交替重叠,层叠10~200个电池后,通过集电板和绝缘板,用端板将其夹持,用紧固螺栓从两端固定。将其称为电池组。
高分子电解质膜通过含有饱和状态的水分,减小膜的比电阻,作为具有氢离子传导性的电解质起作用。因此为了防止水分从高分子电解质膜中蒸发,燃料电池的工作中对燃料气体和氧化剂气体加湿再供给。此外,在电池发电时,产生如下的电化学反应,在阴极一侧生成反应生成物的水。
阳极:H2→2H++2e-             (1)
阴极:2H++(1/2)O2+2e-→H2O   (2)
加湿后的燃料气体中的水、加湿后的氧化剂气体中的水、以及反应生成水用于使高分子电解质膜的含水量保持在饱和状态,此外剩余的燃料气体和氧化剂气体一起排到燃料电池的外部。
此外,由于以上的反应是发热反应,所以在电池发电时需要对电池组进行冷却。为了对电池组进行冷却,一般使用下述方法:在隔板的与MEA接触的面(第一面)相反一侧的面(第二面)上,形成冷却流体(例如冷却水)的流路,在其中流过冷却流体,因发热反应造成温度升高的隔板与冷却流体进行热交换。冷却流体的流路也可以与隔板分别设置,但一般采用在隔板表面设计槽作为流路的方式。
在电池组的冷却不充分的情况下,MEA的温度升高,水分从高分子电解质膜蒸发。其结果会促进高分子电解质膜的恶化,缩短电池组的耐久性,或高分子电解质的比电阻增加,降低了电池组的输出。另一方面,在将电池组冷却到需要的一定程度以上的情况下,流经气体流路的反应气体中的水分凝结,反应气体中含有的液体状态的水量增加。液体状态的水因表面张力以液滴形态附着在隔板的气体流路上。在该液滴的量过多的情况下,附着在气体流路内的水堵塞气体流路,阻碍气体的流动,产生溢流。其结果电极的反应面积减少,电池性能降低。
所以,有一种冷却方法的提案(例如,参照专利文献1):以对氧化剂气体的流路中的含水量少的区域进行进一步冷却为目的,在该氧化剂气体的流路中的含水量少的区域,即使氧化剂气体流路的入口侧与冷却流体的流路中冷却流体温度低的区域、即冷却流体的流路的入口侧设置成相互靠近,使它们大体一致,由此能够抑制溢流,稳定输出电压。
专利文献1:日本特表平9-511356号公报
发明内容
可是,在采用上述专利文献1的方法的隔板中,为了使氧化剂气体的流路中的含水量少的区域,与冷却流体的导入部一致,也就是为了使(1)式的反应生成水的总量少、氧化剂气体浓度高、而且因进一步促进(1)式反应造成的发热量大的区域,与冷却流体的导入部一致,会产生以下问题。
图12表示具有与上述专利文献1中的隔板相同结构的现有的阴极侧隔板上冷却流体的流路侧的俯视图。在现有的隔板101中,设置有连接冷却流体入口侧的多支管孔102a和出口侧多支管孔102b的槽状冷却流体的流路107,在背面用槽状的氧化剂气体的气体流路(未图示),连接氧化剂气体的入口侧的多支管孔103a和出口侧多支管孔103b。此外,104a、104b分别是燃料气体的入口侧多支管孔和出口侧多支管孔,在四个角部设置有紧固螺栓用的孔106。
在现有的阴极侧隔板101上用剖面线表示的区域108中,为了使冷却流体的导入部与在氧化剂气体的入口侧多支管孔103a附近的氧化剂气体的流路中含水量少的区域一致,冷却流体的入口侧多支管孔内的冷却流体受到用点划线105表示的与阴极对应的区域发热的影响。因此,向电池组导入前到刚刚导入后的冷却流体的温度T0,因发热后的阴极的温度T2上升到T1(其中,T0<T1<T2),其温度上升ΔT(=T1-T0)比较大。这种情况在阳极侧隔板中也一样。于是,在单电池层叠的电池组中的冷却流体的入口侧多支管孔中,在冷却流体的滞留时间短的入口部与滞留时间长的距入口部最远的深侧部分(也就是冷却流体入口侧多支管的、冷却流体流动方向最下游侧的部分)之间,冷却流体产生温度差。因此,在电池组内的层叠方向越向下游走,冷却效果越降低,各单电池的冷却状态产生偏差,难以在最佳状态进行冷却。
其结果,在电池组内的层叠方向中,存在有以下问题:各单电池的温度不均匀,在温度高的单电池中,因水分从高分子电解质膜蒸发,促进该高分子电解质膜的劣化,缩短了单电池的耐久性,或因高分子电解质膜的比电阻增加,造成单电池的输出降低。
另一方面,存在有在温度低的单电池中,在气体流路中流动的反应气体中的水分凝结,增加了液体状态的水,附着在气体流路内的水堵塞气体流路,产生阻碍气体流动的溢流问题。
上述的问题由于是因在电池组内层叠方向上的各单电池的不均匀冷却造成的,所以要用各个单电池中的隔板的冷却流体的流路图形和冷却流体的流速最佳化等来解决是困难的。
鉴于以上的问题,本发明的目的是提供一种燃料电池,通过缓解在燃料电池的发电中单电池的发热部的温度和冷却流体的入口侧多支管内的冷却流体的温度差引起的、在入口侧多支管内的冷却流体中产生的温度上升,减少在燃料电池的电池组的层叠方向上的各单电池的温度偏差,抑制溢流,实现耐久性优良,稳定地输出电压。
本发明为了解决上述课题,提供一种燃料电池,具有2个以上单电池叠层而得的电池组,上述单电池包括:高分子电解质膜;具有夹持高分子电解质膜的阴极和阳极的膜电极结合体;和夹持膜电极结合体的阴极侧的隔板和阳极侧隔板,其特征在于,
