CN101059424A - 多光谱肉类新鲜度人工智能测量方法及系统 - Google Patents
多光谱肉类新鲜度人工智能测量方法及系统 Download PDFInfo
- Publication number
- CN101059424A CN101059424A CN 200710068733 CN200710068733A CN101059424A CN 101059424 A CN101059424 A CN 101059424A CN 200710068733 CN200710068733 CN 200710068733 CN 200710068733 A CN200710068733 A CN 200710068733A CN 101059424 A CN101059424 A CN 101059424A
- Authority
- CN
- China
- Prior art keywords
- meat
- freshness
- image
- artificial intelligence
- card
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 235000013372 meat Nutrition 0.000 title claims abstract description 79
- 238000013473 artificial intelligence Methods 0.000 title claims abstract description 16
- 238000001228 spectrum Methods 0.000 title claims abstract description 13
- 238000000691 measurement method Methods 0.000 title claims description 6
- 238000000034 method Methods 0.000 claims abstract description 15
- 238000012545 processing Methods 0.000 claims abstract description 7
- 235000019609 freshness Nutrition 0.000 claims description 35
- 239000013598 vector Substances 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 9
- 239000003513 alkali Substances 0.000 claims description 7
- 238000012706 support-vector machine Methods 0.000 claims description 4
- 238000013528 artificial neural network Methods 0.000 claims description 3
- 239000004744 fabric Substances 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- 238000013459 approach Methods 0.000 claims description 2
- 230000004069 differentiation Effects 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 4
- 238000011160 research Methods 0.000 abstract description 2
- 239000000284 extract Substances 0.000 abstract 1
- 238000002203 pretreatment Methods 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000009659 non-destructive testing Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 235000013622 meat product Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 239000013558 reference substance Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种多光谱肉类新鲜度人工智能测量方法及系统。可调节参数光源发射特定光束照射于肉类放置平台上,3CCD多光谱摄像机接收肉品反射光,信号传输给图像采集卡,通过采集卡传输到计算机处理系统进行处理。通过计算机内肉类数据库的选择,选取不同的肉类品种,进行各种预处理。然后提取各种特征波段,选取象素集作为图像进一步研究对象,通过人工智能判断方法,在已有的模型下进行新鲜肉、次鲜肉、腐败肉三种不同模式的识别,最后输出识别结果,显示于电脑上。本发明采用机器视觉、图像处理与人工智能等技术的结合,快速、无损、准确地评定肉类的新鲜度。
