CN107422637B - 一种集群智能控制系统和方法 - Google Patents

一种集群智能控制系统和方法 Download PDF

Info

Publication number
CN107422637B
CN107422637B CN201710301002.8A CN201710301002A CN107422637B CN 107422637 B CN107422637 B CN 107422637B CN 201710301002 A CN201710301002 A CN 201710301002A CN 107422637 B CN107422637 B CN 107422637B
Authority
CN
China
Prior art keywords
individual
particle
microcontroller
machine people
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710301002.8A
Other languages
English (en)
Other versions
CN107422637A (zh
Inventor
胡涛
张俐
丁林山
王郑亚
邵修
金聪
徐阳阳
刘熠
杜谦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201710301002.8A priority Critical patent/CN107422637B/zh
Publication of CN107422637A publication Critical patent/CN107422637A/zh
Application granted granted Critical
Publication of CN107422637B publication Critical patent/CN107422637B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Abstract

本发明属于机器人领域,并公开了一种集群智能控制系统,包括上位机、WIFI模块、微控制器、应变片、电机、陀螺仪和螺旋扇叶,所述应变片用于测量每个风扇作用在个体上的推力值并传送给所述微控制器,所述微控制器基于获得的实际推力值与目标推力值进行比较,从而实时调整电机的转速;与此同时,所述微控制器通过陀螺仪获得个体的当前角速度,从而获得个体的当前姿态角度并实时调整电机的转速差,进而实现个体的转弯,以此方式,使集群机器人的每个个体均按设定轨迹运动。本发明能够根据要求实时调整和控制集群机器人的动作,通过混合粒子群万有引力算法优化机器人集群对象的运动轨迹。