电池组具有:氧化剂气体的入口侧多支管和出口侧多支管、燃料气体的入口侧多支管和出口侧多支管、以及冷却流体的的入口侧多支管和出口侧多支管,
阴极侧隔板,在与阴极相对的第一面上,具有连接氧化剂气体的入口侧多支管和氧化剂气体的出口侧多支管的氧化剂气体流路,
阳极侧隔板,在与阳极相对的第一面上,具有连接燃料气体的入口侧多支管和燃料气体的出口侧多支管的燃料气体流路,
阴极侧隔板和阳极侧隔板中的至少一个,在位于第一面的相反侧的第二面上,具有连接冷却流体的入口侧多支管和冷却流体的出口侧多支管的冷却流体的流路,
冷却流体的流路具有:对与阴极对应区域和与阳极对应区域进行冷却的第一冷却部,和位于第一冷却部和冷却流体的入口侧多支管之间的第二冷却部。
其中所谓的“与阴极对应的区域”,是指这样一个区域:在从阴极侧隔板的主面法线方向投影该“与阴极对应的区域”的情况下(等倍投影的情况下),与表示构成作为膜电极结合体发电部的阴极的气体扩散层的图形(作为投影的结果,表示“构成阴极的气体扩散层”的图形)形成相同的大小和形状的区域,也就是指与表示“构成阴极的气体扩散层”的图形大体一致的状态重叠的区域(在图3和4中用符号35表示的部分)。
另一方面,所谓的“与阳极对应的区域”,是指这样一个区域:在从阳极侧隔板主面的法线方向投影该“与阳极对应的区域”的情况(等倍投影的情况)下,与表示构成作为膜电极结合体发电部的阳极的气体扩散层图形(作为投影的结果,表示“构成阳极的气体扩散层”的图形)形成相同的大小和形状的区域,也就是指与表示“构成阳极的气体扩散层”的图形大体一致的状态重叠的区域(在图5和6中用符号45表示的部分)。
如上所述,在阴极侧隔板和阳极侧隔板中至少一个上,通过设置对与阴极和阳极对应的区域进行冷却的第一冷却部(即,现有的冷却部),和位于第一冷却部与冷却流体的入口侧多支管之间的第二冷却部作为冷却流体的流路,在燃料电池的发电中,可以缓解因单电池的发热部(也就是阳极和阴极)的温度与冷却流体的入口侧多支管内的冷却流体的温度差,造成的在入口侧多支管内的冷却流体中产生的温度上升,这样能够减小在燃料电池的电池组的层叠方向上的各单电池的温度偏差,可以得到抑制溢流,耐久性优良的燃料电池。
根据本发明,由于可以抑制入口侧多支管内的冷却流体的温度升高,所以在电池组中的冷却流体的入口侧多支管内,不会随冷却流体从入口向里流动而造成温度升高,入口部和最里面的部分的温度差不会变大。因此,导入电池组的各电池中的冷却流体几乎没有温度差,电池组整体可以大体均匀地被冷却。
因此,根据本发明,由于可以减小燃料电池的电池组中的各电池的温度偏差,所以能够提供能抑制溢流、实现稳定地输出电压、耐久性优良的燃料电池。
附图说明
图1是本发明第一实施方式1中的燃料电池的基本结构(单电池)的简要纵截面图。
图2是将2个以上的图1所示的单电池层叠而成的电池组的立体图。
图3是图1所示的燃料电池的阴极侧隔板的正视图。
图4是图3所示的阴极侧隔板的后视图。
图5是图1所示的燃料电池的阳极侧隔板的正视图。
图6是图5所示的阳极侧隔板的后视图。
图7是示意性的表示本发明第一实施方式的燃料电池使用的阴极侧隔板中的冷却水的温度状态(分布)的正视图。
图8是本发明第二实施方式中的阴极侧隔板的后视图。
图9是本发明第二实施方式中的阳极侧隔板的后视图。
图10是比较例中的阴极侧隔板的后视图。
图11是比较例中的阳极侧隔板的后视图。
图12是示意性的表示比较例的燃料电池使用的阴极侧隔板中的冷却水的温度状态(分布)的正视图。
具体实施方式
下面参照附图对本发明适宜的实施方式进行说明。此外,在以下的说明中,相同或相当的部分采用相同的符号,省略了重复的说明。
[第一实施方式]
图1是本发明第一实施方式中的燃料电池的基本结构(单电池)的简要截面图。单电池10包括:作为高分子电解质膜的一个例子的具有氢离子传导性的高分子电解质膜1;夹持高分子电解质膜1的阴极2和阳极3。高分子电解质膜1使用由全氟磺酸构成的膜(E.I.du Pont deNemours and Company制造的Nafion(商品名))。阴极和阳极由连接在高分子电解质膜上的催化剂层和配置在其外侧的气体扩散层构成。阴极和阳极的催化剂,使用载持有电极催化剂(例如铂金属)的碳。
单电池10具有高分子电解质膜1、以及夹持由阴极2和阳极3构成的膜电极结合体(MEA)的阴极侧的隔板30和阳极侧的隔板40。在阴极2和阳极3的外围部,用密封垫圈4夹持高分子电解质膜1。在以下的说明中,如图1所示,单电池10设置成MEA与水平方向垂直。
图2表示将2个以上(多个)上述单电池10层叠后得到的电池组的简要立体图。电池组20分别设置在MEA、阴极侧隔板30和阳极侧隔板40上,具有相互连通的连接在氧化剂气体的入口侧多支管孔上的氧化剂气体的入口22a、连接在出口侧多支管孔上的氧化剂气体出口22b、连接在燃料气体的入口侧多支管孔上的燃料气体的入口23a和连接在出口侧多支管孔上的燃料气体出口23b、以及连接在冷却水的入口侧多支管孔上的冷却水的入口24a和连接在出口侧多支管孔上的冷却水出口24b。此外,位于电池组20两端的隔板没有冷却水流路。该电池组20在两端通过集电板和绝缘板使端部重合,用紧固螺栓紧固,构成燃料电池。
