CN101064254A - Method for producing compressive nitrifier layer and method for forming transistor - Google Patents

Method for producing compressive nitrifier layer and method for forming transistor Download PDF

Info

Publication number
CN101064254A
CN101064254A CN 200610077218 CN200610077218A CN101064254A CN 101064254 A CN101064254 A CN 101064254A CN 200610077218 CN200610077218 CN 200610077218 CN 200610077218 A CN200610077218 A CN 200610077218A CN 101064254 A CN101064254 A CN 101064254A
Authority
CN
China
Prior art keywords
gas
substrate
layer
dielectric layer
oxide semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200610077218
Other languages
Chinese (zh)
Other versions
CN100536087C (en
Inventor
陈能国
蔡腾群
黄建中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Microelectronics Corp
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to CNB2006100772182A priority Critical patent/CN100536087C/en
Publication of CN101064254A publication Critical patent/CN101064254A/en
Application granted granted Critical
Publication of CN100536087C publication Critical patent/CN100536087C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A preparing method of compressibility nitride layer includes preceding a chemical gas phase aggradation to form a nitride layer on a base, it characterized in that definite gas is inlet into during the chemical gas phase aggradation, the definite gas is argon, nitrogen, krypton and xenon or their comnination. For adding said definite gas, the compress stress can be decreased, and the PMOS drive current plus is increased.