Description

一种集群智能控制系统和方法
技术领域
本发明属于机器人控制领域,更具体地,涉及一种集群智能控制系统和方法。
背景技术
集群智能来源于群居性生物通过协作表现出的宏观智能行为,具有分布式、无中心、自组织的特点。将群体原理应用于机器人等控制对象上,每个机器人自身只具有相当简单的功能,但集群之后的群体行为则相当复杂多样。集群机器人可以被认为是一个分布式系统。集群机器人能够提高故障冗余度,集群机器人包括地面集群机器人、空中机器人也就是无人机集群、水面和水下集群机器人等多种形式。
集群控制系统要实现相互间的协同就必须确定个体对象之间逻辑上和物理上的信息关系和控制关系,针对这些问题而进行的体系结构研究可以将系统的结构和控制结合起来,保证系统中信息流和控制流的畅通,为机器人之间的交互提供框架。集群控制算法需要保证多个控制个体之间能有效地进行协同,应对紧急状况能够迅速做出反应。
目前的集群控制系统,普遍存在动态响应速度慢,控制过程复杂,控制精度低等问题。尤其在响应速度方面,很难达到实时控制的要求。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种集群智能控制系统和方法,能够根据要求实时调整和控制集群机器人的动作,优化集群机器人的总轨迹路径。
为实现上述目的,按照本发明的一个方面,提供了一种集群智能控制系统,其特征在于,包括上位机、WIFI模块、微控制器、应变片、电机、陀螺仪和螺旋扇叶,其中,
所述上位机通过所述WIFI模块与所述微控制器连接;
所述微控制器分别连接应变片、电机和陀螺仪;
集群机器人中每个个体上均安装所述应变片、电机和陀螺仪,每个个体上设置多个所述电机,每个所述电机上均连接所述螺旋扇叶,以用于推动个体移动,所述微控制器通过所述电机带动所述螺旋扇叶旋转,并且所述微控制器通过改变PWM占空比的方式控制所述电机的转速,以获得个体移动所需要的推力;
所述应变片用于测量每个风扇作用在个体上的推力值并传送给所述微控制器,所述微控制器基于获得的实际推力值与目标推力值进行比较,从而实时调整电机的转速;与此同时,所述微控制器通过陀螺仪获得个体的当前角速度,从而获得个体的当前姿态角度并实时调整电机的转速差,进而实现个体的转弯,以此方式,使集群机器人的每个个体均按设定轨迹运动,进而实现对集群机器人运动的总轨迹路径的控制。
按照本发明的另一个方面,还提供了一种集群机器人智能控制方法,其特征在于,包括以下步骤:
1)微控制器获取测量数据,所述测量数据包括所有个体的位置信息、速度信息、角度信息和加速度信息;
2)微控制器将数据传送给上位机,上位机根据上一次获得的测量数据和总轨迹路径是否异常,如果是,则进入步骤3),如果否,则进入步骤4);其中集群机器人中每个个体分别具有运动轨迹,所有个体的运动轨迹共同形成集群机器人的所述总轨迹路径;
3)混合粒子群万有引力算法接收异常信息,并根据异常状况重新计算集群机器人的最优总轨迹路径;
4)上位机根据当前的总轨迹路径、加速度信息、角度信息、位置信息和速度信息分析获得当前需要的每个个体的加速度大小ai,并根据个体加速度ai获得个体所需要的推力Fi,然后将推力Fi发送至微控制器;
5)微控制器根据推力Fi控制每个个体上的电机的转动,从而控制每个个体的运动,进而控制集群机器人运动的总轨迹路径。
优选地,在集群机器人遇到障碍物或集群机器人中的个体发生故障时,需要动态优化实时总轨迹路径,优化过程如下:
混合粒子群万有引力搜索算法的模型如下:
其中Vd i(t+1)pso来自粒子群算法的速度更新公式,并且,
其中Vd i(t+1)GSA来自万有引力搜索算法的速度更新公式,并且,