在上述构成的燃料电池中,从氧化剂气体的入口22a导入各电池的入口侧多支管的氧化剂气体,从阴极侧隔板30的流路36向阴极12的气体扩散电极扩散,供给反应。剩余的氧化剂气体和反应生成物从流路36经过出口侧的多支管,从出口22b排出。燃料气体也一样,经过入口23a、入口侧多支管、以及阳极侧隔板40的流路46,供给阳极3,剩余的燃料气体和反应生成物从流路46经过出口侧的多支管,从出口23b排出。
其中如上所述,在现有的燃料电池中,由于冷却水的入口侧多支管内的冷却水受电极发热的影响,所以在电池组内的层叠方向上,存在有下述问题:各单电池的温度不均匀,在温度高的单电池中,因水分从高分子电解质膜蒸发,促进该高分子电解质膜的恶化,缩短了单电池的耐久性,或因高分子电解质的比电阻增加造成单电池的输出降低。与此相反,在本发明的燃料电池中,使用了具有图3和图4所示结构的阴极侧隔板、以及图5和图6所示结构的阳极侧隔板。
图3是本实施方式的燃料电池的阴极侧隔板的氧化剂气体的流路一侧的正视图。图4是图3所示的阴极侧隔板的后视图,也就是冷却水的流路一侧的正视图。
如图3和图4所示,阴极侧的隔板30具有氧化剂气体的入口侧多支管孔32a和氧化剂气体的出口侧多支管孔32b、燃料气体的入口侧多支管孔33a和燃料气体的出口侧多支管孔33b、冷却水的入口侧多支管孔34a和冷却水的出口侧多支管孔34b、以及穿过紧固螺栓用的4个孔31。此外,阴极侧隔板30,在与阴极相对的面上,具有连接氧化剂气体的多支管孔32a和32b的氧化剂气体的流路36,在背面上,具有连接冷却水的多支管孔34a和34b的冷却水的流路37。
在图3和图4中,用点划线35包围的区域是与阴极对应的区域。即,在图3中,构成作为MEA的发电部的阴极的气体扩散层与用点划线35包围的区域接触。与包括MEA的催化剂层的发电部存在的区域对应。如图3所示,氧化剂气体流路36由两根并排的槽构成,在用点划线35包围的区域中,各槽由7根在水平方向延伸的直线部和连接相邻的直线部的6个弯部构成。槽的数量和弯部不限于这样,在对本发明的效果没有不利影响的范围内,可以适当设定。
另一方面,冷却水的流路37由2个并排的槽构成,包括:位于用点划线35包围的区域的部分37c、将部分37c连接在入口侧多支管孔34a上的入口侧部分(第二冷却部)37a、将部分(第一冷却部)37c连接在出口侧多支管孔34b上的出口侧部分37b。部分37c的1个槽由7根在水平方向延伸的直线部和连接相邻的直线部的6个弯部构成,其他的槽的直线部和弯部还要逐个增加。
即,如图4所示,在假设将从冷却水的入口侧多支管孔34a到由点划线35表示的与阴极对应的区域以最近距离连接的直线X的情况下,第二冷却部37a由在与该直线X大致垂直的方向延伸的至少一个槽构成。
出口侧的部分37b由简单的在垂直方向延伸的直线部构成,入口侧的部分37a包括:由各一个在水平方向延伸的直线部和弯部构成的槽、和在水平方向延伸的2根直线部和1个弯部构成的槽。这种情况下,槽的数量和弯部的数量不限于此,在对本发明的效果没有不利影响的范围内,可以适当设定。
如上所述,在本实施方式中,冷却水的流路37其入口侧的部分37a有在水平方向延伸的3根直线部,因此,在可以有效地冷却隔板方面,与出口侧的部分37b不同。此外,在用点划线35包围的区域中,也就是在部分37c中,除了在水平方向延伸的直线部增加1根以外,具有与氧化剂气体流路的相同部分大体对应的位置关系。
此外,优选,在不冷却氧化剂气体入口侧多支管孔32a和燃料气体的入口侧多支管孔33a的范围,形成第一冷却部(部分)37c。因此,例如不使氧化剂气体入口侧多支管孔32a和燃料气体的入口侧多支管孔33a过度冷却,第一冷却部(部分)37c超出上述用点划线35包围的区域也没有关系。但是如图4所示,为了更可靠地进行冷却,第一冷却部(部分)37c最好不超出上述用点划线35包围的区域。
另一方面,相对于氧化剂气体入口侧多支管孔32a和燃料气体的入口侧多支管孔33a,位于冷却水流路37的下游侧的氧化剂气体的出口侧多支管孔32b和燃料气体出口侧多支管孔33b要被进一步冷却。因此,在氧化剂气体入口侧多支管孔32a和燃料气体的入口侧多支管孔33a附近,即可以以超出所述用点划线35包围的区域的方式,也可以以不超出所述用点划线35包围的区域的方式,形成第一冷却部(部分)37c。
图5是本实施方式中的燃料电池的阳极侧隔板的燃料气体的流路侧的正视图。图6是图5所示的阳极侧隔板的后视图,也就是冷却水的流路侧的正视图。
如图5和图6所示,阳极侧的隔板40具有氧化剂气体的入口侧多支管孔42a和氧化剂气体的出口侧多支管孔42b、燃料气体的入口侧多支管孔43a和燃料气体的出口侧多支管孔43b、冷却水的入口侧多支管孔44a和冷却水的出口侧多支管孔44b、以及穿过紧固螺栓用的4个孔41。此外,阳极侧的隔板40在与阳极相对的面具有连接燃料气体的多支管孔43a和43b的燃料气体的流路46,在背面具有连接冷却水的多支管孔44a和44b的冷却水的流路47。