Description
技术领域
本发明涉及利用光学手段来分析材料,尤其是涉及一种多光谱肉类新鲜度人工智能测量方法及系统。
背景技术
肉类新鲜度的评测指标很多,传统的评测方法应该从肉类本身的外观、气味、化学成分等各方面进行综合评定,对评测人员要求很高。现有的检测技术主要有以下几种:1)挥发性总盐基氮-TVB-N的测试。无论是采用凯氏定氮法,还是其他定氮方法,都免不了操作烦琐,测试时间长,且不是无损检测,很难满足当前对于大批量样品快速无损检测的要求。2)检测表面肉色来反映新鲜度。这种方法采用一定波长的光照到参考物表面,通过接收器检测反射回来的光,然后光源发射同样波长的光照到肉表面,接收器检测反射回来的光,计算发射吸光度,并将此值采用人工神经网络建立与肉色标准相应的数学模型,用于检测肉色,进而推测新鲜程度。但是这种方法检测的光的波段过于单一,接受得到的光波信息量较少,并且这一方法中的得到的数据不够直观且缺乏前期后期处理,易受外界干扰。
发明内容
本发明的目的在于提供一种多光谱肉类新鲜度人工智能测量方法及系统,采用机器视觉、图像处理与人工智能等技术的结合,快速、无损、准确地评定肉类的新鲜度。
本发明解决其技术问题所采用的技术方案是:
一、一种多光谱肉类新鲜度人工智能测量方法,该方法的步骤如下:
1)通过固定光源的照射,3CCD多光谱摄像机接受肉类反射信息;
2)反射信息通过图像采集卡传输到计算机,得到原始的3幅图像,分别为550nm、650nm、800nm三个波段通道的单色图像;
3)通过小波降噪,降低图像噪声,由于近红外单色图像的背景与肉类差异较大,可使肉类与背景分离,并且完成边缘检测,得到单独的肉类的图像信息;
4)压缩图像,把原有的10*10象素的图像融合成新的象素集,选取出这一象素集的平均亮度、亮度方差、亮度级差,作为这一象素集的特征向量;
5)选取事先通过检测挥发性总盐基氮-TVB-N确定肉类新鲜度的几个样本,以这些不同的新鲜度作为输出,通过以上1)至4)步骤提取的特征向量作为输入,通过支持向量机或人工神经网络的人工智能方法建立不同类别肉类的数据库模型;
6)拍摄待测肉类的多光谱图像,通过以上1)至4)步骤提取的特征向量并作为输入,以5)步骤建立的模型为判别过程,判断每一象素集合的肉类新鲜类别;
7)以各象素集的新鲜度判断结果所占比重综合判断,这里采取无权重的,以最多数目象素集类型确定整块肉质的新鲜度,并把结果输出。
二、一种多光谱肉类新鲜度人工智能测量系统:
包括可调节参数光源,肉类放置平台,3CCD多光谱摄像机;图像采集卡和计算机处理系统及数据库;可调节参数光源发射特定光束照射于肉类放置平台上,3CCD多光谱摄像机接收肉品反射光,信号传输给图像采集卡,通过采集卡传输到计算机处理系统进行处理。
本发明具有的有益效果是:
1.功能强大,可实现对肉类新鲜度的快速、准确、非破坏性的诊断。
2.结构简单,整个测量装置只由一个3CCD多光谱成像系统、一台计算机组成。
3.使用方便,只要将测量装置中的各组成部件按照要求连接起来,就可以进行测量。
4.具有良好的经济效益。传统的测量手段在取样、测定、数据分析等方面需要耗费大量的人力、物力,且效果差。本测量装置因结构简单、制作方便,可以快速、准确地测量肉类的多光谱图像信息,分析得到肉类的新鲜度,从而实现实时、无损检测肉类新鲜度。
附图说明
图1是本发明系统框图。
图2是本发明的工作流程图。
具体实施方式
如图1所示,本发明包括可调节参数光源,肉类放置平台,3CCD多光谱摄像机,图像采集卡和计算机处理系统及数据库。可调节参数光源发射特定光束照射于肉类放置平台上,3CCD多光谱摄像机接收肉品反射光,信号传输给图像采集卡,通过采集卡传输到计算机处理系统进行处理。
所述的多光谱摄像机为Duncan公司MS系列3CCD多光谱摄像系统。
所述的图像采集卡是National Instrument公司PCI 1424或PCI1428。
Duncan公司的MS系列多光谱摄像系统将摄入图像经过滤,实时分离成绿(550nm),红(650nm),近红外(800nm)三个波段通道的单色图像,通过PCI 1424或1428(National Instrument公司)的图像采集卡连接到计算机。
如图1所示,本发明的具体工作流程如下:
1.统一光源照射在平台上的肉类,多光谱摄像机拍得反射光,由图像采集卡采集得到,传入计算机,得到三副独立的单色图,所得图像经过一系列预处理,通过小波降噪,降低图像噪声。由于近红外单色图像的背景与肉类差异较大,可使肉类与背景分离,常用于研究对象与背景的隔离,并且完成边缘检测,得到单独的肉类的图像信息,其中的近红外波段对边缘检测具有较大的区分度。
