CN101056074B - 一种基于免疫粒子群算法的超声电机控制方法 - Google Patents

一种基于免疫粒子群算法的超声电机控制方法 Download PDF

Info

Publication number
CN101056074B
CN101056074B CN200710055653XA CN200710055653A CN101056074B CN 101056074 B CN101056074 B CN 101056074B CN 200710055653X A CN200710055653X A CN 200710055653XA CN 200710055653 A CN200710055653 A CN 200710055653A CN 101056074 B CN101056074 B CN 101056074B
Authority
CN
China
Prior art keywords
controller
particle
ultrasonic motor
immunity
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200710055653XA
Other languages
English (en)
Other versions
CN101056074A (zh
Inventor
梁艳春
徐旭
时小虎
葛宏伟
张巧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN200710055653XA priority Critical patent/CN101056074B/zh
Publication of CN101056074A publication Critical patent/CN101056074A/zh
Application granted granted Critical
Publication of CN101056074B publication Critical patent/CN101056074B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种基于免疫粒子群算法的超声电机控制方法,其基于免疫系统中发生T细胞和B细胞中的受体编辑机制和疫苗接种模型,提出了一种基于免疫粒子群算法的超声电机控制器,首先建立常规控制器或者是一些基于智能技术的控制器,随机给定控制器的初始参数,形成初始粒子,并应用粒子群优化算法来更新,在粒子的进化过程中,增加结构发育与结构退化操作实现控制器结构的进化,每隔一定的代数,鉴别出不活跃的趋向凋亡的细胞受体,并对它们进行受体编辑,当达到预定的迭代精度后,输出粒子群算法寻找到的最优控制方案;本发明结合了先进的智能技术,基本实现了实时控制,提高了控制精度,降低了计算复杂性,实现了控制器的全自动设计。