如图5和图6所示,用点划线45包围的区域与图3和图4所示的阴极侧隔板的情况相同,是与阳极对应的区域。也就是在图5中,构成作为MEA的发电部的阳极的气体扩散层与用点划线45包围的区域接触。如图5所示,燃料气体流路46由两个并排的槽构成,在用点划线45包围的区域中,各槽由7根在水平方向延伸的直线部和连接相邻的直线部的6个弯部构成。槽的数量和弯部不限于这样,在对本发明的效果没有不利影响的范围内,可以适当设定。
阳极侧的隔板40具有冷却水的流路47,将阳极侧的隔板40的背面与阴极侧隔板30的背面接合,与隔板30的冷却水的流路37一起构成一个冷却水的流路。因此,流路47具有与流路37面对称的关系的形状。因此,流路47的结构与流路37的结构一致,可以适当变更。
流路47包括:位于用点划线45包围的区域的部分(第一冷却部)47c、将部分47c连接在入口侧多支管孔44a上的入口侧部分(第二冷却部)47a、和将部分47c连接在出口侧多支管孔44b上的出口侧部分47b。
如图6所示,在假设将从冷却水的入口侧多支管孔44a到用点划线45表示的与阴极对应的区域用最近距离连接的直线Y的情况下,第二冷却部47a至少由1根在与该直线Y大致垂直的方向延伸的槽构成。
优选,在不冷却氧化剂气体入口侧多支管孔42a和燃料气体的入口侧多支管孔43a的范围,形成第一冷却部(部分)47c。因此,例如不使氧化剂气体入口侧多支管孔42a和燃料气体的入口侧多支管孔43a过度冷却,第一冷却部(部分)47c超出上述的用点划线45包围的区域也没有关系。但是如图6所示,为了更可靠地进行冷却,第一冷却部(部分)47c最好不超出上述的用点划线45包围的区域。
另一方面,相对于氧化剂气体入口侧多支管孔42a和燃料气体的入口侧多支管孔43a,位于冷却水流路47的下游侧的氧化剂气体的出口侧多支管孔42b和燃料气体出口侧多支管孔43b要被进一步冷却。因此,在氧化剂气体入口侧多支管孔42a和燃料气体的入口侧多支管孔43a附近,即可以以超出所述用点划线35包围的区域的方式,也可以以不超出所述用点划线35包围的区域的方式,形成第一冷却部(部分)47c。
在此以图3和图4所示的阴极侧隔板30代表本实施方式的燃料电池中的隔板,对解决上述的现有问题的原理进行了说明。
图7是示意性的表示图4所示的本发明的燃料电池的阴极侧隔板30的流经冷却水流路37的冷却水的温度状态(分布)的图。
在本发明的阴极侧的隔板30中,除了存在于用点划线35表示的与阴极对应的区域的第一冷却部37c以外,还有在第一冷却部37c和冷却水的入口侧多支管34a之间的、位于用剖面线表示的区域38的第二冷却部37a。在现有的隔板中,冷却水的入口侧多支管内的冷却水受到于用点划线35表示的与阴极对应的区域中的阴极发热的影响,而在本发明中的隔板30中有前面叙述的第二冷却部37a,因此从向电池组20导入前到刚导入后的冷却水的温度T0,因发热的阴极的温度T2而上升到T1(其中,T0<T1<T2),其温度上升ΔT(=T1-T0)比现有小。
于是,在层叠有单电池10的电池组20中,在冷却水的入口侧多支管中,也可以减小冷却水滞留时间短的入口部和滞留时间长的距入口部最远的深侧的部分(也就是,冷却水的入口侧的多支管的在冷却水流经方向中的最下游的部分)之间产生的冷却水的温度差。因此,能够减小在电池组20内的层叠方向上各单电池10的冷却状态中产生的偏差,可以冷却到最佳状态。
即,在本发明的燃料电池中,作为用于缓解因发电中单电池10的发热部的温度和冷却水入口侧多支管内的冷却水的温度差,而造成的入口侧多支管内的冷却水温度升高的温度升高缓解装置,在各单电池10的隔板上,在第一冷却部37c和冷却水的入口侧多支管孔34a之间设置有第二冷却部37a,该第一冷却部37c利用冷却水,对与单电池的发热部对应的、用点划线35表示的区域进行冷却。设置该第二冷却部37a,对位于第一冷却部37c和冷却水的入口侧多支管孔34a之间的隔板的区域38进行冷却。由此,能够减小在电池组20内的层叠方向上各单电池10的冷却状态产生偏差,可以冷却到最佳状态。
在具有以上结构的本实施方式的燃料电池的电池组20中,冷却水从入口24a导入,从入口侧的多支管流经由阴极侧隔板30的流路37和阳极侧隔板40的流路47构成的流路,经过出口侧多支管,从出口24b排出。被排出的冷却水利用适当的热交换器进行热交换,冷却后再从入口24a导入电池组20。流经由隔板30、40形成的冷却水流路的冷却水,在由部分37c、47c形成的第一冷却部中,对与作为单电池10发热部的阳极和阴极的催化剂层对应的隔板30、40的部位进行冷却。此外,在由隔板30的部分37a和隔板40的部分47a构成的第二冷却部中,对第一冷却部和入口侧多支管之间的隔板的部位进行冷却。由此,能够抑制由于单电池10的发热部的热量造成的流经由隔板30和40形成的入口侧多支管内的冷却水的温度升高。