2.在计算机得到的肉类上的每个象素与一个三维的向量(g,r,NIR)相关联,其中g、r、NIR分别为绿(550nm)、红(650nm)、近红外(800nm)三个通道的单色亮度。通过对图像信息的进一步提取,进行图像压缩,每10*10象素组成一个象素集,选取出这一象素集的平均亮度,亮度方差、亮级级差参数,由于有三幅独立的图像,这样,所得的特征向量为3*3=9个,作为这一象素集的特征向量。
3.肉类新鲜度的标定。在评价各种检验方法时,多数学者认为挥发性总盐基氮-TVB-N在肉类的变质过程中,能有规律地反映肉类新鲜度的变化,该项指标已经被纳入国家标准,是目前肉类食品新鲜度检测中最重要的理化指标。按国家标准GB2722,总挥发性盐基氮含量对应的肉类新鲜度等级如表1。
数据库中的数据用来建立原始模型,数据库中的数据是在某特定光强下,拍摄得到的某一具体肉类的图像,并测量过总盐基氮值,并且根据不同的肉类新鲜度标准把数据分为新鲜肉、次鲜肉、腐败肉。把以上得到的9个特征向量作为输入,新鲜肉、次鲜肉、腐败肉的等级作为输出,运用Support Vector Machine(支持向量机)作为人工智能的理论,建立已知样本的人工智能模型。以上为建立原始模型的数据库过程。待判断的样本则不必通过测量总盐基氮值来判断新鲜度,通过上述多光谱摄像机拍摄,通过图像采集卡输入计算机,并且获取象素集的特征向量之后,把此象素集的特征向量作为输入,输出端为人工智能判断的结果,模型为数据库中某一具体肉类已有的模型,进行归类判断,判断每一个肉类象素集的新鲜度属性,以各象素集的新鲜度判断结果所占数量综合判断,这里采取无权重的,以最多数目象素集类型确定整块肉质的新鲜度.并把结果输出.。
表1 肉类新鲜度等级与TVB-N含量的对应关系
肉类新鲜度等级 | TVB-N含量 |
新鲜肉次鲜肉腐败肉 | <15mg/100g15:30mg/100g>30mg/100g |
Claims (4)
1、一种多光谱肉类新鲜度人工智能测量方法,其特征在于该方法的步骤如下:
1)通过固定光源的照射,3CCD多光谱摄像机接受肉类反射信息;
2)反射信息通过图像采集卡传输到计算机,得到原始的3幅图像,分别为550nm、650nm、800nm三个波段通道的单色图像;
3)通过小波降噪,降低图像噪声,由于近红外单色图像的背景与肉类差异较大,可使肉类与背景分离,并且完成边缘检测,得到单独的肉类的图像信息;
4)压缩图像,把原有的10*10象素的图像融合成新的象素集,选取出这一象素集的平均亮度、亮度方差、亮度级差,作为这一象素集的特征向量;
5)选取事先通过检测挥发性总盐基氮-TVB-N确定肉类新鲜度的几个样本,以这些不同的新鲜度作为输出,通过以上1)至4)步骤提取的特征向量作为输入,通过支持向量机或人工神经网络的人工智能方法建立不同类别肉类的数据库模型;
6)拍摄待测肉类的多光谱图像,通过以上1)至4)步骤提取的特征向量并作为输入,以5)步骤建立的模型为判别过程,判断每一象素集合的肉类新鲜类别;
7)以各象素集的新鲜度判断结果所占比重综合判断,这里采取无权重的,以最多数目象素集类型确定整块肉质的新鲜度,并把结果输出。
2、一种多光谱肉类新鲜度人工智能测量系统,其特征在于:包括可调节参数光源,肉类放置平台,3CCD多光谱摄像机;图像采集卡和计算机处理系统及数据库;可调节参数光源发射特定光束照射于肉类放置平台上,3CCD多光谱摄像机接收肉品反射光,信号传输给图像采集卡,通过采集卡传输到计算机处理系统进行处理。
3、根据权利要求2所述的一种多光谱肉类新鲜度人工智能测量系统,其特征在于:所述的多光谱摄像机为Duncan公司MS系列3CCD多光谱摄像系统。
4、根据权利要求2所述的一种多光谱肉类新鲜度人工智能测量系统,其特征在于:所述的图像采集卡是National Instrument公司PCI1424或PCI1428。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100687339A CN100480680C (zh) | 2007-05-22 | 2007-05-22 | 多光谱肉类新鲜度人工智能测量方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100687339A CN100480680C (zh) | 2007-05-22 | 2007-05-22 | 多光谱肉类新鲜度人工智能测量方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101059424A true CN101059424A (zh) | 2007-10-24 |
CN100480680C CN100480680C (zh) | 2009-04-22 |
Family