Description

一种基于免疫粒子群算法的超声电机控制方法
技术领域
本发明涉及一种基于免疫粒子群算法的超声电机控制方法,特别涉及一种智能计算与自动控制方法,属于计算机应用与自动控制领域。
背景技术
超声电机(Ultrasonic Motor,USM)是20世纪80年代发展起来的一种最具代表性的驱动器,它的问世,部分地满足了宇宙飞船、人造卫星、飞机、导弹、汽车、机器人、精密仪器等对驱动设备所提出的短、小、薄、低噪声、无电磁干扰、在恶劣环境下适应性强等要求。与传统电机相比,超声电机具有结构简单、响应速度快、转矩/质量比大、无需齿轮减速机构、可实现直接驱动、抗电磁干扰等特性。超声电机的出现不仅可以在许多场合替代普通的电磁电机,改善机械系统的性能,而且能够在一些电磁电机无法正常工作的场合显示出独特的作用。它突破了统治电机领域上百年的电磁波驱动理论,打破了由电磁效应获得转速和转矩的概念,具有划时代意义,是当前科学研究前沿的高新技术之
超声电机有别与传统的电磁电机,随着驱动条件的改变,表现出极强的非线性特性,对它建立精确的数学模型是很困难的,因此采用传统方法难以对其实施精确快速地控制。虽然利用某些智能技术,超声电机的控制取得了一定的进展,但在实际应用中仍然存在着如控制器的结构难以选择、参数的维数难以确定、实时性差、控制精度低等许多难题。为了更有效地控制超声电机,利用粒子群优化算法,并基于免疫系统中发生T细胞和B细胞中的受体编辑机制和疫苗接种模型,提出了一种新型的超声电机免疫粒子群控制方法。这里的控制器可以是常规控制器或者是一些基于智能技术的控制器,控制器中的待定参数或规则由免疫粒子群算法来优化获得。
发明内容
本发明的主要目的是提供一种基于免疫粒子群算法的超声电机控制方法,这种方法基于免疫粒子群优化算法,克服通常方法对初始值敏感容易陷入局部极值的弱点;收敛速度不依赖于待辨识和控制系统的维数,极大地提高了收敛速度;不需计算权值的动态导数,降低了算法的计算复杂性;控制器的结构和参数可以根据具体的训练过程来调整,实现了控制器的全自动设计。
本发明是通过以下技术方案实现的:
(1)假设在一个D维的目标搜索空间中,有m个粒子组成一个群落,其中第i个粒子表示为一个D维的向量Xi=(xi1,xi2,…,xiD),i=1,2,…,m即第i个粒子在D维搜索空间中的位置是Xi。换言之,每个粒子的位置就是一个潜在的解。将Xi带入一个目标函数就可以计算出其适应值,根据适应值的大小衡量解的优劣。第i个粒子的“飞翔”速度也是一个D维的向量,记为Vi=(vi1,vi2,…,viD)。记第i个粒子迄今为止搜索到的最优位置为Pi=(pi1,pi2,…,piD),整个粒子群迄今为止搜索到的最优位置为Pg=(pg1,pg2,…,pgD)。对粒子可按下列公式操作:
Vi(k+1)=wVi(k)+c1r1(Pi-Xi(k))/Δt+c2r2(Pg-Xi(k))/Δt(1)
Xi(k+1)=Xi(k)+Vi(k+1)Δt(2)
其中,w为惯性权重,其值也可以自适应调整,随着迭代的进行线性的减小,c1和c2为调节Pi和Pg相对重要性的参数,r1和r2是介于[0,1]之间的随机数。Vi∈[-Vmax,Vmax],Vmax是常数,由具体问题设定,Δt是时间间隔,通常取为单位时间。
(2)在标准的粒子群算法中,随着迭代的进行,越来越多的粒子将接近群体中最好的粒子,而失去它们的速度,变得越来越不活跃。发生T细胞和B细胞中的受体编辑是近几年才提出的一种免疫耐受的新机制。受体编辑现象是指T细胞和B细胞受体在特定的条件下还可以发生新的重排或突变,使其结构发生改变,从而使其原有的抗原受体特异性向其它特异性漂移或发生亲和力的变化。将一些亲和力低的或与自身反应的B细胞受体被删除并产生新受体。采用转基因动物模型进行的体内受体编辑实验表明,大约25%的B细胞发生了受体编辑,受体编辑进一步丰富了抗原受体的多样性。因此,在免疫粒子群系统中,待解决的问题即是抗原,每一个抗体都代表问题的一个解,同时每个抗体也即是粒子群中的一个粒子。抗原和抗体之间的亲和力由粒子群算法中的适应值来衡量。在提出的免疫粒子群系统中,每隔一定的代数我们要鉴别出不活跃的、趋向凋亡的细胞受体,也即是不活跃的粒子,对它们中的25%进行受体编辑。定义
f ‾ = 1 n Σ i = 1 n f i ,   σ f 2 = 1 n Σ i = 1 n ( f i - f ‾ ) 2 (3)
其中fi是第i个粒子的适应度,也是第i个抗体的亲和力,n是粒子群规模,f是所有粒子的平均适应度,σf 2是适应度的方差,反映了群体的收敛程度。定义
τ 2 = σ f 2 max { ( f i - f ‾ ) 2 , ( j = 1,2 , · · · n ) } - - - ( 4 )
若τ2小于一个给定的较小的阈值,同时问题的理论最优解或期望最优解尚未达到,这时认为粒子群系统趋于早熟,对系统的趋于凋亡的抗原受体进行受体编辑操作。定义
f g - f i max { ( f g - f i ) , ( j = 1 , · · · , n ) } ≤ θ - - - ( 5 )
其中θ是一个给定的较小的阈值,fg是最高的抗体亲和力。对于满足不等式(5)的抗原受体i进行受体编辑.
(3)疫苗是在对流行病毒充分了解的基础上研制出的,通过疫苗接种可以有针对性地防止疾病,疫苗接种是免疫记忆临床应用的一个重要方面。将这一生物机制应用到计算模型中,疫苗指的是依据人们对待求问题所具备的或多或少的先验知识,从中提取出的一种基本的特征信息,这种特征信息可以看作是对待求的最佳个体所能匹配模式的一种估计,通过疫苗接种可以对搜索过程进行有目的地指导;本发明将这一模型应用于粒子群优化算法中,以提高抗体对抗原的识别能力,从而提高粒子群算法的性能;这一过程通过从待求问题或求解过程中有选择的提取一些特征信息作为疫苗,通过疫苗接种对搜索过程进行有目的地指导;在迭代过程中每间隔一定的代数通过从当前群体中最优的个体提取疫苗,并且按着疫苗接种概率自适应地对其余粒子进行疫苗接种。
附图说明
图1为本发明的控制结构图。
图2为本发明的流程示意图。
具体实施方式
以下对本发明做详细的说明:
步骤(1):建立超声电机的控制器,该控制器可以是常规控制器或者是一些基于智能技术(如人工神经网络,模糊逻辑等)的控制器;
步骤(2):随机给定超声电机的初始控制器参数,并根据这些参数形成初始粒子;
步骤(3):根据(1)和(2)式,用下面的公式对粒子进行更新;
步骤(4):在粒子的进化过程中,增加结构发育与结构退化操作实现控制器结构的进化,按发育概率pa来决定是否增加控制器中参数的数目,新增参数值可根据初始范围随机选择;按照退化概率pd来决定是否删除控制器中某些参数,同时将与之关联的参数重置为零,而不将其删除,这样可以实现粒子结构的一致.这里pa,pd和pe按下式进行选取:
p a = p d = p e = exp ( - 1 NG · γ ) - - - ( 6 )
其中,NG表示自上次出现局部最优解以来至当前代连续未出现更优解的代数,γ是一个调整系数;
步骤(5):每隔一定的代数,要鉴别出不活跃的、趋向凋亡的细胞受体,即不活跃的粒子,根据规则(3-5)对它们中的25%进行受体编辑;
步骤(6):这一进化的过程中,可以通过从给定的超声电机中提取一些已知的特征信息作为疫苗,通过疫苗接种对搜索过程进行有目的的指导;在迭代过程中每间隔一定的代数通过从当前群体中最优的个体提取疫苗,并且根据疫苗接种概率自适应地对其余粒子进行疫苗接种;
步骤(7):进行免疫检测,若接种后的个体亲和力不如接种前的,则取消疫苗接种,否则保留接种后的粒子进入下一代;
步骤(8):随机选择一些粒子进行进化操作,对各粒子表示的控制最优值进行调整;
步骤(9):重复步骤(3)~(8),对可能的最优解进行搜索,达到预定的迭代次数后,输出粒子群算法寻找到的最优控制方案。
最后应说明的是:以上实施例仅用以说明本发明而非限制,尽管对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (4)