[第二实施方式]
下面对于本发明的燃料电池的第二实施方式进行说明。该第二实施方式的燃料电池(未图示)用不同的结构代替图1所示的第一实施方式的单电池10的隔板30和40,除了隔板30和40以外的结构与第一实施方式的单电池10相同。
以下,对第二实施方式的燃料电池具备的隔板(本发明的隔板的第二实施方式)进行说明。
本实施方式的燃料电池除了使阴极侧隔板中的冷却水流路的形状为图8所示的结构,阳极侧隔板中的冷却水流路的形状为图9所示的结构以外,与前面叙述的实施方式1相同。
阴极侧隔板30A的冷却水的流路57由连接入口侧多支管孔34a的入口侧的部分(第二冷却部)57a、用点划线35包围的区域部分(第一冷却部)57c、以及连接出口侧多支管孔34b的出口侧的部分57b构成。
入口侧的部分57a与由1个槽构成的实施方式1的部分37a不同,由3根直线部和2个弯部构成,它的全长几乎与部分37a相同。用点划线35包围的区域部分57c除了连接部分57a的最上面的直线部的下游侧的弯部附近分成2个方面不同以外,几乎与实施方式1的部分37c相同。出口侧的部分57b由将与实施方式1相同部分57c连接在多支管孔34b上的垂直方向的直线部构成。
阳极侧隔板40A的冷却水流路67具有与流路57面对称关系的形状。即,流路67由位于用点划线45包围的区域的部分(第一冷却部)67c、将部分67c连接在入口侧多支管孔44a上的入口侧的部分(第二冷却部)67a、以及将部分67c连接在出口侧多支管孔44b上的出口侧的部分67b构成。
与第一冷却部由2根流路构成不同,第二冷却部由1根流路构成,因此,在第二冷却部中的冷却水的流速比在第一冷却部中的冷却水的流速快2倍,因此冷却效果更好。
上面对本发明的实施方式进行了详细地说明,但本发明不限于上述的实施方式。
例如,在上述的实施方式中,在各单电池之间设置由冷却水的流路构成的冷却部,但也可以例如以2~3个电池用1个的比例设置冷却部。此外,冷却水的流路是在阴极侧隔板和阳极侧隔板两方设置槽,形成1组流路,但也可以仅在一个隔板上设置槽,因此在两个隔板之间设置冷却水的流路。
此外,在上述的实施方式中,在层叠有单电池的电池组20中,在阴极侧隔板和阳极侧隔板之间形成冷却水流路,但也可以在位于电池组20两端的单电池的外侧部分的阴极侧隔板或阳极侧隔板中,层叠集电板、绝缘板和端板,在隔板和集电板之间形成冷却水的流路。
此外,隔板上的冷却水流路连接冷却水的入口侧多支管和出口侧多支管,通常由在隔板上设置的1个或多个槽构成。在第一冷却部由多个槽构成的情况下,第二冷却部可以由与第一冷却部相同的个数的槽构成。此外,也可以由数量比第一冷却部少的槽构成第二冷却部。
如采用该结构,由于可以在某种程度上抑制第二冷却部中的热交换量,同时将冷却水供给至第一冷却部,所以可以充分发挥第一冷却部对发热部的冷却效果。由此,能够更有效地缓解入口侧多支管内的冷却水的温度升高。
此外,关于隔板的结构以外的构成要素,没有特别的限制,在对本发明的效果没有不利影响的范围内,可以适当设定。冷却流体也不限定为冷却水。
实施例
下面例举实施例和比较例,对本发明进行更详细地说明,但本发明并不限于这些实施例。
[实施例1]
气体扩散层采用以细孔的80%以上的直径为20~70μm的日本碳(株)制的碳织布(GF-20-E)为基材,使聚四氟乙烯(PTFE)分散在加入表面活性剂的纯水中得到分散液,将该基材浸渍在该分散液中。其后,使基材通过远红外线干燥炉,在300℃烧制60分钟。此时的基材中的防水性树脂(PTFE)量为1.0mg/cm2
然后制作了涂层用涂料。在将纯水和表面活性剂混合得到的溶液中加入碳黑,用行星式搅拌机(planetary mixer)进行3小时的分散处理。在得到的分散液中加入PTFE和水,再混炼3小时。其中,作为表面活性剂,使用市售的商品名为Triton X-100的材料。
用涂药器(applicator)将该涂层用的涂料涂敷在实施了上述防水处理的碳织布的单面上。使用热风干燥机,在300℃对形成有涂层的碳织布进行2小时的烧制,作成气体扩散层。得到的气体扩散层中含有的防水性树脂(PTFE)量为0.8mg/cm2
下面制作催化剂层。在作为碳粉的Ketjen碳黑(Ketjen碳黑国际(株)制的Ketjen Black EC,颗粒直径为30nm)上载持铂作为电极催化剂,得到催化剂体(50质量%为Pt),将66质量份的该催化剂体与33质量份(高分子干燥质量)的作为氢离子传导材料的、并且是粘结剂的全氟磺酸离聚物(美国Aldrich公司制的5质量%Nafion分散液)混合,将得到的混合物成形,制作催化剂层(10~20μm)。
使用热压,将如上所述得到的气体扩散层和催化剂层接合在高分子电解质膜(美国Du Pont公司的Nafion112膜、离子交换基容量:0.9meq/g)的两个面上,制作MEA。
然后,将橡胶制的密封垫圈板与如上所述制作的MEA高分子电解质膜的外周部接合,形成用于使燃料气体和氧化剂气体流通的多支管孔。