Description

The manufacture method of compressive nitrifier layer and the transistorized method of formation
Technical field
The present invention relates to a kind of manufacture method of metal oxide semiconductor transistor, and particularly relate to the manufacture method of a kind of compressive nitrifier layer (compressive nitride film) and the method for formation metal oxide semiconductor transistor (MOS).
Background technology
Along with semiconductor technology enters the deep-sub-micrometer epoch, the time delay effect (time-delay performance) of transistor unit because lifting NMOS and PMOS drive current will be greatly improved, so the technology below the 65nm is increasingly important for the demand of drive current (drive current) lifting of NMOS and PMOS.For instance, have traditionally at development ILD low-k (low k) material and promote the research of drive current.And in recent years, the stress in thin film (film stress) of silicon nitride (SiN) pressure texture (stressor) of fleet plough groove isolation structure (STI) oxide layer, polysilicon top cover (Poly-Cap) and contact hole silicon nitride suspension layer (SiN contact etching stopr layer is abbreviated as SiN CESL) begun one's study both at home and abroad to the influence of the drive current of transistor unit.
The result is, the silicon nitride pressure texture and the contact hole silicon nitride suspension layer stress in thin film of sti oxide, polysilicon top cover is deposited as compression stress (compressive stress).And rete compression more, it is many more that the PMOS drive current increases ground.
But at low temperature below 400 ℃, plated film (As-deposit) technology of whole world the best also can only reach-1.6GPa at present in the mode of PECVD.Therefore, how obtaining more further, the rete of high compression stress has become one of problem of all circles' research.
Summary of the invention
Purpose of the present invention is exactly that a kind of manufacture method of compressive nitrifier layer is being provided, and can obtain the rete of high compression stress.
A further object of the present invention provides a kind of method that forms metal oxide semiconductor transistor, to promote the drive current gain of PMOS.
Another purpose of the present invention provides a kind of method that forms metal oxide semiconductor transistor, can improve the structural stress of PMOS and NMOS simultaneously.
Another object of the present invention provides a kind of method that forms metal oxide semiconductor transistor, to increase current gain, keeps existing component structure simultaneously.
The present invention proposes a kind of manufacture method of compressive nitrifier layer, comprises carrying out chemical vapor deposition method one, to form one deck nitride layer in substrate.This method is characterised in that: need to feed specific gas during above-mentioned chemical vapor deposition method, and this kind specific gas is to be selected to comprise argon gas (Ar), nitrogen (N 2), wherein a kind of gas or its combination of krypton gas (Kr) and xenon (Xe).
Manufacture method according to the described compressive nitrifier layer of one embodiment of the present of invention, when specific gas is the composition gas of argon gas and nitrogen, argon flow amount is between 100sccm~5000sccm, and nitrogen flow is between 1000sccm~30000sccm.
According to the manufacture method of the described compressive nitrifier layer of one embodiment of the present of invention, wherein the low frequency power that above-mentioned chemical vapor deposition method adopted (LF Power) is between 50W~3000W.
According to the manufacture method of the described compressive nitrifier layer of one embodiment of the present of invention, can be at chemical vapor deposition method leading portion, stage casing or back segment the opportunity that wherein feeds aforementioned specific gas.
According to the manufacture method of the described compressive nitrifier layer of one embodiment of the present of invention, aforementioned nitride layer comprises the silicon nitride layer or the oxygen containing silicon nitride layer of silicon nitride layer, carbon containing.
The present invention reintroduces a kind of method that forms metal oxide semiconductor transistor, comprises a substrate is provided earlier, has formed at least one grid structure on it.Then, in the grid structure substrate on two sides, form source electrode and drain electrode, form the layer of metal silicide layer in the surface of grid structure end face and source electrode and drain electrode again.Afterwards, deposition one deck compressive dielectric layer in substrate with overlies gate structure, source electrode and drain electrode, feeds specific gas during the method that wherein deposits compressive dielectric layer is included in chemical vapor deposition method.Wherein, aforementioned specific gas is to be selected from wherein a kind of gas or its combination that comprises argon gas, nitrogen, krypton gas and xenon.