1.一种基于免疫粒子群算法的超声电机控制方法,至少包括如下步骤:
步骤(1):建立超声电机的控制器模型;
步骤(2):根据给定的超声电机的控制器参数形成初始粒子;
步骤(3):对粒子进行更新;
步骤(4):按发育概率pa来决定是否增加控制器中参数的数目,新增参数值根据初始范围随机选择;按照退化概率pd来决定是否删除控制器中的参数,同时将与之关联的参数重置为零,而不将其删除,这样可以实现粒子结构的一致;
步骤(5):每隔一定的代数,要鉴别出不活跃的粒子进行受体编辑;
步骤(6):从超声电机中提取特征信息作为疫苗,进行有目的的指导;
步骤(7):进行免疫检测;
步骤(8):随机选择一些粒子进行进化操作;
步骤(9):重复步骤(3)~(8),直到找到最优控制方案。
2.根据权利要求1所述的一种基于免疫粒子群算法的超声电机控制方法,其特征在于:
(1)由控制器的初始参数形成初始粒子;
(2)每个粒子由“头部”和“躯干”两部分组成,头部由自反馈增益因子构成,躯干由结构单元的初始输入和全部状态参数组成。
3.根据权利要求1所述的一种基于免疫粒子群算法的超声电机控制方法,其特征在于:每隔一定的代数,要鉴别出不活跃的、趋向凋亡的细胞受体,即不活跃的粒子,并对它们中的25%进行受体编辑。
4.根据权利要求1所述的一种基于免疫粒子群算法的超声电机控制方法,其特征在于:
(1)通过从给定的超声电机中提取一些已知的特征信息作为疫苗,通过疫苗接种对搜索过程进行有目的的指导;
(2)在迭代过程中每间隔一定的代数通过从当前群体中最优的个体提取疫苗,并且根据疫苗接种概率自适应地对其余粒子进行疫苗接种。
CN200710055653XA 2007-05-18 2007-05-18 一种基于免疫粒子群算法的超声电机控制方法 Expired - Fee Related CN101056074B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200710055653XA CN101056074B (zh) 2007-05-18 2007-05-18 一种基于免疫粒子群算法的超声电机控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200710055653XA CN101056074B (zh) 2007-05-18 2007-05-18 一种基于免疫粒子群算法的超声电机控制方法

Publications (2)

Publication Number Publication Date
CN101056074A CN101056074A (zh) 2007-10-17
CN101056074B true CN101056074B (zh) 2010-11-10

Family

ID=38795740

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710055653XA Expired - Fee Related CN101056074B (zh) 2007-05-18 2007-05-18 一种基于免疫粒子群算法的超声电机控制方法

Country Status (1)