另一方面,准备具有图3和图4所示结构的阴极侧隔板以及具有图5和图6所示结构的阳极侧隔板,它们具有160mm×160mm×5mm的外形尺寸,并具有宽度1.0mm、深度1.0mm的气体流路,由含浸有酚醛树脂的石墨板构成。
使用这些隔板,在MEA的一个面上,氧化剂气体用的气体流路与成形的阴极侧隔板重合,在另一个面上,燃料气体用的气体流路与成形的阳极侧隔板重合,得到单电池。
然后,将100个该单电池层叠形成电池组,在电池组的两端部配置铜制的集电板、以及使用电绝缘材料制成的绝缘板和端板,通过用紧固杆将整体固定,制成本发明的第一实施方式的燃料电池1。其中,此时的紧固压力为每单位隔板面积为10kgf/cm2
[实施例2]
使阴极侧隔板的冷却水流路形状为图8所示的结构,使阳极侧隔板的冷却水流路形状为图9所示的结构,除此以外与实施例1相同,制作本发明的第二实施方式的燃料电池2。
[比较例1]
使阴极侧隔板的冷却水流路形状为图10所示的结构,使阳极侧隔板的冷却水流路形状为图11所示的结构,除此以外与实施例1相同,制作本发明的比较燃料电池1。
此外,阴极侧隔板70和阳极侧隔板80的结构除了冷却水的流路以外,分别与本发明的第一实施方式的阴极侧隔板30和阳极侧隔板40相同。
阴极侧隔板70的冷却水流路77由连接在入口侧多支管孔34a上的入口侧部分77a、用点划线35包围的区域的部分77c、和连接在出口侧多支管孔34b上的出口侧部分77b构成。部分77c与本发明的第一实施方式的流路37c的结构相同。此外,部分77a和77b分别由连接部分77c和多支管孔34a和34b的垂直方向的直线部构成。
阳极侧隔板80的冷却水流路87具有与流路77面对称关系的形状。即,流路87由位于用点划线45包围的区域的部分87c、将部分87c连接在入口侧多支管孔44a上的入口侧的部分87a、以及将部分87c连接在出口侧多支管孔44b上的出口侧的部分87b构成。
[评价]
对以上的实施例1、2和比较例1的各燃料电池,以3.7升/分钟向入口侧多支管的入口部提供温度70℃的冷却水。此外,提供加温、加湿的氢气和空气,使阳极侧和阴极侧的露点分别为70℃,燃料气体的利用率Uf为70%,氧化气体的利用率Uo为40%。
使电流密度为0.2A/cm2,运转24小时后,测定冷却水的入口侧多支管的入口部和距入口最远的里面的部分上的冷却水温度。
接着,将Uo提高到70%,运转6小时,通过每10秒抽取电压样时的标准偏差,比较电压的稳定性。
此外,使Uo返回到40%,运转24小时。以此时刻为基点,连续运转1000小时。通过该连续运转,以平均电压降低的部分对电池的耐久性进行比较。
其结果示于表1。
表1
实施例1  实施例2  比较例1
多支管内的冷却水温度(℃)入口部最深部 7071 7070 7074
在Uo=70%运转时的平均电压的标准偏差σ(mV) 0.3 0.1 2.0
连续1000小时运转后的平均电压的降低部分(mV) 2.0 0.5 10.0
100号的电池的冷却水温度(℃)入口一侧多支管内第一冷却部内 7176 7075 7479
从表1可以看出,比较例1的燃料电池的冷却水入口侧多支管内的冷却水温度,在入口部和距入口最远的里面的部分存在4℃的差,在利用率70%运转时的电压稳定性和连续运转1000小时的耐久性比实施例1和2差。
可以看出,因在比较例1中多支管内的冷却水温度不均匀,难以将电池组内的各电池冷却到最佳状态。即,因冷却不足,单电池温度升高,水分从高分子电解质中蒸发,造成促进了高分子电解质膜的恶化,会产生单电池的耐久性缩短,以及因高分子电解质膜的比电阻增加,造成单电池的输出降低。
另一方面,在本发明的燃料电池中,通过设置温度升高缓解单元,用于缓解因发电中的MEA的发热部的温度和冷却水入口侧多支管内的冷却水的温度差造成冷却水的温度升高,不会发生上述那样的问题,确认了有抑制燃料电池耐久性劣化的效果。
从表1可以看出,实施例2的燃料电池的冷却水入口侧多支管内的冷却水温度,没有入口部和最深侧部分的差,与实施例1相比,在利用率70%运转时的电压稳定性和连续运转1000小时的耐久性方面更好。
其原因认为如下。即,通过由比第一冷却部数量少的流路构成第二冷却部,因此,在第二冷却部中的冷却水的流速比在第一冷却部中的冷却水的流速快,冷却效果更好。因此,发电中的单电池的发热部的温度和冷却水的入口侧多支管内的冷却水的温度差变小,缓解了冷却水入口侧多支管内的冷却水的温度升高,可以产生抑制溢流和耐久性恶化的效果。
此外,本发明并不限定于各实施例中记载的冷却水流路的形状和根数等,只要不脱离发明的宗旨,可以进行各种各样的变化。
此外,各实施例涉及高分子电解质型燃料电池,但是本发明在用于电池发电时因电化学反应发热,需要冷却的燃料电池,以及在阴极一侧作为反应生成物生成水的燃料电池的情况下,可以得到明显的效果。
产业上的可利用性
本发明的燃料电池可以降低电池组中的各电池的温度偏差,耐久性优良,不产生溢流和输出电压的变化。因此,本发明的燃料电池可以用于家庭用热电同时供给系统、摩托车、电动汽车、混合型电动汽车等中。