The present invention proposes a kind of method that forms metal oxide semiconductor transistor again, and comprising provides a substrate earlier, and this substrate has PMOS district and nmos area, respectively forms a grid structure again in the substrate of PMOS district and nmos area.Then, in each grid structure substrate on two sides, form source electrode and drain electrode, again respectively at deposition one deck compressive dielectric layer (compressive dielectric film) and one deck tension force dielectric layer (tensile dielectric film) in the substrate of PMOS district and nmos area, to cover each grid structure, source electrode and drain electrode.Wherein, feed specific gas during the method that deposits aforementioned compressive dielectric layer is included in one chemical vapor deposition method, and this specific gas is to be selected from wherein a kind of gas or its combination that comprises argon gas, nitrogen, krypton gas and xenon.
According to the method for the described formation metal oxide semiconductor transistor of an alternative embodiment of the invention, wherein form also to be included in behind each grid structure and form one deck first resilient coating (bufferlayer) in the substrate, to cover each grid structure.
Method according to the described formation metal oxide semiconductor transistor of an alternative embodiment of the invention, wherein form source electrode with the drain electrode back and before forming first resilient coating, more can form the layer of metal silicide layer on the surface of each grid structure end face and source electrode and drain electrode.
According to the method for the described formation metal oxide semiconductor transistor of an alternative embodiment of the invention, deposition tension dielectric layer just after the deposition compressive dielectric layer wherein.And, can after the deposition compressive dielectric layer and before the deposition tension dielectric layer, in substrate, form one deck second resilient coating, to cover above-mentioned compressive dielectric layer.
According to the method for the described formation metal oxide semiconductor transistor of an alternative embodiment of the invention, wherein after the deposition tension dielectric layer, just deposit compressive dielectric layer.And, can in substrate, form one deck second resilient coating, to cover the mentioned strain dielectric layer after the deposition tension dielectric layer and before the deposition compressive dielectric layer.
The present invention proposes a kind of method that forms metal oxide semiconductor transistor in addition, comprises a substrate is provided earlier, has formed at least one grid structure on it.Then, in the grid structure substrate on two sides, form source electrode and drain electrode, in substrate, deposit one deck compressive dielectric layer again, with overlies gate structure, source electrode and drain electrode, feed specific gas during the method that wherein deposits compressive dielectric layer is included in one chemical vapor deposition method, and this kind specific gas is to be selected from wherein a kind of gas or its combination that comprises argon gas, nitrogen, krypton gas and xenon.Then, carry out one annealing process (annealing process).Again compressive dielectric layer is removed afterwards.Then, form the layer of metal silicide layer in the surface of each grid structure end face and source electrode and drain electrode.
According to the method for the described formation metal oxide semiconductor transistor of the various embodiments described above of the present invention, the low frequency power that aforementioned chemical vapor deposition method adopted is included between 50W~3000W.
Method according to the described formation metal oxide semiconductor transistor of the various embodiments described above of the present invention, when aforementioned specific gas is the composition gas of argon gas and nitrogen, argon flow amount can be between 100sccm~5000sccm, and nitrogen flow can be between 1000sccm~30000sccm.
According to the method for the described formation metal oxide semiconductor transistor of the various embodiments described above of the present invention, the aforementioned compressive dielectric layer that deposits comprises the silicon nitride layer or the oxygen containing silicon nitride layer of silicon nitride layer, carbon containing.
According to the method for the described formation metal oxide semiconductor transistor of the various embodiments described above of the present invention, aforementioned substrates can be at (100) crystal face to be had<100〉crystal orientation substrate.
The present invention is because add heavy specific gas in chemical vapor deposition method, the bombardment when increasing film deposition (bombard), and with the high compression stress nitride layer of deposition one deck densification, but the therefore drive current of lift elements gain.And the present invention can reach required current gain with thin compressive nitrifier layer, so increase the effect of contact hole etching process window (process window) in addition.