ID=38865643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007100687339A Expired - Fee Related CN100480680C (zh) | 2007-05-22 | 2007-05-22 | 多光谱肉类新鲜度人工智能测量方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100480680C (zh) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101498661B (zh) * | 2008-01-30 | 2011-07-20 | 香港浸会大学 | 高精度分辨中药材品种、产地及生长方式的红外光谱特征提取方法 |
CN102353632A (zh) * | 2011-06-28 | 2012-02-15 | 上海谷绿旺农业投资管理有限公司 | 一种用于测定猪肉新鲜度的色卡和它的制作方法 |
CN102507882A (zh) * | 2011-12-19 | 2012-06-20 | 中国农业大学 | 牛肉品质的多参数综合评价方法 |
CN102507459A (zh) * | 2011-11-23 | 2012-06-20 | 中国农业大学 | 一种生鲜牛肉新鲜度快速无损评价方法及系统 |
CN102608118A (zh) * | 2012-01-13 | 2012-07-25 | 南京农业大学 | 基于嵌入式机器视觉技术的便携式牛肉品质分级系统图像采集装置 |
CN102621079A (zh) * | 2012-03-19 | 2012-08-01 | 齐齐哈尔大学 | 一种在线检测熏烤肉制品中丙烯酰胺含量的方法及装置 |
CN102788751A (zh) * | 2011-05-20 | 2012-11-21 | 精工爱普生株式会社 | 特征量估计装置及其方法以及分光图像处理装置及其方法 |
CN103424374A (zh) * | 2013-06-19 | 2013-12-04 | 浙江省海洋开发研究院 | 一种近红外光谱技术快速检测带鱼新鲜度的方法 |
CN103543153A (zh) * | 2013-10-24 | 2014-01-29 | 浙江农林大学 | 鱼类新鲜程度光学检测装置 |
CN104049068A (zh) * | 2014-06-06 | 2014-09-17 | 中国肉类食品综合研究中心 | 生鲜畜肉新鲜度的无损测定装置及测定方法 |
CN104089892A (zh) * | 2014-03-31 | 2014-10-08 | 浙江工商大学 | 一种肉类新鲜度检测系统及方法 |
CN104089886A (zh) * | 2014-03-31 | 2014-10-08 | 浙江工商大学 | 牛肉新鲜度快速检测系统及方法 |
CN104251822A (zh) * | 2014-03-31 | 2014-12-31 | 浙江工商大学 | 一种牛肉新鲜度快速无损检测系统及方法 |
CN104374702A (zh) * | 2014-08-18 | 2015-02-25 | 浙江工商大学 | 一种新型牛肉新鲜度快速无损检测装置及方法 |
CN104568815A (zh) * | 2014-12-31 | 2015-04-29 | 中国肉类食品综合研究中心 | 生鲜牛肉中挥发性盐基氮含量的快速无损检测方法 |
CN104897581A (zh) * | 2015-05-29 | 2015-09-09 | 华南理工大学 | 基于高光谱的识别新鲜肉、冷却肉和冷冻肉的方法及装置 |
CN104919273A (zh) * | 2013-01-15 | 2015-09-16 | 北欧机械制造鲁道夫巴德尔有限及两合公司 | 红色组织结构的非接触式识别装置和方法,以及去除红色组织结构的肌肉带的总成 |
CN104949931A (zh) * | 2015-06-11 | 2015-09-30 | 南阳师范学院 | 一种生鲜猪肉货架期快速无损评价方法及检测系统 |
CN103439271B (zh) * | 2013-08-29 | 2015-10-28 | 华南理工大学 | 一种猪肉成熟状况的可视化检测方法 |
CN105301208A (zh) * | 2015-10-28 | 2016-02-03 | 张捷 | 一种生鲜蔬菜新鲜度检测系统及方法 |
CN104374716B (zh) * | 2014-08-18 | 2017-05-17 | 浙江工商大学 | 一种拼接牛肉检测系统和方法 |
CN107003253A (zh) * | 2014-07-21 | 2017-08-01 | 7386819曼尼托巴有限公司 | 用于肉类中骨头扫描的方法和装置 |
CN104374704B (zh) * | 2014-08-18 | 2017-11-17 | 浙江工商大学 | 一种肉类新鲜度检测装置及方法 |
CN108369184A (zh) * | 2017-06-21 | 2018-08-03 | 深圳前海达闼云端智能科技有限公司 | 物质检测方法、装置和检测设备 |
CN108444798A (zh) * | 2018-01-29 | 2018-08-24 | 华中农业大学 | 一种基于生物散斑和惯性矩谱分析的牛肉掺假检测方法 |
CN110231369A (zh) * | 2019-07-15 | 2019-09-13 | 南通科技职业学院 | 一种鸡肉肉质的检测装置及检测方法 |
CN111397296A (zh) * | 2020-04-08 | 2020-07-10 | 陈树贤 | 一种基于大数据的冰箱清洁管理系统 |
CN112229808A (zh) * | 2020-09-21 | 2021-01-15 | 佛山国防科技工业技术成果产业化应用推广中心 | 一种基于多光谱技术的食品微生物检测装置及检测方法 |
US10976246B2 (en) | 2013-03-21 | 2021-04-13 | Viavi Solutions Inc. | Spectroscopic characterization of seafood |
CN112946209A (zh) * | 2021-02-03 | 2021-06-11 | 太原理工大学 | 一种核桃粉新鲜度的非接触检测跟踪方法及其检测系统 |
CN113465505A (zh) * | 2021-06-28 | 2021-10-01 | 七海测量技术(深圳)有限公司 | 一种视觉检测定位系统和方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101936894B (zh) * | 2010-08-23 | 2013-03-13 | 北京工商大学 | 一种基于近红外光谱及显微脂肪细胞数据融合的猪肉新鲜度无损检测技术 |
-
2007
- 2007-05-22 CN CNB2007100687339A patent/CN100480680C/zh not_active Expired - Fee Related
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101498661B (zh) * | 2008-01-30 | 2011-07-20 | 香港浸会大学 | 高精度分辨中药材品种、产地及生长方式的红外光谱特征提取方法 |
CN102788751A (zh) * | 2011-05-20 | 2012-11-21 | 精工爱普生株式会社 | 特征量估计装置及其方法以及分光图像处理装置及其方法 |
CN102788751B (zh) * | 2011-05-20 | 2016-12-14 | 精工爱普生株式会社 | 特征量估计装置及其方法以及分光图像处理装置及其方法 |
CN102353632A (zh) * | 2011-06-28 | 2012-02-15 | 上海谷绿旺农业投资管理有限公司 | 一种用于测定猪肉新鲜度的色卡和它的制作方法 |
CN102507459A (zh) * | 2011-11-23 | 2012-06-20 | 中国农业大学 | 一种生鲜牛肉新鲜度快速无损评价方法及系统 |
CN102507459B (zh) * | 2011-11-23 | 2013-12-04 | 中国农业大学 | 一种生鲜牛肉新鲜度快速无损评价方法及系统 |
CN102507882B (zh) * | 2011-12-19 | 2015-01-21 | 中国农业大学 | 牛肉品质的多参数综合评价方法 |
CN102507882A (zh) * | 2011-12-19 | 2012-06-20 | 中国农业大学 | 牛肉品质的多参数综合评价方法 |
CN102608118A (zh) * | 2012-01-13 | 2012-07-25 | 南京农业大学 | 基于嵌入式机器视觉技术的便携式牛肉品质分级系统图像采集装置 |
CN102621079A (zh) * | 2012-03-19 | 2012-08-01 | 齐齐哈尔大学 | 一种在线检测熏烤肉制品中丙烯酰胺含量的方法及装置 |
CN104919273B (zh) * | 2013-01-15 | 2018-06-29 | 北欧机械制造鲁道夫巴德尔有限及两合公司 | 红色组织结构的非接触式识别装置和方法,以及去除红色组织结构的肌肉带的总成 |
CN104919273A (zh) * | 2013-01-15 | 2015-09-16 | 北欧机械制造鲁道夫巴德尔有限及两合公司 | 红色组织结构的非接触式识别装置和方法,以及去除红色组织结构的肌肉带的总成 |
US10976246B2 (en) | 2013-03-21 | 2021-04-13 | Viavi Solutions Inc. | Spectroscopic characterization of seafood |
CN103424374B (zh) * | 2013-06-19 | 2015-10-21 | 浙江省海洋开发研究院 | 一种近红外光谱技术快速检测带鱼新鲜度的方法 |
CN103424374A (zh) * | 2013-06-19 | 2013-12-04 | 浙江省海洋开发研究院 | 一种近红外光谱技术快速检测带鱼新鲜度的方法 |
CN103439271B (zh) * | 2013-08-29 | 2015-10-28 | 华南理工大学 | 一种猪肉成熟状况的可视化检测方法 |
CN103543153A (zh) * | 2013-10-24 | 2014-01-29 | 浙江农林大学 | 鱼类新鲜程度光学检测装置 |
CN103543153B (zh) * | 2013-10-24 | 2017-03-22 | 浙江农林大学 | 鱼类新鲜程度光学检测装置 |
CN104251822A (zh) * | 2014-03-31 | 2014-12-31 | 浙江工商大学 | 一种牛肉新鲜度快速无损检测系统及方法 |
CN104089886A (zh) * | 2014-03-31 | 2014-10-08 | 浙江工商大学 | 牛肉新鲜度快速检测系统及方法 |
CN104089892A (zh) * | 2014-03-31 | 2014-10-08 | 浙江工商大学 | 一种肉类新鲜度检测系统及方法 |
CN104251822B (zh) * | 2014-03-31 | 2017-01-11 | 浙江工商大学 | 一种牛肉新鲜度快速无损检测系统及方法 |
CN104049068A (zh) * | 2014-06-06 | 2014-09-17 | 中国肉类食品综合研究中心 | 生鲜畜肉新鲜度的无损测定装置及测定方法 |
CN104049068B (zh) * | 2014-06-06 | 2015-11-18 | 中国肉类食品综合研究中心 | 生鲜畜肉新鲜度的无损测定装置及测定方法 |
CN107003253A (zh) * | 2014-07-21 | 2017-08-01 | 7386819曼尼托巴有限公司 | 用于肉类中骨头扫描的方法和装置 |
CN104374702A (zh) * | 2014-08-18 | 2015-02-25 | 浙江工商大学 | 一种新型牛肉新鲜度快速无损检测装置及方法 |
CN104374704B (zh) * | 2014-08-18 | 2017-11-17 | 浙江工商大学 | 一种肉类新鲜度检测装置及方法 |
CN104374716B (zh) * | 2014-08-18 | 2017-05-17 | 浙江工商大学 | 一种拼接牛肉检测系统和方法 |
CN104568815A (zh) * | 2014-12-31 | 2015-04-29 | 中国肉类食品综合研究中心 | 生鲜牛肉中挥发性盐基氮含量的快速无损检测方法 |
CN104897581A (zh) * | 2015-05-29 | 2015-09-09 | 华南理工大学 | 基于高光谱的识别新鲜肉、冷却肉和冷冻肉的方法及装置 |
CN104897581B (zh) * | 2015-05-29 | 2018-07-20 | 华南理工大学 | 基于高光谱的识别新鲜肉、冷却肉和冷冻肉的方法及装置 |
CN104949931A (zh) * | 2015-06-11 | 2015-09-30 | 南阳师范学院 | 一种生鲜猪肉货架期快速无损评价方法及检测系统 |
CN105301208A (zh) * | 2015-10-28 | 2016-02-03 | 张捷 | 一种生鲜蔬菜新鲜度检测系统及方法 |
CN108369184A (zh) * | 2017-06-21 | 2018-08-03 | 深圳前海达闼云端智能科技有限公司 | 物质检测方法、装置和检测设备 |
US11079332B2 (en) | 2017-06-21 | 2021-08-03 | Cloudminds (Shenzhen) Robotics Systems Co., Ltd. | Substance detection method and apparatus, and detection device |
CN108444798A (zh) * | 2018-01-29 | 2018-08-24 | 华中农业大学 | 一种基于生物散斑和惯性矩谱分析的牛肉掺假检测方法 |
CN110231369A (zh) * | 2019-07-15 | 2019-09-13 | 南通科技职业学院 | 一种鸡肉肉质的检测装置及检测方法 |
CN111397296A (zh) * | 2020-04-08 | 2020-07-10 | 陈树贤 | 一种基于大数据的冰箱清洁管理系统 |
CN112229808A (zh) * | 2020-09-21 | 2021-01-15 | 佛山国防科技工业技术成果产业化应用推广中心 | 一种基于多光谱技术的食品微生物检测装置及检测方法 |
CN112946209A (zh) * | 2021-02-03 | 2021-06-11 | 太原理工大学 | 一种核桃粉新鲜度的非接触检测跟踪方法及其检测系统 |
CN112946209B (zh) * | 2021-02-03 | 2023-01-03 | 太原理工大学 | 一种核桃粉新鲜度的非接触检测跟踪方法及其检测系统 |
CN113465505B (zh) * | 2021-06-28 | 2024-03-22 | 七海测量技术(深圳)有限公司 | 一种视觉检测定位系统和方法 |
CN113465505A (zh) * | 2021-06-28 | 2021-10-01 | 七海测量技术(深圳)有限公司 | 一种视觉检测定位系统和方法 |
Also Published As
Publication number | Publication date |
---|---|
CN100480680C (zh) | 2009-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100480680C (zh) | 多光谱肉类新鲜度人工智能测量方法及系统 | |
CN104256882B (zh) | 基于计算机视觉的烟丝中再造烟叶比例测定方法 | |
CN1995987B (zh) | 基于高光谱图像技术的农畜产品无损检测方法 | |
Makky et al. | Development of an automatic grading machine for oil palm fresh fruits bunches (FFBs) based on machine vision | |
CN103278609B (zh) | 一种基于多源感知信息融合的肉品新鲜度检测方法 | |
CN104198325B (zh) | 基于计算机视觉的烟丝中梗丝比例测定方法 | |
CN101059452A (zh) | 基于多光谱成像技术的水果品质无损检测方法与系统 | |
CN103900972B (zh) | 基于多特征融合的肉类新鲜度高光谱图像可视化检测 | |
Cluff et al. | Optical scattering with hyperspectral imaging to classify longissimus dorsi muscle based on beef tenderness using multivariate modeling | |
CN110705655A (zh) | 一种基于光谱和机器视觉耦合的烟叶分类方法 | |
CN101832941A (zh) | 一种基于多光谱图像的水果品质评价装置 | |
CN106383095B (zh) | 一种冷却羊肉表面细菌总数检测装置及方法 | |
CN104198324A (zh) | 基于计算机视觉的烟丝中叶丝比例测定方法 | |
CN115184283B (zh) | 一种中药饮片的智能筛选方法及系统 | |
JPH08504522A (ja) | 境界ピクセル・パラメータの規則正しいシーケンスを用いた物体を識別するための方法及び装置 | |
CN105466921A (zh) | 一种多样品同时检测的方法 | |
CN201041553Y (zh) | 基于多光谱成像技术的水果品质无损检测系统 | |
CN108152231B (zh) | 基于可见/近红外光谱的枣果内部缺陷检测方法 | |
CN118067639A (zh) | 一种评价纺织品老化程度的高光谱图像采集和分析方法 | |
CN110009609B (zh) | 一种快速检测黄粒米的方法 | |
CN201051074Y (zh) | 多光谱肉类新鲜度人工智能测量系统 | |
CN115372274B (zh) | 一种基于多光谱成像无损评价猪肉质量等级的方法及装置 | |
CN104198491B (zh) | 基于计算机视觉的烟丝中膨胀叶丝比例测定方法 | |
Felfoldi et al. | Image processing based method for characterization of the fat/meat ratio and fat distribution of pork and beef samples | |
CN114609134A (zh) | 基于线性判别的烤烟烟叶田间成熟度手机智能判别方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090422 Termination date: 20120522 |