Claims (3)

1.一种燃料电池,具备将2个以上单电池叠层形成的电池组,所述单电池具有:包括高分子电解质膜、和夹持所述高分子电解质膜的阴极和阳极的膜电极接合体;和夹持所述膜电极接合体的阴极侧隔板和阳极侧隔板,其特征在于,
所述电池组具有:氧化剂气体的入口侧多支管和出口侧多支管、燃料气体的入口侧多支管和出口侧多支管、以及冷却流体的入口侧多支管和出口侧多支管,
所述阴极侧隔板,在与所述阴极相对的第一面上,具有连接所述氧化剂气体的所述入口侧多支管与所述氧化剂气体的所述出口侧多支管的氧化剂气体的流路,
所述阳极侧隔板,在与所述阳极相对的第一面上,具有连接所述燃料气体的所述入口侧多支管与所述燃料气体的所述出口侧多支管的燃料气体的流路,
所述阴极侧隔板和阳极侧隔板的至少一个,在位于所述第一面的相反侧的第二面上,具有连接所述冷却流体的所述入口侧多支管与所述冷却流体的所述出口侧多支管的冷却流体的流路,
所述冷却流体的流路具有:对与所述阴极对应的区域和与所述阳极对应的区域进行冷却的第一冷却部;以及位于所述第一冷却部和所述冷却流体的入口侧多支管之间的第二冷却部。
2.根据权利要求1所述的燃料电池,其特征在于,
在假设将从所述冷却流体的所述入口侧多支管到与所述阴极对应的区域和与所述阳极对应的区域以最近距离连接的直线的情况下,所述第二冷却部由至少1个在与该直线大致垂直的方向延伸的槽构成。
3.根据权利要求1所述的燃料电池,其特征在于,
所述第一冷却部由多个并排的槽构成,所述第二冷却部由槽数目少于所述第一冷却部的槽构成。
CNB2005800403548A 2004-11-24 2005-11-08 燃料电池 Expired - Fee Related CN100527503C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004339527 2004-11-24
JP339527/2004 2004-11-24

Publications (2)

Publication Number Publication Date
CN101065871A true CN101065871A (zh) 2007-10-31
CN100527503C CN100527503C (zh) 2009-08-12

Family

ID=36497895

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005800403548A Expired - Fee Related CN100527503C (zh) 2004-11-24 2005-11-08 燃料电池

Country Status (4)

Country Link
US (1) US20080014486A1 (zh)
JP (1) JP4056550B2 (zh)
CN (1) CN100527503C (zh)
WO (1) WO2006057155A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637885A (zh) * 2012-04-27 2012-08-15 中国东方电气集团有限公司 冷却系统及燃料电池堆
CN104091956A (zh) * 2014-07-21 2014-10-08 江苏超洁绿色能源科技有限公司 区域化、逆流道的大功率空冷型pemfc电堆双极板
CN104756299B (zh) * 2012-07-20 2017-09-05 奥迪股份公司 燃料电池冷却剂流场配置
CN114784347A (zh) * 2022-05-18 2022-07-22 中汽创智科技有限公司 一种燃料电池电堆及燃料电池
CN116096670A (zh) * 2020-09-25 2023-05-09 松下知识产权经营株式会社 电化学式氢泵用阳极隔板和电化学式氢泵

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5332092B2 (ja) * 2006-09-11 2013-11-06 トヨタ自動車株式会社 燃料電池
JP2008226677A (ja) * 2007-03-14 2008-09-25 Toyota Motor Corp 燃料電池
US9425470B2 (en) 2011-05-02 2016-08-23 Doosan Fuel Cell America, Inc. Energy dissipation device for controlling flow of a fuel cell fluid
GB201207759D0 (en) * 2012-05-03 2012-06-13 Imp Innovations Ltd Fuel cell
US10396368B2 (en) * 2013-03-18 2019-08-27 Wuhan Troowin Power System Technology Co., Ltd. PEM fuel cell stack

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547776A (en) * 1991-01-15 1996-08-20 Ballard Power Systems Inc. Electrochemical fuel cell stack with concurrently flowing coolant and oxidant streams
JPH11283637A (ja) * 1998-03-27 1999-10-15 Denso Corp 燃料電池
US6261710B1 (en) * 1998-11-25 2001-07-17 Institute Of Gas Technology Sheet metal bipolar plate design for polymer electrolyte membrane fuel cells
US6686080B2 (en) * 2000-04-18 2004-02-03 Plug Power Inc. Fuel cell systems
JP4268400B2 (ja) * 2002-11-18 2009-05-27 本田技研工業株式会社 燃料電池
JP2004207082A (ja) * 2002-12-25 2004-07-22 Sanyo Electric Co Ltd 燃料電池および燃料電池用セパレータ
KR100539649B1 (ko) * 2002-12-02 2005-12-29 산요덴키가부시키가이샤 연료 전지용 세퍼레이터 및 이를 이용한 연료 전지
EP1469542A1 (en) * 2003-04-09 2004-10-20 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7781122B2 (en) * 2004-01-09 2010-08-24 Gm Global Technology Operations, Inc. Bipolar plate with cross-linked channels

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637885A (zh) * 2012-04-27 2012-08-15 中国东方电气集团有限公司 冷却系统及燃料电池堆
CN104756299B (zh) * 2012-07-20 2017-09-05 奥迪股份公司 燃料电池冷却剂流场配置
CN104091956A (zh) * 2014-07-21 2014-10-08 江苏超洁绿色能源科技有限公司 区域化、逆流道的大功率空冷型pemfc电堆双极板
CN116096670A (zh) * 2020-09-25 2023-05-09 松下知识产权经营株式会社 电化学式氢泵用阳极隔板和电化学式氢泵
CN114784347A (zh) * 2022-05-18 2022-07-22 中汽创智科技有限公司 一种燃料电池电堆及燃料电池
CN114784347B (zh) * 2022-05-18 2024-02-02 中汽创智科技有限公司 一种燃料电池电堆及燃料电池

Also Published As

Publication number Publication date
JP4056550B2 (ja) 2008-03-05
WO2006057155A1 (ja) 2006-06-01
CN100527503C (zh) 2009-08-12
JPWO2006057155A1 (ja) 2008-06-05
US20080014486A1 (en) 2008-01-17

Similar Documents

Publication Publication Date Title
CN101065871A (zh) 燃料电池
CN100336261C (zh) 燃料电池组
CN1254875C (zh) 高分子电解质型燃料电池
CN1214478C (zh) 电解质膜电极接合体的制造方法
CN1269245C (zh) 燃料电池
CN1298070C (zh) 燃料电池
CN1812177A (zh) 燃料电池堆体以及具有该堆体的燃料电池系统
CN1906784A (zh) 气体扩散层和使用气体扩散层的燃料电池
CN1707835A (zh) 具有改进的冷却结构的电池堆及其燃料电池系统
CN1819317A (zh) 燃料电池的电池堆及具有该电池堆的燃料电池系统
CN1725538A (zh) 膜电极组件、燃料电池组、燃料电池系统以及膜电极组件的制造方法
CN1293661C (zh) 高分子电解质型燃料电池及其运行方法
CN1436378A (zh) 催化加湿器和加热器,主要用于燃料电池的氧化剂流的加湿
CN1459133A (zh) 高分子电解质型燃料电池
CN1599111A (zh) 燃料电池用电解质膜及其制造方法和使用它的燃料电池
CN1418385A (zh) 燃料电池
CN1300882C (zh) 燃料电池元件、燃料电池、燃料电池发电系统及它们的制造方法
CN1930712A (zh) 高分子电解质型燃料电池
CN1221053C (zh) 高分子电解质型燃料电池的运转方法
CN1659736A (zh) 液体燃料供给型燃料电池
CN1614804A (zh) 具有堆叠结构的燃料电池
CN1812174A (zh) 高分子电解质型燃料电池
CN1614802A (zh) 燃料电池及燃料电池系统
CN1299373C (zh) 燃料电池用电极及其制造方法
CN1697222A (zh) 燃料电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090812

Termination date: 20101108