For above and other objects of the present invention, feature and advantage can be become apparent, following conjunction with figs. and preferred embodiment are to illustrate in greater detail the present invention.
Description of drawings
Fig. 1 is that the resulting compressibility silicon nitride layer of the present invention and traditional silicon nitride layer and existing silicon nitride layer after improvement are in the comparative graph of Ion to Ioff_S.
Fig. 2 then is that three kinds of silicon nitride layers among Fig. 1 are in the comparative graph of Ion current gain and thickness.
Fig. 3 A to Fig. 3 D is a kind of technology generalized section that forms metal oxide semiconductor transistor according to the second embodiment of the present invention.
Fig. 4 A to Fig. 4 C is a kind of technology generalized section that forms metal oxide semiconductor transistor according to the third embodiment of the present invention.
Fig. 5 A to Fig. 5 E is a kind of technology generalized section that forms metal oxide semiconductor transistor according to the fourth embodiment of the present invention.
The simple symbol explanation
300,400,500: substrate
302,402: isolation structure
304,404,502: grid structure
306,406,504,504a: source electrode and drain electrode
308,506: source electrode and drain electrode extension area
310,512: metal silicide layer
312,410a, 508: compressive dielectric layer
408,412: resilient coating
410b: tension force dielectric layer
510: source electrode and drain anneal technology
Embodiment
Notion of the present invention is when utilizing chemical vapor deposition method to form compressive dielectric layer, the bombardment when the heavy gas of adding increases deposition.Below be used as example explanation of the present invention, but the present invention is not limited to the described content of following embodiment for a plurality of embodiment.
First embodiment
Manufacture method according to a kind of compressive nitrifier layer of the first embodiment of the present invention can comprise and carry out chemical vapor deposition method one, and to form one deck nitride layer in substrate, above-mentioned chemical vapor deposition method for example is PECVD.And, during chemical vapor deposition method, need to feed specific gas, and this kind specific gas is to be selected to comprise argon gas (Ar), nitrogen (N 2), wherein a kind of gas or its combination of krypton gas (Kr) and xenon (Xe).For instance, when specific gas was the composition gas of argon gas and nitrogen, argon flow amount was between 100sccm~5000sccm, and nitrogen flow is between 1000sccm~30000sccm.In addition, between the preferably about 50W~3000W of the low frequency power that chemical vapor deposition method adopted (LF Power).
Following table one is with the method for first embodiment (experimental example 1~2) and in contrast to tradition (reference examples) does not feed specific gas of the present invention in addition in chemical vapor deposition method technological parameter form.
Table one
SiH 4 (sccm) NH 3 (sccm) Ar (sccm) N 2 (sccm) HF (W) LF(W) (Bias) Stress (GPa)
Reference examples 240 3200 0 4000 100 0 -0.07
Experimental example 1 60 130 3000 1000 100 75 -2.4
Experimental example 2 60 40 4000 1000 100 200 -2.5
From table one as can be known, traditional method (reference examples) can only reach-stress value of 0.07GPa; Otherwise method of the present invention (experimental example 2) can reach-stress value of 2.5GPa.In addition, can be at chemical vapor deposition method leading portion, stage casing or back segment the opportunity that feeds aforementioned specific gas.And resulting nitride layer can also be carbon containing (C) or the silicon nitride layer that contains oxygen (O) except silicon nitride layer.
And Fig. 1 resulting compressibility silicon nitride layer that is the present invention (compression stress for-2.4GPa) with traditional silicon nitride layer (compression stress for-0.06GPa) and existing after improvement silicon nitride layer (compression stress for-1.6GPa) in the comparative graph of Ion to Ioff_S, be about 800 dusts behind the film wherein, and substrate be have at (100) crystal face<100〉crystal orientation.As can be seen from Figure 1, in identical Ioff_S value, existing silicon nitride layer after improvement (1.6GPa) (0.06GPa) can obtain higher Ion value than traditional silicon nitride layer; And compressibility silicon nitride layer of the present invention (Ion value 2.4GPa) is higher than existing silicon nitride layer (Ion value 1.6GPa) after improvement.Therefore, the present invention can increase PMOS drive current gain (drivecurrent gain) really.
Fig. 2 then is that three kinds of silicon nitride layers among Fig. 1 are in the comparative graph of Ion current gain and thickness.As can be seen from Figure 2, under the condition of identical Ion current gain (20%), (thickness 1.6GPa) need reach 850 dusts to existing silicon nitride layer after improvement.But, if adopt compressibility silicon nitride layer of the present invention (2.4GPa), then thicknesses of layers can be reduced to the 600 Izod right sides, can significantly promote contact hole etching process window (contact etching process window) thus, and when the thickness of silicon nitride layer is added to 1000 dusts, the Ion current gain of PMOS is brought up to greater than 40%.