上述式(1)和式(2)中,为混合粒子群万有引力搜索算法的第i个粒子在迭代t+1次后的速度,Vd i(t+1)pso为粒子群算法的第i个粒子在迭代t+1次后的速度,Vd i(t)pso为粒子群算法的第i个粒子在迭代t次后的速度,xd i(t+1)为第i个粒子在迭代t+1次后的位置,xd i(t)为第i个粒子在迭代t次后的位置,C3和C4均为加速系数,用于调节混合粒子群万有引力搜索算法中粒子群算法的速度和引力搜索算法的加速度,Φ3是[0,1]的任意数,并且Φ3的大小决定了粒子群的速度和引力搜索算法的加速度对混合算法中粒子速度更新所占比重,t是当前迭代次数,d是搜索空间的维数;
式(3)和式(4)中,w为惯性权重,C1和C2均为加速度系数,Φ1和Φ2均为在[0,1]范围变化的随机数;Xpbesti为个体最优粒子的位置,Xgbest为全局最优粒子的位置;
式(5)中,β为[0,1]之间的任意数,ai为粒子的加速度;
优化时,随机初始化种群粒子位置及飞行速度;比较粒子当前位置和该粒子所经历过最好位置Xpbesti的适应度值;若粒子当前位置的适应度值小于个体最好位置Xpbesti的适应度值,则以当前粒子位置替换Xpbesti;比较个体最优粒子位置Xpbesti和全局最优粒子位置Xgbest的适应度值,若Xpbesti的适应度值小于Xgbest的适应度值,则把Xpbesti赋予Xgbest;依据公式重新计算粒子位置和速度,若达到设定的迭代次数Max_Iter,则停止迭代,当前解即为最优解,从而获得集群机器人的最优总轨迹路径。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
本发明提供了一种集群智能控制系统及方法,通过微控制器实时控制电机的转速,从而控制螺旋扇叶的转速,从而可以实现对个体的有效控制;通过实时控制机器人集群中个体的运动和动作,从而可以提高集群控制的控制精度;另外,在集群机器人遇到障碍时,还可以优化集群机器人的总轨迹路径,从而减少控制运动所用时间,提高集群控制的实时性和动态响应性能。
附图说明
图1是本发明中集群机器人控制系统的框图;
图2是本发明中集群机器人中个体的测量数据进行迭代的流程图;
图3是本发明控制方法优化总轨迹路径时的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
参照图1~图3,一种集群智能控制系统,包括上位机、WIFI模块、微控制器、应变片、电机、陀螺仪和螺旋扇叶,其中,
所述上位机通过所述WIFI模块与所述微控制器连接;
所述微控制器分别连接应变片、电机和陀螺仪;微控制器以STM32系列单片机STM32F405为主控芯片;
集群机器人中每个个体上均安装所述应变片、电机和陀螺仪,每个个体上设置多个所述电机,每个所述电机上均连接所述螺旋扇叶,以用于推动个体移动,所述微控制器通过所述电机带动所述螺旋扇叶旋转,并且所述微控制器通过改变PWM占空比的方式控制所述电机的转速,以获得个体移动所需要的推力;
所述应变片用于测量每个风扇作用在个体上的推力值并传送给所述微控制器,所述微控制器基于获得的实际推力值与目标推力值进行比较,从而实时调整电机的转速;与此同时,所述微控制器通过陀螺仪获得个体的当前角速度,从而获得个体的当前姿态角度并实时调整电机的转速差,进而实现个体的转弯,以此方式,使集群机器人的每个个体均按设定轨迹运动,进而实现对集群机器人运动的总轨迹路径的控制。
本发明是通过得到加速度、角加速度、位置和角度信息之后经过PID控制,实时调整路径,并反馈到控制电机上,通过实时改变推力大小来实现轨迹的更改。
对于每一个个体来说,其运动规律是非常简单的,在接收到下位机反馈的实时信息之后,本发明采用以下分布式算法模型根据当前的运动路径来估算整体的运动过程:
第一步:所有个体进行周期性更新;
第二步:第一个个体使用测量获得的数据和总体路径,计算出新的数据之后发送给下一个个个体;测量获得的数据包括对个体实施定位后的中心点、个体所需的推力值、个体的当前角速度等数据;
第三步:对于其余的所有个体执行第二步;
第四步:若有必要,譬如时间充裕或者结果明显与实际不符,则可以再迭代第二步和第三步,以获得每个个体更准确的轨迹;
最终得到的状态即为沿当前路径进行实时控制的结果,将其以推力形式输出到下位机,达到实时控制的目的,具体算法流程图参照图2。
按照本发明的另一个方面,还提供了一种集群机器人智能控制方法,具体包括以下步骤:
1)微控制器获取测量数据,所述测量数据包括所有个体的位置信息、速度信息、角度信息和加速度信息;
2)微控制器将数据传送给上位机,上位机根据上一次获得的测量数据和总轨迹路径是否异常,如果是,则进入步骤3),如果否,则进入步骤4);其中集群机器人中每个个体分别具有运动轨迹,所有个体的运动轨迹共同形成集群机器人的所述总轨迹路径;
3)混合粒子群万有引力算法接收异常信息,并根据异常状况重新计算集群机器人的最优总轨迹路径;
4)上位机根据当前的总轨迹路径、加速度信息、角度信息、位置信息和速度信息分析获得当前需要的每个个体的加速度大小ai,并根据个体加速度ai获得个体所需要的推力Fi,然后将推力Fi发送至微控制器;
5)微控制器根据推力Fi控制每个个体上的电机的转动,从而控制每个个体的运动,进而控制集群机器人运动的总轨迹路径。
进一步,在碰到需要优化的情况之后立即作出反应,并动态替换实时路径,同时实时控制算法针对当前路径进行重新计算,并将推力控制信息反馈到下位机,具体优化过程如下:
混合粒子群万有引力搜索算法的模型如下:
其中Vd i(t+1)pso来自粒子群算法的速度更新公式,并且,
其中Vd i(t+1)GSA来自万有引力搜索算法的速度更新公式,并且,
上述式(1)和式(2)中,为混合粒子群万有引力搜索算法的第i个粒子在迭代t+1次后的速度,Vd i(t+1)pso为粒子群算法的第i个粒子在迭代t+1次后的速度,Vd i(t)pso为粒子群算法的第i个粒子在迭代t次后的速度,xd i(t+1)为第i个粒子在迭代t+1次后的位置,xd i(t)为第i个粒子在迭代t次后的位置,C3和C4均为加速系数,用于调节混合粒子群万有引力搜索算法中粒子群算法的速度和引力搜索算法的加速度,Φ3是[0,1]的任意数,并且Φ3的大小决定了粒子群的速度和引力搜索算法的加速度对混合算法中粒子速度更新所占比重,t是当前迭代次数,d是搜索空间的维数;
式(3)和式(4)中,w为惯性权重,C1和C2均为加速度系数,Φ1和Φ2均为在[0,1]范围变化的随机数;Xpbesti为个体最优粒子的位置,Xgbest为全局最优粒子的位置;
式(5)中,β为[0,1]之间的任意数,ai为粒子的加速度;
优化时,随机初始化种群粒子位置及飞行速度;比较粒子当前位置和该粒子所经历过最好位置Xpbesti的适应度值;若粒子当前位置的适应度值小于个体最好位置Xpbesti的适应度值,则以当前粒子位置替换Xpbesti;比较个体最优粒子位置Xpbesti和全局最优粒子位置Xgbest的适应度值,若Xpbesti的适应度值小于Xgbest的适应度值,则把Xpbesti赋予Xgbest;依据公式重新计算粒子位置和速度,若达到设定的迭代次数Max_Iter,则停止迭代,当前解即为最优解,从而获得集群机器人的最优总轨迹路径。
本发明能实时监控状态和实时处理数据,并采用了混合粒子群万有引力算法和集群控制算法,能够根据要求实时调整和控制集群机器人中单个个体的动作,并且可以通过混合粒子群万有引力算法优化集群机器人的总轨迹路径。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种集群智能控制系统,其特征在于,包括上位机、WIFI模块、微控制器、应变片、电机、陀螺仪和螺旋扇叶,其中,
所述上位机通过所述WIFI模块与所述微控制器连接;
所述微控制器分别连接应变片、电机和陀螺仪;
集群机器人中每个个体上均安装所述应变片、电机和陀螺仪,每个个体上设置多个所述电机,每个所述电机上均连接所述螺旋扇叶,以用于推动个体移动,所述微控制器通过所述电机带动所述螺旋扇叶旋转,并且所述微控制器通过改变PWM占空比的方式控制所述电机的转速,以获得个体移动所需要的推力;
所述应变片用于测量每个风扇作用在个体上的推力值并传送给所述微控制器,所述微控制器基于获得的实际推力值与目标推力值进行比较,从而实时调整电机的转速;与此同时,所述微控制器通过陀螺仪获得个体的当前角速度,从而获得个体的当前姿态角度并实时调整电机的转速差,进而实现个体的转弯,以此方式,使集群机器人的每个个体均按设定轨迹运动,进而实现对集群机器人运动的总轨迹路径的控制。
2.一种集群机器人智能控制方法,其特征在于,包括以下步骤:
1)微控制器获取测量数据,所述测量数据包括所有个体的位置信息、速度信息、角度信息和加速度信息;
2)微控制器将数据传送给上位机,上位机根据上一次获得的测量数据和总轨迹路径是否异常,如果是,则进入步骤3),如果否,则进入步骤4);其中集群机器人中每个个体分别具有运动轨迹,所有个体的运动轨迹共同形成集群机器人的所述总轨迹路径;
3)混合粒子群万有引力搜索算法接收异常信息,并根据异常状况重新计算集群机器人的最优总轨迹路径;
4)上位机根据当前的总轨迹路径、加速度信息、角度信息、位置信息和速度信息分析获得当前需要的每个个体的加速度大小ai,并根据个体加速度ai获得个体所需要的推力Fi,然后将推力Fi发送至微控制器;
5)微控制器根据推力Fi控制每个个体上的电机的转动,从而控制每个个体的运动,进而控制集群机器人运动的总轨迹路径。
3.根据权利要求2所述的一种集群机器人智能控制方法,其特征在于,在集群机器人遇到障碍物或集群机器人中的个体发生故障时,需要动态优化实时总轨迹路径,优化过程如下:
混合粒子群万有引力搜索算法的模型如下:
其中Vd i(t+1)pso来自粒子群算法的速度更新公式,并且,
其中Vd i(t+1)GSA来自万有引力搜索算法的速度更新公式,并且,
上述式(1)和式(2)中,为混合粒子群万有引力搜索算法的第i个粒子在迭代t+1次后的速度,Vd i(t+1)pso为粒子群算法的第i个粒子在迭代t+1次后的速度,Vd i(t)pso为粒子群算法的第i个粒子在迭代t次后的速度,xd i(t+1)为第i个粒子在迭代t+1次后的位置,xd i(t)为第i个粒子在迭代t次后的位置,C3和C4均为加速系数,用于调节混合粒子群万有引力搜索算法中粒子群算法的速度和引力搜索算法的加速度,Φ3是[0,1]的任意数,并且Φ3的大小决定了粒子群的速度和引力搜索算法的加速度对混合粒子群万有引力搜索算法中粒子速度更新所占比重,t是当前迭代次数,d是搜索空间的维数;
式(3)和式(4)中,w为惯性权重,C1和C2均为加速度系数,Φ1和Φ2均为在[0,1]范围变化的随机数;Xpbesti为个体最优粒子的位置,Xgbest为全局最优粒子的位置;
式(5)中,β为[0,1]之间的任意数,ai为粒子的加速度;
优化时,先随机初始化种群粒子位置及飞行速度,比较粒子当前位置和该粒子所经历过最好位置Xpbesti的适应度值;若粒子当前位置的适应度值小于个体最好位置Xpbesti的适应度值,则以当前粒子位置替换Xpbesti;比较个体最优粒子位置Xpbesti和全局最优粒子位置Xgbest的适应度值,若Xpbesti的适应度值小于Xgbest的适应度值,则把Xpbesti赋予Xgbest;依据公式重新计算粒子位置和速度,若达到设定的迭代次数Max_Iter,则停止迭代,当前解即为最优解,从而获得集群机器人的最优总轨迹路径。
CN201710301002.8A 2017-05-02 2017-05-02 一种集群智能控制系统和方法 Expired - Fee Related CN107422637B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710301002.8A CN107422637B (zh) 2017-05-02 2017-05-02 一种集群智能控制系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710301002.8A CN107422637B (zh) 2017-05-02 2017-05-02 一种集群智能控制系统和方法

Publications (2)

Publication Number Publication Date
CN107422637A CN107422637A (zh) 2017-12-01
CN107422637B true CN107422637B (zh) 2019-06-07

Family

ID=60424434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710301002.8A Expired - Fee Related CN107422637B (zh) 2017-05-02 2017-05-02 一种集群智能控制系统和方法

Country Status (1)

Country Link
CN (1) CN107422637B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108594798B (zh) * 2018-01-09 2021-04-16 南京理工大学 一种可实现蜂拥控制的机器人小车系统及其控制方法
CN111643321B (zh) * 2020-04-30 2023-05-12 北京精密机电控制设备研究所 基于sEMG信号的外骨骼关节角度预测方法及系统
CN112987794A (zh) * 2021-04-21 2021-06-18 南京南机智农农机科技研究院有限公司 一种飞行集群模拟器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681582A (ja) * 1992-09-02 1994-03-22 Nippon Telegr & Teleph Corp <Ntt> トンネルロボットの方向修正量モデル推定法および方向制御シミュレータ装置
CN102147255A (zh) * 2011-01-12 2011-08-10 北京航空航天大学 一种威胁信息共享环境下的无人机群实时航路规划方法
CN102506863A (zh) * 2011-11-07 2012-06-20 北京航空航天大学 一种基于万有引力搜索的无人机航路规划方法
CN103235595A (zh) * 2013-04-27 2013-08-07 湖南科技大学 一种室外微小型地面群机器人控制系统及控制方法
CN105835059A (zh) * 2016-04-29 2016-08-10 国家电网公司 一种机器人控制系统
CN106125760A (zh) * 2016-07-25 2016-11-16 零度智控(北京)智能科技有限公司 无人机编队路径自动规划方法及装置
CN106200680A (zh) * 2016-09-27 2016-12-07 深圳市千粤科技有限公司 一种无人机集群管理系统及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681582A (ja) * 1992-09-02 1994-03-22 Nippon Telegr & Teleph Corp <Ntt> トンネルロボットの方向修正量モデル推定法および方向制御シミュレータ装置
CN102147255A (zh) * 2011-01-12 2011-08-10 北京航空航天大学 一种威胁信息共享环境下的无人机群实时航路规划方法
CN102506863A (zh) * 2011-11-07 2012-06-20 北京航空航天大学 一种基于万有引力搜索的无人机航路规划方法
CN103235595A (zh) * 2013-04-27 2013-08-07 湖南科技大学 一种室外微小型地面群机器人控制系统及控制方法
CN105835059A (zh) * 2016-04-29 2016-08-10 国家电网公司 一种机器人控制系统
CN106125760A (zh) * 2016-07-25 2016-11-16 零度智控(北京)智能科技有限公司 无人机编队路径自动规划方法及装置
CN106200680A (zh) * 2016-09-27 2016-12-07 深圳市千粤科技有限公司 一种无人机集群管理系统及其控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Real-Time Obstacle Avoidance Method for Mobile Robots Based on a Modified Particle Swarm Optimization;Yuxin Zhao,Wei Zu;《2009 International Joint Conference on Computational Sciences and Optimization》;20091231;第269-272页
仓储物流机器人集群的智能调度和路径规划;沈博闻,于宁波,刘景泰;《智能系统学报》;20141231;第9卷(第6期);第659-664页
大规模无人系统集群智能控制方法综述;梁晓龙,孙强,尹忠海,王亚利,刘苹妮;《计算机应用研究》;20150131;第32卷(第1期);第11-16页

Also Published As

Publication number Publication date
CN107422637A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
CN110348595B (zh) 一种基于飞行数据的无人机混合推进系统能量管控方法
CN107422637B (zh) 一种集群智能控制系统和方法
CN112684807A (zh) 无人机集群三维编队方法
CN110347181B (zh) 基于能耗的无人机分布式编队控制方法
Jin et al. Research on dynamic path planning based on the fusion algorithm of improved ant colony optimization and rolling window method
CN111103795B (zh) 基于智能自适应优化算法的高超声速飞行器再入段轨迹优化控制器
CN113625755B (zh) 一种仿候鸟迁徙行为的无人机集群自主编队控制方法
Lin et al. Traffic signal optimization based on fuzzy control and differential evolution algorithm
WO2021179409A1 (zh) 一种非规则形状移动机器人的路径规划方法
CN104252132A (zh) 基于自适应遗传算法的行星际轨道控制优化方法
CN113448703A (zh) 一种基于感知阵型的无人机蜂群动态侦察任务调度系统及方法
CN108394429B (zh) 一种为城轨列车群生成自动驾驶曲线的方法
CN110414661A (zh) 一种空调系统负荷的预测方法及系统
CN109857117A (zh) 一种基于分布式模式匹配的无人艇集群编队方法
Sun et al. Path planning of UAVs based on improved ant colony system
Chen et al. Cooperative networking strategy of UAV cluster for large-scale WSNs
Yang et al. A survey of key issues in UAV data collection in the Internet of Things
CN113805609A (zh) 一种混沌迷失鸽群优化机制的无人机群目标搜索方法
Ni et al. Energy-optimal flight strategy for solar-powered aircraft using reinforcement learning with discrete actions
Li et al. UAV-BS formation control method based on loose coupling structure
CN112016162A (zh) 一种四旋翼无人机pid控制器参数优化方法
CN111552317B (zh) 一种多航天器四维协同轨迹确定方法
Wang et al. 3D Autonomous Navigation of UAVs: An Energy-Efficient and Collision-Free Deep Reinforcement Learning Approach
CN113985927A (zh) 一种四旋翼无人机栖停机动轨迹优化方法
Zhou et al. Improved path planning for mobile robot based on firefly algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190607

Termination date: 20210502

CF01 Termination of patent right due to non-payment of annual fee