Country Link
CN (1) CN101056074B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840635B (zh) * 2010-05-06 2012-05-30 招商局重庆交通科研设计院有限公司 基于人工免疫粒子群算法的可变限速控制方法
CN102420553B (zh) * 2011-12-09 2015-09-30 南京理工大学 基于改进型相邻交叉耦合的多电机比例同步控制算法
US8717723B2 (en) * 2012-01-10 2014-05-06 Xilinx, Inc. Driver circuit and method of generating an output signal
CN103149843B (zh) * 2013-03-13 2015-09-23 河南科技大学 一种基于mit的超声波电机模型参考自适应控制系统
CN105022852A (zh) * 2014-04-29 2015-11-04 同济大学 基于免疫粒子群算法解决产品装配序列规划问题的方法
CN103927582A (zh) * 2014-05-05 2014-07-16 太原理工大学 一种基于协同机制的免疫粒子群网络的机械故障诊断方法
CN106842950A (zh) * 2017-03-08 2017-06-13 东华大学 一种基于免疫粒子群算法的温度控制方法
CN108763926B (zh) * 2018-06-01 2021-11-12 中国电子技术标准化研究院 一种具有安全免疫能力的工业控制系统入侵检测方法
CN110146903B (zh) * 2019-05-24 2020-11-13 国网浙江省电力有限公司信息通信分公司 一种基于反馈调整惯性权重的粒子群北斗卫星选择方法
CN111846287A (zh) * 2020-07-21 2020-10-30 南京航空航天大学 一种超声电机驱动的超稳卫星平台及其控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1750028A (zh) * 2005-10-21 2006-03-22 浙江工业大学 一种车辆调度问题的粒子群优化方法
CN1801158A (zh) * 2005-12-30 2006-07-12 浙江工业大学 基于模糊物元的两级传动方案的粒子群优化方法
CN1889114A (zh) * 2006-07-17 2007-01-03 中国科学院地理科学与资源研究所 基于粒子群算法的交通信号离线配时优化方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1750028A (zh) * 2005-10-21 2006-03-22 浙江工业大学 一种车辆调度问题的粒子群优化方法
CN1801158A (zh) * 2005-12-30 2006-07-12 浙江工业大学 基于模糊物元的两级传动方案的粒子群优化方法
CN1889114A (zh) * 2006-07-17 2007-01-03 中国科学院地理科学与资源研究所 基于粒子群算法的交通信号离线配时优化方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JP特开2004-164426A 2004.06.10
JP特开2004-46303A 2004.02.12
JP特开2006-4097A 2006.01.05
葛宏伟等.基于隐马尔可夫模型和免疫粒子群优化的多序列比对.计算机研究与发展.2006,43(8),1330-1336. *

Also Published As

Publication number Publication date
CN101056074A (zh) 2007-10-17

Similar Documents

Publication Publication Date Title
CN101056074B (zh) 一种基于免疫粒子群算法的超声电机控制方法
CN109884900B (zh) 基于自适应模型预测控制的收获机路径跟踪控制器的设计方法
CN108594639B (zh) 一种基于强化学习的全垫升气垫船航迹跟踪控制方法
CN109725644A (zh) 一种高超声速飞行器线性优化控制方法
CN111924139A (zh) 基于膨胀预警区的小天体着陆避障常推力控制方法
CN111103795A (zh) 基于智能自适应优化算法的高超声速飞行器再入段轨迹优化控制器
CN104217041A (zh) 一种多约束在线高斯伪谱末制导方法
CN108279704B (zh) 一种增加通信链路的多无人机的协同控制策略
CN113467241A (zh) 凸曲率着陆轨迹燃耗优化方法
CN114488799B (zh) 汽车自适应巡航系统控制器参数优化方法
CN110399697B (zh) 基于改进遗传学习粒子群算法的飞行器的控制分配方法
CN110262513B (zh) 一种海洋机器人轨迹跟踪控制结构的设计方法
CN108394429A (zh) 一种为城轨列车群生成自动驾驶曲线的方法
CN107422637B (zh) 一种集群智能控制系统和方法
CN109298710A (zh) 基于人机交互的两轮自平衡车主动跟随复合控制方法
CN110588654B (zh) 一种自动整定车辆速度相应pid控制参数的方法
CN114670856B (zh) 一种基于bp神经网络的参数自整定纵向控制方法及系统
CN113325857B (zh) 基于质心与浮力系统的仿蝠鲼水下航行器定深控制方法
Farooq et al. A low cost microcontroller implementation of neural network based hurdle avoidance controller for a car-like robot
CN115510910A (zh) 一种优化飞行模拟器动感模拟算法中的滤波器参数的方法
CN112269385B (zh) 云端无人车动力学控制系统和方法
Yang et al. SMS-MPC: Adversarial learning-based simultaneous prediction control with single model for mobile robots
Yang et al. Trajectory Tracking Control of Autonomous Vehicles Based on Reinforcement Learning and Curvature Feedforward
CN114924587B (zh) 一种无人机路径规划方法
Murata et al. Neighboring crossover to improve GA-based Q-learning method for multi-legged robot control

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101110

Termination date: 20130518