And method proposed by the invention can also be applied in the chip problem on deformation (warping issue) that correction is caused after because of the deposit multilayer film.
Second embodiment
Fig. 3 A to Fig. 3 D is a kind of technology generalized section that forms metal oxide semiconductor transistor according to the second embodiment of the present invention.
Please refer to Fig. 3 A, a substrate 300 is provided earlier, it can be at (100) crystal face has<100〉crystal orientation substrate, and suppose that it can be divided into PMOS district and nmos area by a plurality of isolation structures 302.And in substrate 300, formed grid structure 304.The clearance wall that grid structure 304 comprises gate dielectric layer basically, is positioned at the grid on the gate dielectric layer and is formed at gate lateral wall, in addition can also comprise other member, but because this is to belong to the technical staff in the technical field of the invention can rely on existing technology to be known by inference, so do not give unnecessary details at this.
Then, please refer to Fig. 3 B, in grid structure 304 substrate on two sides 300, form source electrode and drain electrode 306, its method for example is an ion implantation technology, and when semiconductor technology enters the deep-sub-micrometer epoch (below the 65nm), can utilize directly growth source electrode and drain electrode 306 in substrate 300 of mode as selective epitaxial depositing operation (selective epitaxial deposition).Moreover, can form source electrode and drain before 306 earlier at 304 times formation of part grid structure source electrode and drain electrode extension area 308, to improve short-channel effect.
Can select the step of advanced row Fig. 3 C afterwards or leap to Fig. 3 D.Please refer to Fig. 3 C, can form layer of metal silicide layer 310 earlier on the surface of grid structure 304 end faces and source electrode and drain electrode 306.
Then, please refer to Fig. 3 D, deposition one deck compressive dielectric layer 312 in substrate 300 is to cover metal silicide layer 310; And if then carry out the step of Fig. 3 D certainly after the step of Fig. 3 B, what compressive dielectric layer 312 was covered is exactly grid structure 304, source electrode and drain electrode 306.The method of wherein above-mentioned deposition compressive dielectric layer 312 is during one chemical vapor deposition method, feed specific gas, and aforementioned specific gas is to be selected from wherein a kind of gas or its combination that comprises argon gas, nitrogen, krypton gas and xenon.And the low frequency power that aforementioned chemical vapor deposition method adopted (LF Power) for example is between 50W~3000W.In addition, when aforementioned specific gas is the composition gas of argon gas and nitrogen, for instance: argon flow amount can be between 100sccm~5000sccm, and nitrogen flow can be between 1000sccm~30000sccm.And silicon nitride layer that above-mentioned compressive dielectric layer 312 for example is silicon nitride layer, carbon containing or oxygen containing silicon nitride layer.
Compressive dielectric layer 312 among above-mentioned second embodiment is the contact hole etching suspension layers (CESL) as whole M OS, so that reach lower stress.
The 3rd embodiment
Fig. 4 A to Fig. 4 D is a kind of technology generalized section that forms metal oxide semiconductor transistor according to the third embodiment of the present invention.
Please refer to Fig. 4 A, a substrate 400 is provided earlier, it can be at (100) crystal face has<100〉crystal orientation substrate, and suppose that it can be divided into the first district 400a and the second district 400b by a plurality of isolation structures 402; For instance, when the first district 400a was the PMOS district, then the second district 400b was a nmos area.Then, in the substrate 400 of the first district 400a and the second district 400b, respectively form a grid structure 404.The right time forms source electrode and drain electrode 406 in each grid structure 404 substrate on two sides 400, and can be with reference to the explanation (asking for an interview Fig. 3 B) of second embodiment with the mode of drain electrode 406 about forming source electrode.Afterwards, can be chosen in and form one deck first resilient coating (buffer layer) 408 in the substrate 400, to cover each grid structure 404; Or directly carry out following step.In addition, forming source electrode, can form layer of metal silicide layer (not illustrating) in addition on the surface of each grid structure 404 end face and source electrode and drain electrode 406 with drain electrode 406 backs and before forming above-mentioned first resilient coating 408.
Then, please continue A with reference to Fig. 4, deposition one deck compressive dielectric layer (compressivedielectric film) 410a in substrate 400, feed specific gas during the method that wherein deposits aforementioned compressive dielectric layer 410a is included in one chemical vapor deposition method, and this specific gas is to be selected from wherein a kind of gas or its combination that comprises argon gas, nitrogen, krypton gas and xenon.And the low frequency power that aforementioned chemical vapor deposition method adopted for example is between 50W~3000W.In addition, when aforementioned specific gas was the composition gas of argon gas and nitrogen, argon flow amount for example was can be between 100sccm~5000sccm, and nitrogen flow for example is between 1000sccm~30000sccm.And above-mentioned compressive dielectric layer 410a can be the silicon nitride layer or the oxygen containing silicon nitride layer of silicon nitride layer, carbon containing.
Then, please refer to Fig. 4 B, the compressive dielectric layer 410a on second district (that is nmos area) 400b is removed, in substrate 400, form one deck second resilient coating 412 again, to cover above-mentioned compressive dielectric layer 410a.
Afterwards, please refer to Fig. 4 C, deposition one deck tension force dielectric layer (tensile dielectric film) 410b in the substrate 400 of second district (that is nmos area) 400b is to cover each floor structure of this district 400b.Therefore, the 3rd embodiment can improve the structural stress of PMOS district and nmos area simultaneously.
In addition, the first district 400a in Fig. 4 A to Fig. 4 C is meant nmos area, and on behalf of present embodiment, the second district 400b then just to deposit compressive dielectric layer after the first deposition tension dielectric layer when being meant the PMOS district.And, can in substrate 400, form one deck second resilient coating 412, to cover the mentioned strain dielectric layer after the deposition tension dielectric layer and before the deposition compressive dielectric layer.
The 4th embodiment
Fig. 5 A to Fig. 5 E is a kind of technology generalized section that forms metal oxide semiconductor transistor according to the fourth embodiment of the present invention.
Please refer to Fig. 5 A, a substrate 500 is provided earlier, it can be at (100) crystal face has<100〉crystal orientation substrate, and in substrate 500, formed a grid structure 502.Then, in grid structure 502 substrate on two sides 500, form source electrode and drain electrode 504.Moreover, can form source electrode and drain before 504 earlier at 502 times formation of part grid structure source electrode and drain electrode extension area 506, to improve short-channel effect.
Then, please refer to Fig. 5 B, deposition one deck compressive dielectric layer 508 in substrate 500, with overlies gate structure 502, source electrode and drain electrode 504, feed specific gas during the method that wherein deposits compressive dielectric layer 508 is included in one chemical vapor deposition method, and this kind specific gas is to be selected from wherein a kind of gas or its combination that comprises argon gas, nitrogen, krypton gas and xenon.For instance, when aforementioned specific gas was the composition gas of argon gas and nitrogen, argon flow amount can be between 100sccm~5000sccm, and nitrogen flow can be between 1000sccm~30000sccm.And the low frequency power that aforementioned chemical vapor deposition method adopted for example is between 50W~3000W.Moreover, silicon nitride layer that the aforementioned compressive dielectric layer that deposits 508 can be silicon nitride layer, carbon containing or oxygen containing silicon nitride layer
Then, please refer to Fig. 5 D, carry out one annealing process (annealing process) 510, such as source electrode and drain anneal technology (sourse/drain annealing process).At this moment, compressive dielectric layer 508 can become the pressure texture (poly stressor) of polysilicon, so that the polysilicon layer in the substrate 500 is remembered its stress.
Afterwards, please refer to Fig. 5 E, compressive dielectric layer (ask for an interview Fig. 5 D 508) is removed, again in the surface of grid structure 502 end faces and source electrode and drain electrode 504a formation layer of metal silicide layer 512.Therefore, the method for the 4th embodiment not only can increase current gain, also can keep existing component structure simultaneously.
In sum, in the method for the invention, during chemical vapor deposition method, need to feed heavy specific gas, bombardment when increasing film deposition (bombard), therefore can deposit the high compression stress nitride layer of one deck densification, the thickness of while compresses nitride layer, and the effect that increases contact hole etching process window (process window) is arranged.
Though the present invention discloses as above with preferred embodiment; yet it is not in order to limit the present invention; those skilled in the art can do a little change and retouching without departing from the spirit and scope of the present invention, thus protection scope of the present invention should with accompanying Claim the person of being defined be as the criterion.

Claims (28)

1. the manufacture method of a compressive nitrifier layer comprises and carries out chemical vapor deposition method, to form nitride layer in substrate, it is characterized in that:
Feed specific gas during this chemical vapor deposition method, wherein this specific gas is to be selected from wherein a kind of gas or its combination that comprises argon gas, nitrogen, krypton gas and xenon.
2. the manufacture method of compressive nitrifier layer as claimed in claim 1, when wherein this specific gas was the composition gas of argon gas and nitrogen, argon flow amount was included between 100sccm~5000sccm and nitrogen flow is included between 1000sccm~30000sccm.
3. the manufacture method of compressive nitrifier layer as claimed in claim 1, wherein the low frequency power that this chemical vapor deposition method adopted is included between 50W~3000W.
4. the manufacture method of compressive nitrifier layer as claimed in claim 1 wherein feeds this specific gas at this chemical vapor deposition method leading portion.
5. the manufacture method of compressive nitrifier layer as claimed in claim 1 wherein feeds this specific gas in this chemical vapor deposition method stage casing.
6. the manufacture method of compressive nitrifier layer as claimed in claim 1 wherein feeds this specific gas at this chemical vapor deposition method back segment.
7. the manufacture method of compressive nitrifier layer as claimed in claim 1, wherein formed this nitride layer comprises the silicon nitride layer or the oxygen containing silicon nitride layer of silicon nitride layer, carbon containing.
8. method that forms metal oxide semiconductor transistor comprises:
Substrate is provided, has formed grid structure in this substrate;
In this substrate of these grid structure both sides, form source electrode and drain electrode;
Surface in this grid structure end face and this source electrode and drain electrode forms metal silicide layer; And
In this substrate, deposit compressive dielectric layer, to cover this grid structure and this source electrode and drain electrode, feed specific gas during the method that wherein deposits this compressive dielectric layer is included in chemical vapor deposition method, and this specific gas is to be selected from wherein a kind of gas or its combination that comprises argon gas, nitrogen, krypton gas and xenon.
9. the method for formation metal oxide semiconductor transistor as claimed in claim 8, when wherein this specific gas was the composition gas of argon gas and nitrogen, argon flow amount was included between 100sccm~5000sccm and nitrogen flow is included between 1000sccm~30000sccm.
10. the method for formation metal oxide semiconductor transistor as claimed in claim 8, wherein the low frequency power that this chemical vapor deposition method adopted is included between 50W~3000W.
11. the method for formation metal oxide semiconductor transistor as claimed in claim 8, this compressive dielectric layer that is wherein deposited comprise the silicon nitride layer or the oxygen containing silicon nitride layer of silicon nitride layer, carbon containing.
12. the method for formation metal oxide semiconductor transistor as claimed in claim 8, wherein this substrate be included in (100) crystal face have<100〉crystal orientation.
13. a method that forms metal oxide semiconductor transistor comprises:
Substrate is provided, and this substrate has PMOS district and nmos area;
In this substrate of this PMOS district and this nmos area, respectively form grid structure;
In this substrate of these grid structure both sides respectively, form source electrode and drain electrode; And
Respectively at deposition compressive dielectric layer and tension force dielectric layer in this substrate of this PMOS district and this nmos area, to cover respectively this grid structure and this source electrode and drain electrode, wherein
Feed specific gas during the method that deposits this compressive dielectric layer is included in chemical vapor deposition method, wherein this specific gas is to be selected from wherein a kind of gas or its combination that comprises argon gas, nitrogen, krypton gas and xenon.
14. the method for formation metal oxide semiconductor transistor as claimed in claim 13, when wherein this specific gas was the composition gas of argon gas and nitrogen, argon flow amount was included between 100sccm~5000sccm and nitrogen flow is included between 1000sccm~30000sccm.
15. the method for formation metal oxide semiconductor transistor as claimed in claim 13, wherein the low frequency power that this chemical vapor deposition method adopted is included between 50W~3000W.
16. the method for formation metal oxide semiconductor transistor as claimed in claim 13, wherein form respectively this grid structure after, also be included in and form first resilient coating in this substrate, to cover respectively this grid structure.
17. the method for formation metal oxide semiconductor transistor as claimed in claim 13, wherein form after this source electrode and the drain electrode and form before this first resilient coating, also be included in the surface formation metal silicide layer of this grid structure end face respectively and this source electrode and drain electrode.
18. the method for formation metal oxide semiconductor transistor as claimed in claim 13 wherein deposits this tension force dielectric layer after this compressive dielectric layer of deposition.
19. the method for formation metal oxide semiconductor transistor as claimed in claim 18 wherein deposits after this compressive dielectric layer and deposits before this tension force dielectric layer, also is included in and forms second resilient coating in this substrate, to cover this compressive dielectric layer.
20. the method for formation metal oxide semiconductor transistor as claimed in claim 13 wherein deposits this compressive dielectric layer after this tension force dielectric layer of deposition.
21. the method for formation metal oxide semiconductor transistor as claimed in claim 20 wherein deposits after this tension force dielectric layer and deposits before this compressive dielectric layer, also is included in and forms second resilient coating in this substrate, to cover this tension force dielectric layer.
22. the method for formation metal oxide semiconductor transistor as claimed in claim 13, this compressive dielectric layer that is wherein deposited comprise the silicon nitride layer or the oxygen containing silicon nitride layer of silicon nitride layer, carbon containing.
23. the method for formation metal oxide semiconductor transistor as claimed in claim 13, wherein this substrate be included in (100) crystal face have<100〉crystal orientation.
24. a method that forms metal oxide semiconductor transistor comprises:
Substrate is provided, has formed grid structure in this substrate;
In this substrate of these grid structure both sides, form source electrode and drain electrode;
In this substrate, deposit compressive dielectric layer, to cover this grid structure and this source electrode and drain electrode, feed specific gas during the method that wherein deposits this compressive dielectric layer is included in chemical vapor deposition method, wherein this specific gas is to be selected from wherein a kind of gas or its combination that comprises argon gas, nitrogen, krypton gas and xenon;
Carry out annealing process;
Remove this compressive dielectric layer; And
Surface in respectively this grid structure end face and this source electrode and drain electrode forms metal silicide layer.
25. the method for formation metal oxide semiconductor transistor as claimed in claim 24, when wherein this specific gas was the composition gas of argon gas and nitrogen, argon flow amount was included between 100sccm~5000sccm and nitrogen flow is included between 1000sccm~30000sccm.
26. the method for formation metal oxide semiconductor transistor as claimed in claim 24, wherein the low frequency power that this chemical vapor deposition method adopted is included between 50W~3000W.
27. the method for formation metal oxide semiconductor transistor as claimed in claim 24, this compressive dielectric layer that is wherein deposited comprise the silicon nitride layer or the oxygen containing silicon nitride layer of silicon nitride layer, carbon containing.
28. the method for formation metal oxide semiconductor transistor as claimed in claim 24, wherein this substrate be included in (100) crystal face have<100〉crystal orientation.
CNB2006100772182A 2006-04-30 2006-04-30 Method for producing compressive nitrifier layer and method for forming transistor Active CN100536087C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100772182A CN100536087C (en) 2006-04-30 2006-04-30 Method for producing compressive nitrifier layer and method for forming transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100772182A CN100536087C (en) 2006-04-30 2006-04-30 Method for producing compressive nitrifier layer and method for forming transistor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN200910134316A Division CN101533782A (en) 2006-04-30 2006-04-30 Method for forming metal oxide semiconductor transistor

Publications (2)

Publication Number Publication Date
CN101064254A true CN101064254A (en) 2007-10-31
CN100536087C CN100536087C (en) 2009-09-02

Family

ID=38965156

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100772182A Active CN100536087C (en) 2006-04-30 2006-04-30 Method for producing compressive nitrifier layer and method for forming transistor

Country Status (1)

Country Link
CN (1) CN100536087C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594364A (en) * 2012-08-14 2014-02-19 中芯国际集成电路制造(上海)有限公司 A method for manufacturing a semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594364A (en) * 2012-08-14 2014-02-19 中芯国际集成电路制造(上海)有限公司 A method for manufacturing a semiconductor device
CN103594364B (en) * 2012-08-14 2016-06-08 中芯国际集成电路制造(上海)有限公司 The manufacture method of a kind of semiconducter device

Also Published As

Publication number Publication date
CN100536087C (en) 2009-09-02

Similar Documents

Publication Publication Date Title
CN1211864C (en) Semiconductor device and its mfg. method
CN1293637C (en) CMOS possessing strain channel and preparation method
CN1210763C (en) Semiconductor device and producing process thereof
CN1263119C (en) Method for producing CMOS device
CN1741274A (en) Integrated circuit component and forming method thereof
CN1694230A (en) Silicon nitride film and manufacturing method thereof
CN1815752A (en) Grid dielectric layer and transistor and semiconductor device using the same
CN1663051A (en) Semiconductor device and its manufacturing method
CN1819121A (en) Method for fabricating ultra-high tensile-stressed film and strained-silicon transistors thereof
CN1841771A (en) P-channel MOS transistor, semiconductor integrated circuit device and fabrication process thereof
CN101038920A (en) Semiconductor structures and its forming method
CN1897303A (en) Semiconductor device and its forming method
CN1967780A (en) Method for fabricating a gate dielectric of a field effect transistor
CN1881586A (en) Semiconductor device and fabrication process thereof
CN1732556A (en) Method of forming a thick strained silicon layer and semiconductor structures incorporating a thick strained silicon layer
CN1206712C (en) Production method of semiconductor device
CN1716607A (en) Semiconductor device and manufacturing method thereof
CN101038879A (en) Semiconductor device and method of manufacturing the same
US20100270622A1 (en) Semiconductor Device Having a Strain Inducing Sidewall Spacer and a Method of Manufacture Therefor
US7485515B2 (en) Method of manufacturing metal oxide semiconductor
CN1925159A (en) Semiconductor device and method of fabricating same
CN1921086A (en) Integrated producing method for strain CMOS
CN1534744A (en) Field effect transistor structure possessing strain silicon germanium layer beaping crystal and its manufacturing method
KR100821089B1 (en) Semiconductor device and method for fabricating the same
CN1208815C (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant