背景技术
近来,各种便携式电子设备,如移动电话、个人数字助理(PDA)和笔记本电脑,由于体积小、重量轻和低功耗而得到了快速发展。因此,平板显示器件,如液晶显示器(LCD),等离子显示板(PDP),场致发光显示器(FED)和真空荧光显示器(VFD)得到了快速发展。目前,在这些平板显示器件中,LCD由于其驱动简单、图像质量好而得到了大规模发展。
图1示出了现有技术的LCD器件的截面图。在图1中,LCD器件1包括下基板5、上基板3和设置在两者之间的液晶层7。下基板5是驱动装置阵列基板,包括多个像素(没有示出)和驱动装置,例如在每个像素上形成的薄膜晶体管(TFT)。上基板3是滤色片基板,包括用于再现真彩色的滤色片层。另外,在下基板5和上基板3上分别形成有像素电极和公共电极。在下基板5和上基板3之间形成用来排列液晶层7的液晶分子的定向层。
下基板5和上基板3用密封剂9沿周边粘结在一起,液晶7被限制在周边以内。另外,液晶层7的液晶分子被下基板5上形成的驱动装置重新取向,以控制穿过液晶层7的光量,从而显示一幅图像。
图2示出了现有技术LCD器件制造方法的流程图。在图2中,生产LCD器件的制造方法包括三个子工序:驱动装置阵列基板工序,用于在下基板5上形成驱动装置;滤色片基板工序,用于在上基板3上形成滤色片;以及单元工序。
在步骤S101中,通过驱动装置阵列工序,在下基板5上形成多条栅极线和数据线,从而限定一像素区,并且在每个像素区上形成与栅极线和数据线相连接的薄膜晶体管。另外,通过驱动装置阵列工序,还形成像素电极,其与薄膜晶体管相连接,从而根据通过薄膜晶体管施加的信号驱动液晶层。
在步骤S104中,通过滤色片工序,在上基板3上形成再现色彩的R、G和B滤色片层和公共电极。
在步骤S102和S105中,在下基板5和上基板3上形成定向层。然后,分别摩擦定向层以产生液晶层7的液晶分子的表面锚固(即,预倾角和排列方向)。
在步骤S103中,在下基板5上设置衬垫料,使下基板5和上基板3之间保持均匀的盒间隙。
在步骤S106中,在上基板3的外部印刷密封剂。
在步骤S107中,将下基板5和上基板3通过施压装配在一起。
下基板5和上基板3都由玻璃基板制成,并包括多个其上设置有驱动装置和滤色片层的单元显示板区。
在步骤S108中,装配后的下玻璃基板5和上玻璃基板3被切割成单元显示板。
在步骤S109中,通过液晶注入孔液晶材料注入到单元显示板下基板5和上基板3之间的间隙中,然后密封液晶注入孔。
在步骤S110中,测试已经充满液晶并密封好的单元显示板。
图3示出了现有技术用于制造LCD器件的液晶注入系统的示意图。在图3中,装放有液晶材料14的容器12放置在真空室10中,液晶显示板1置于容器12的上方。然后,真空室10与真空泵(没有示出)相连接,从而使真空室10保持预定的真空/压力状态。另外,液晶显示板移动装置(没有示出)安装在真空室10内,用于将液晶显示板1从容器12的上方移动到液晶材料14的表面,从而使液晶显示板1的注入孔16与液晶材料14接触。因此,这种方法通常称为液晶浸渍注入法。
在液晶显示板1的注入孔16与液晶材料14表面相接触的状态下,通过向真空室10充入氮气(N2),真空室10的真空/压力级下降,在液晶显示板1的真空/压力级和真空室10的真空/压力级之间压力差的作用下,液晶材料14通过注入孔16注入液晶显示板1。当液晶完全充满液晶显示板1之后,用密封剂密封注入孔16,从而将液晶材料14密封在液晶显示板1内。因此,这种方法称为真空注入法。
然而,在液晶浸渍注入法和/或真空注入法中存在几个问题。
首先,液晶材料14注入显示板1的全部时间相对较长。通常,液晶显示板1中驱动装置阵列基板和滤色片基板之间的间隙相对较窄,只有几个微米。因此,单位时间内相对较少量的液晶材料14注入到液晶显示板1中。例如,15英寸液晶显示板完全注入液晶材料14大约需要8小时,从而降低了制造效率。
第二,在液晶注入法中,增加了液晶材料14的消耗。容器12中只有少量的液晶材料14实际注入到液晶显示板1内。因此,在将液晶显示板1置于真空室时,未用的液晶材料14暴露在空气或某些气体中,从而污染了液晶材料14。在向多个液晶显示板1注入液晶材料14后,所有剩余的液晶材料14必需扔掉,因此增加了制造成本。
具体实施方式
下面参照附图详细说明本发明的优选实施例。
为了解决传统液晶注入法如液晶浸渍注入法或液晶真空注入法存在的问题,近来出现了一种液晶分配法。该液晶分配法是通过直接将液晶分配到基板上,然后在基板装配工序中,通过将基板压在一起,使滴注的液晶扩散到整个显示板形成液晶层的方法,而不是利用显示板内外的压力差将液晶注入空的单元显示板形成液晶层的方法。按照上述的液晶分配法,可以在短时间内将液晶直接滴注到基板上,因此大面积的LCD板的液晶层可以很快形成。另外,由于直接分配液晶的数量与所需的数量一样多,因此可以降低液晶的消耗,从而降低制造成本。
图4示出了按照本发明的液晶分配法的基本概念示意图。在图4中,在装配下基板105和具有滤色片的上基板103之前,将液晶材料107滴注在具有驱动装置的下基板105上。或者,液晶材料107也可以滴注到其上形成有滤色片的上基板103上。例如,液晶材料107可以形成在薄膜晶体管(TFT)基板上或滤色片(CF)基板上。
沿上基板103的至少外周边部分设置密封剂109。然后,通过对上基板103和下基板105施压,将上基板103和下基板105装配到一起,从而构成LCD显示板101。因此,在施加到上基板103和/或下基板105的压力作用下,滴注的液晶材料107在上基板103和下基板105之间扩散开,从而在上基板103和下基板105之间形成厚度均匀的液晶材料层。在本发明的LCD器件制造方法的实施例中,在装配上基板103和下基板105构成LCD显示板101之前,液晶材料107滴注到下基板105上。
图5示出了按照本发明液晶显示(LCD)器件制造方法实施例的流程图。在步骤S201,用TFT阵列工序可以在下基板上形成驱动装置,如TFT。
在步骤S204中,用滤色片工序可以在上基板103上形成滤色片层。通常,与公用工序相似,TFT阵列工序和滤色片工序更适用于具有多个单元显示板区域的玻璃基板。在这里,上、下基板可以是面积约为1000×1200mm2甚至更大面积的玻璃基板。然而,也可以使用小面积的玻璃基板。
在步骤S202和S205中,在上、下基板上形成并摩擦定向层。
在步骤S203中,液晶材料107可以滴注到下基板105的液晶显示单元显示板区域。
在步骤S206中,密封剂109至少印刷在上基板的液晶显示单元显示板区域的外周围部分区域上。
在步骤S207中,将上基板和下基板彼此面对地排列,然后施压,用密封剂使上、下基板粘结到一起。因此,液晶材料在上、下基板和密封剂之间均匀地扩散开。
在步骤S208中,处理装配好的上、下基板并将其切割成多个液晶显示单元显示板。
在步骤S209中,测试液晶显示单元显示板。
图5所示的液晶分配法的LCD器件制造方法与图2所示的现有的液晶注入法的LCD器件制造方法在液晶真空注入、液晶分配和大面积玻璃基板的处理时间等方面是不同的。也就是说,在使用图2所示的液晶注入法的LCD器件制造方法中,液晶通过注入孔注入,然后用密封剂密封注入孔。然而,在使用液晶分配法的LCD器件的制造方法中,液晶直接滴注在基板上,而不需要注入孔密封工序。虽然图2中没有示出,但是在使用液晶注入法的LCD制造方法中,在注入液晶的时候,基板与液晶接触,因此,显示板的外表面被液晶污染,从而需要清洗污染基板的工序。然而,因为在使用液晶分配法的LCD器件制造方法中,液晶直接滴注在基板上,所以液晶不会污染显示板,因此不需要清洗工序。使用液晶分配法的LCD制造方法比使用液晶注入法的LCD器件制造方法更简单,从而具有更高的生产效率和更大的产量。
在使用液晶分配法的LCD器件制造方法中,液晶的分配位置和液晶的分配量极大地影响具有预期厚度的液晶层的形成。特别是,由于液晶层的厚度与液晶显示板的盒间隙是紧密相关的,液晶准确的分配位置和精确的分配量对于防止液晶显示板缺陷非常重要。为了在准确的位置上滴注精确量的液晶,本发明提供了一种液晶分配器。
图6示出了液晶分配法基本概念的示意图,该液晶分配法是使用位于玻璃基板105上方的液晶分配器120将液晶107分配到大面积的基板105上。虽然图中没有示出,但是液晶材料放置在液晶分配器120内,从而可以分配一定量的液晶到基板上。
当向玻璃基板105滴注液晶材料107时,玻璃基板105以预定的速度沿x和y方向移动,同时液晶分配器120以预定的时间间隔排放液晶材料。因此,分配到玻璃基板105上的液晶材料107相互之间按预定的间隔沿x和y方向排列。或者,玻璃基板105固定不动,而液晶分配器120沿x和y方向移动,以按预定的间隔滴注液晶材料107。然而,液晶材料107的形状可能受液晶分配器120振动的影响变化,液晶材料107的分配位置和分配量都会产生误差。因此,优选地,固定液晶分配器120而移动玻璃基板105。
图7示出了按照本发明的液晶分配器120的透视图,图8示出了按照本发明的液晶分配器的分解透视图。在图7中,液晶分配器120包括置于壳体123内的圆筒形液晶材料容器122。液晶材料容器122由聚乙烯制成,并且液晶材料107装放在液晶材料容器122内。壳体123由不锈钢制成,其内放置有液晶材料容器122。由于聚乙烯具有很好的可塑性,用聚乙烯可以很容易制造出期望形状的容器。同时,当装入液晶材料107后,聚乙烯与液晶材料107之间不产生化学反应,因此主要用作液晶材料容器122。然而,聚乙烯强度低,因此在压力作用下很容易产生变形。当液晶材料容器122变形后,液晶材料107就不能准确地分配在基板上。因此,液晶材料容器122可以置于具有高强度的由不锈钢制成的壳体123内。
虽然图中未示,但是在液晶材料容器122的上部可以安装有供气管,以向其内提供惰性气体如氮气。气体供应到液材料晶容器122中没有被液晶材料107占据的空间。因此,气体挤压液晶材料107,使液晶材料分配到基板上。
液晶材料容器122可以由一些不变形的材料,如不锈钢制成。因此,当液晶材料容器122由不锈钢制成时,可以不需要壳体123,从而降低液晶分配器120的制造成本。液晶材料容器122的内壁可以涂覆含氟树脂,从而防止装放在液晶材料容器122中的液晶材料107与液晶材料容器122的内壁产生化学反应。
液晶排料泵140安装在液晶材料容器122的下部。液晶排料泵140用于排放液晶材料容器122中确定量的液晶以分配到基板上。液晶排料泵140设置有与液晶材料容器122相连接的液晶吸料口147,其用于在液晶排料泵140运行时吸入液晶,以及在液晶吸料口147相对位置,在液晶排料泵140运行时用于排放液晶的液晶排料口148。
如图8所示,第一连接管126与液晶吸料口147相连接。虽然,图中所示的液晶吸料口147与第一连接管126通过插入的方式相连接,但是液晶吸料口147与第一连接管126可以通过连接装置如螺旋相连接。在第一连接管126的一边设置有内部穿透的销128,例如,注射针。一垫片(没有示出)由高收缩性和高密封性材料如硅或丁基橡胶族材料制成,其设置在液晶材料容器122的下部,用于向第一连接管126排放液晶。销128通过所述垫片插入液晶材料容器122,以引导液晶材料容器122中的液晶材料107进入液晶吸料口147。当销128插入液晶材料容器122时,销128挤压垫片,以阻止液晶材料127泄漏到销128插入的区域。因为液晶吸料口147和液晶材料容器122之间用销和垫片连接在一起,连接结构简单并且连接/拆卸比较方便。
液晶吸料口147和第一连接管126可以构成一个单元。在这种情况下,销128设置在液晶吸料口147中并直接插入液晶材料容器122以排放液晶,从而具有简单的结构。
喷嘴150设置在液晶排料泵140的下部。喷嘴150通过第二连接管160与液晶排料泵140的液晶排料口148相连接,以将从液晶排料泵140排放出的液晶分配到基板上。
第二连接管160可以采用不透明材料制成。但是基于以下原因第二连接管160采用透明材料制成。
在分配液晶的时候,气体包含在液晶材料107中,分配到基板上的液晶材料107的分配量不能精确控制。因此,在分配液晶时,气体必须被去除。气体已经包含在液晶材料容器122的液晶材料107里,即使用气体去除装置去除液晶材料107里的气体,气体也不能完全去除干净。同时,在当液晶材料107从液晶材料容器122导入液晶排料泵140时,也会产生气体。因此,不可能完全去除液晶材料107中的气体。所以,去除气体最好的方法是在产生气体的时候停止液晶分配器的运行。
第二连接管160采用透明材料的原因是采用透明材料易于发现液晶材料容器122中所含的气体或液晶材料容器产生的气体,以预防劣质LCD器件的产生。气体可以通过用户肉眼发现,也可以用安装在第二连接管160两侧的第一传感器162如光偶合器自动检测出,第二种方法可以更好地预防劣质LCD器件的产生。
在第二连接管160和液晶排料泵140的液晶排料口148之间设置有过滤器173,以去除液晶中通过液晶排料泵140产生的颗粒。当插入缸体内的活塞上下运动和旋转时,液晶排料泵140通过液晶吸料口147和液晶排料口148吸入和排放液晶。因此,当液晶排料泵140运行时,由于活塞和缸体之间磨擦而产生颗粒。在这种情况下,颗粒随液晶分配到基板上,从而在LCD器件上产生瑕疵。过滤器173去除由于液晶排料泵140的运行而产生的颗粒,这样分配到基板上的只有过滤后的液晶。过滤器173同样可以去除混合在液晶中的颗粒。
即使如前所述,过滤器173安装在第二连接管160和液晶排料泵140的液晶排料口148之间,过滤器173也可以安装在第二连接管160上或液晶排料泵140的液晶排料口148上。过滤器不需要安装在特定的位置。如前所述,过滤器173不仅能去除液晶排料泵运行中产生的颗粒,而且能去除混合在液晶中的颗粒。因此,过滤器173可以安装在液晶排料泵140的液晶吸料口147的前端或者安装在向基板分配液晶的喷嘴150上。
过滤器173可以一体地安装在第二连接管160或液晶排料泵140的吸料口147和排料口148内,也可以独立安装。当过滤器173独立地安装在第二连接160或液晶排料泵140的吸料口147和排料口148上时,过滤器173需要周期性地清洗以便可以长期使用。
过滤器173可以与一次性使用的喷嘴分立安装或一体安装在一起。在过滤器173与一次性喷嘴一体安装在一起的情况下,当分配一定次数的液晶后,喷嘴被丢弃时,过滤器173一起被丢弃。
通过第二连接管160导入被排放液晶的喷嘴150在其两侧表面具有保护单元152,以保护喷嘴150免受外部压力等的作用。
液晶排料泵140插入旋转部件157内,旋转部件157固定到固定单元155。旋转部件157与第一电机131相连接。当第一电机运行时,旋转部件157旋转并且固定在旋转部件157上的液晶排料泵140运行。
液晶排料泵140与长条形液晶容量控制部件134的一侧相连接。在液晶容量控制部件134的另一侧有一孔,孔内插有旋转轴136。在液晶容量控制部件134的孔和旋转轴136的周边带有螺旋,因此液晶容量控制部件134和旋转轴136以螺旋的方式相互连接。旋转轴136的一端与第二电机133连接,另一端与控制握柄137相连接。
通过液晶排料泵140从液晶材料容器122排放出的液晶量随液晶排料泵140与旋转部件157之间的固定角的变化而变化。即,液晶排料泵140的液晶量随液晶排料泵140固定到旋转部件157的角度的变化而变化。当与旋转轴136相连接的第二电机133驱动时(自动控制)或者控制握柄137被操作(手动控制)时,旋转轴136旋转。依此,与旋转轴136螺旋连接到一起的液晶容量控制部件134的一端随旋转轴136来回(线性方向)运动。随着液晶容量控制部件134的运动,施加到液晶排料泵140的力发生变化,因此液晶排料泵140的固定角也发生变化。
如前所述,第一电机131驱动液晶排料泵140将液晶材料容器122中的液晶排放出,从而滴注到基板上。同时,第二电机133控制液晶排料泵140固定到旋转轴157上的固定角,从而控制从液晶排料泵140排放出的液晶量。
通过液晶排料泵140滴注到基板上的液晶的单次分配量很微小,因此,由第二电机133控制的液晶排料泵140的变化量也很微小。因此,为了控制液晶排料泵140的排放量,液晶排料泵140的倾斜角必须被精密地控制。为了实现精密控制,由脉冲输入值控制的步进电机用作第二电机133。
图9A示出了液晶排料泵的透视图,图9B示出了液晶排料泵的分解透视图。
在图9A和图9B中,液晶排料泵140包括:设置有液晶吸料口147和液晶排料口148的壳体141;端帽144,其上端开口并与壳体141相连接;缸体142,其插入壳体141内以吸入液晶;密封部件143,用于密封缸体142;O形环144a置于端帽144的上方,用于防止液晶泄漏;活塞145,其通过端帽144的开口插入缸体142上下移动并旋转,用于通过液晶吸料口147和液晶排料口148吸入和排放液晶。固定在旋转部件157上的顶端146a安装在活塞145上,杆146b安装在顶端146a上。杆146b插入旋转部件157上的一个孔(没示出)内并且固定,因此当旋转部件157被第一电机驱动旋转时,活塞145随着旋转。
在图9B中,在活塞145的端部设有一槽145a。槽145a的面积约为活塞145圆形截面积的1/4(或更少)。当活塞145旋转(即上下运动)时,槽145a打开或关闭液晶吸料口147和液晶排料口148,从而通过液晶吸料口147和液晶排料口148吸入或排放液晶。
下面介绍液晶排料泵140的运行。
图10示出了液晶排料泵140固定在旋转部件157上的状态图。在图10中,活塞145以一定角度(α)固定在旋转部件157上。活塞头部146a上安装的杆146b插入旋转部件157内的孔159内,从而将活塞145和旋转部件157互相连接在一起。虽然没有示出,但在孔159内设有轴承,从而使插入孔159内的活塞145的杆146b可以上下左右移动。当第一电机131运行时,旋转部件157旋转,从而使得与旋转部件157相连接的活塞145旋转。
在这里,如果液晶排料泵相对于旋转部件157的固定角(α),即,活塞145与旋转部件157的固定角(α)为0,那么活塞145只随旋转部件157作旋转运动。然而,由于活塞145的固定角(α)实际上不为0,(即,活塞145以一定角度固定),因此活塞145随旋转部件157不仅做旋转运动,而且上下移动。
如果活塞145以某一角度旋转时向上运动,那么在缸体内就形成一空间,液晶通过液晶吸料口147吸入进来。然后,当活塞145继续旋转并向下运动时,吸入缸体142内的液晶通过液晶排料口148排放出。在这里,活塞145上的槽145a随着活塞145的旋转在吸入和排放液晶时,打开和关闭液晶吸料口147和液晶排料口148。
在下文中,参照图11A到11D详细解释液晶排料泵140的运行。
在图11A到11D中,液晶排料泵140通过4个冲程将液晶材料容器122中的液晶材料107排放到喷嘴105。图11A和11C是交叉冲程,图11B是通过液晶吸料口147的吸入冲程,图11D是通过液晶排料口148的排放冲程。
在图11A中,以一定角度(α)固定在旋转部件157上的活塞145随着旋转部件157的旋转而旋转。此时,液晶吸料口147和液晶排料口148被活塞145关闭。
如图11B所示,当旋转部件157旋转到大约45°时,活塞145旋转并且液晶吸料口147被活塞145上的槽145a打开。活塞145的杆146b插入旋转部件157的孔159内,从而连接旋转部件157和活塞145。随着旋转部件157的旋转,活塞145旋转。此时,杆146b沿旋转面旋转。
由于活塞145以一定角度固定在旋转部件157上,而且杆146b沿旋转面旋转,因此活塞145随旋转部件157的旋转向上运动。同时,随着旋转部件157的旋转,由于缸体142是固定不动的,所以在缸体142内活塞145的下部形成一空间。从而使得液晶通过被槽145a打开的液晶吸料口147吸入到这个空间。
随着旋转部件157在吸入冲程开始后(即,液晶吸料口147打开)旋转大约45°,上述的液晶吸入冲程一直持续到图11C的交叉冲程开始(液晶吸料口147关闭)。
接下来,如图11D所示,液晶排料口148打开,随着旋转部件157继续旋转,活塞145向下运动,因此,吸入到缸体142空间内的液晶通过液晶排料口148排放出去(排放冲程)。
如前所述,液晶排料泵140重复四个冲程,即,第一交叉冲程、吸入冲程、第二交叉冲程和排放冲程,从而将液晶材料容器122内的液晶107排放到喷嘴150。
在这里,液晶的排放量随活塞145上下运动的范围而改变。活塞145上下运动的范围随着液晶排料泵140固定到旋转部件157上的角度而变化。
图12示出了液晶排料泵以角度β固定到旋转部件上的状态。与图10所示活塞145以角度α固定到旋转部件157时的液晶排料泵140相比较,图12所示活塞145以角度β(>α)固定到旋转部件157时的液晶排料泵140可以使活塞145向上运动更高。即,液晶排料泵145固定到旋转部件157上的角度越大,活塞运动时,吸入到缸体142的液晶107的量就越多。这也意味着,液晶的排放量可以通过调节液晶排料泵140固定到旋转部件157上的角度控制。
液晶排料泵140固定到旋转部件157的角度是由图7所示的液晶容量控制部件134控制的,而液晶容量控制部件134通过驱动第二电机133移动。即,液晶排料泵140固定到旋转部件157的角度通过控制第二电机控制。
液晶排料泵140的固定角可以由用户通过操纵角度控制握柄137来手动调节。然而在这种情况下,不可能实现精确调节,也需要很长时间,而且在操作期间,液晶排料泵的驱动必须停止。因此,优选地,通过第二电机133调节液晶排料泵140的固定角。
液晶排料泵140的固定角通过传感器139如线性可变微分传感器测量。如果固定角超过了预定角,传感器139发出警报以防止液晶排料泵140受损。
如前所述,在本发明的液晶分配装置中,液晶分配量通过第二电机133改变液晶排料泵140的固定角设置,然后通过第一电机131的运行驱动液晶排料泵140,从而通过喷嘴150将液晶分配到基板上。
然而,即使设置精确的液晶分配量为实际液晶分配量,但是仍然会发生分配到基板上的液晶不是预定量液晶的情况。上述情况可能是由多种原因引起,如外部环境,但最大的因素是液晶聚集在喷嘴150表面上的现象。
喷嘴150通常由一些金属如不锈钢制成。金属和液晶有一低接触角。通常,接触角是指液体处于热力学平衡状态下在固体表面上所形成的角。接触角表明液体在固体表面的可湿性。因为金属具有高可湿性(即,亲水性)和高表面能,所以液体在金属表面具有强扩散性。因此,当通过由金属制成的喷嘴150分配液晶时,液晶在喷嘴150的未端不能形成滴状(滴状意味着高接触角),而是扩散到喷嘴150的表面。当重复执行液晶分配时,液晶在喷嘴表面处聚集,即,如图13所示,在喷嘴150的表面上形成残留液晶107a。
当液晶在喷嘴150表面扩散时,就不可能精确分配液晶。即使在通过喷嘴150分配的液晶量通过控制液晶排料泵140的固定角控制的情况下,一部分液晶扩散到喷嘴的表面,从而使得实际分配到基板上的分配量少于通过喷嘴150分配的分配量。当然,可以通过考虑扩散到喷嘴150表面的液晶量控制液晶的分配量。但是,不可能充分地计算出扩散到喷嘴150表面的液晶量。
通过重复分配液晶,聚集在喷嘴150表面上的液晶107a与通过喷嘴150排放出的液晶混合,从而使得分配到在基板上的液晶量比预定的量要多。即,由于金属特性,喷嘴150的低接触角,液晶的分配量变得不规则。
为了防止液晶聚集在喷嘴150的表面,可以通过浸渍法或溅射法在喷嘴150的表面淀积与液晶有高接触角的材料如含氟树脂。而且,一次性使用(当然,喷嘴是向预定数量的基板分配液晶)的喷嘴150可以用含氟树脂制成,因此通过喷嘴150排放出的液晶107由于低可湿性(亲水性)和低表面能,不会在喷嘴150的表面扩散,而以完好的滴状分配到基板上。然而,即使在喷嘴150表面淀积含氟树脂或喷嘴150由含氟树脂制成,随着液晶分配的重复在喷嘴150表面聚集液晶的现象也不能完全解决。
如图7和图8所示,在喷嘴150表面两侧安装的为了保护喷嘴150免受外部压力等损害的保护单元152上设置第二传感器154,用于检测在喷嘴150表面上聚集的液晶。第二传感器154可以是与第一传感器162相同的光耦合器,也可以是其它类型的传感器。
如图13所示,第二传感器154与控制单元相连接。接下来详细介绍,当从第二传感器154输入一信号时,控制单元控制在喷嘴150表面上的液晶聚集。
如图14所示,第二传感器检测到的信号通过输入单元202输入到控制单元200。然后,控制单元200根据输入信号判断液晶是否聚集在喷嘴150的表面。控制单元200向电机驱动单元205输出控制信号,以操纵第一电机131和第二电机133,从而控制液晶排料泵140的排放量并从液晶排料泵140排放液晶。控制单元200操纵基板驱动单元206移动基板,从而将喷嘴对准基板上的液晶分配位置。在此,可以用直接移动液晶分配器来代替移动基板(在这种情况下,基板驱动单元应该改为液晶分配器驱动单元)。
假设在液晶连续分配过程中,当控制单元200判断液晶聚集在喷嘴150的表面时,控制单元200预报液晶分配缺陷,因此向电机驱动单元205输出控制信号。在该控制信号作用下,电机驱动单元205停止驱动第一电机131,以停止液晶分配。同时,控制单元200在输出单元208上显示目前的状态为液晶聚集在喷嘴150的表面,从而通知用户目前的状态。
依此,用户可以通过将喷嘴150从液晶分配装置中拆卸下来,清除聚集在喷嘴150表面的液晶。而且,也可以通过向虚拟分配操作单元209和清洁器驱动单元210发送信号自动清除液晶。
虚拟分配操作单元209在液晶聚集到喷嘴150表面上时,依据来自控制单元200的信号执行液晶虚拟分配,从而清除聚集在喷嘴150表面的液晶。上述虚拟分配的意思是将液晶不分配到基板实际分配位置而分配到另一位置,例如,基板上没有形成液晶显示板的区域或者用于测量液晶分配量的量杯(测量分配到量杯内的液晶的重量,从而判断液晶的实际分配量是否等于预定的分配量,如果测得的重量不等于预定的分配量,可以用偏差量补偿液晶的分配量)或虚拟分配容器内。虚拟分配执行时分配的不是预定分配量的液晶而是比其多的液晶量,即,分配量足够清除聚集在喷嘴表面的液晶。
通过上述液晶虚拟分配,聚集在喷嘴150表面的液晶可以完全清除干净。然后,电机驱动单元205和基板驱动单元206重新开始驱动,以执行正常的液晶分配。
清洁器驱动单元210在液晶聚集到喷嘴150表面时,依据从控制单元200输入的信号驱动清洁器,以清洗喷嘴150的表面。当然,通过虚拟分配可以清除聚集在喷嘴150表面的液晶。然而,在这种情况下,因为其很难完全清除残留在喷嘴150表面的液晶,使用清洁器可以完全清除聚集在喷嘴150表面的液晶。
上述的虚拟分配功能和清洁功能可以在液晶分配装置中执行。例如,虚拟分配在短周期内执行,以清除聚集在喷嘴150表面上的液晶,而由清洁器执行的清洁在长周期内执行(在执行一定次数的虚拟分配之后),以清除聚集在喷嘴150表面的液晶。不过,在本发明的液晶分配装置中,既可以执行虚拟分配功能也可以由清洁器执行清洁功能。在这种情况下,可能确保有效地清除残留在喷嘴150表面的液晶。
如图15所示,喷嘴清洁器220包括主体222和安装在主体222上的吸管226。真空泵228与吸管226相连接。在清洗喷嘴150时,基于下列原因,吸管226基本与喷嘴150的排料口对准。因为聚集在喷嘴150表面的液晶107a主要分布在排料口周围,排料口和吸管226相互对准工作可以提高清洗效率。
喷嘴150周期性地反复清洗。当预定次数的液晶分配完成后,喷嘴清洁器220通过电机(未示出)移动到喷嘴150处,使喷嘴150的排料口对准吸管226。在这里,在主体222上安装有支持主体222和喷嘴150的支持单元224,在喷嘴150的排料口和吸管226相互对准时,在排料口和吸管226之间形成一定空间。在随着喷嘴清洁器的移动而使喷嘴150的排料口和吸管226相互对准的状态下,真空泵228运行,使得安装在主体222上的吸管226处于真空状态。因此,喷嘴150周围的液晶107a,特别是排料口周围的液晶被吸入到吸管226,从而清除残留在喷嘴150表面的液晶。
虽然没有示出,但是喷嘴清洁器220可以带有一杯体,以收集清除下来的液晶107a。通过真空泵228驱动吸管226所吸入的液晶107a由于引力作用被收集在安装在主体222和真空泵228之间的杯体内,而不会到达真空泵228。如果安装液晶杯体,将该杯体从喷嘴清洁器220上拆卸下来,以丢弃收集到的液晶107a,从而简化收集液晶的工序。
如前所述,在本发明的液晶分配装置中,检测液晶聚集的第二传感器154安装在喷嘴150的周围,从而实时清除聚集在喷嘴150表面上的液晶并分配液晶,下面对此作简单的解释。
如图16所示,当开始分配液晶时,第二传感器154开始检测喷嘴150表面上的液晶聚集(S301)。从第二传感器154输出的信号输入到控制单元200。依此,在没有检测到液晶聚集时,控制单元200判断液晶分配正常执行,因而继续分配液晶(S302)。
在液晶分配过程中,当第二传感器154检测到喷嘴150表面上的液晶聚集时,控制单元200向电机驱动单元205输出控制信号,以停止第一电机131,从而停止液晶分配(S303)。
同时,控制单元200驱动电机驱动单元205和基板驱动单元206,以便向基板的空区域上(即,不形成液晶显示板的区域)或量杯或另外的容器(虚拟分配容器)分配液晶(执行虚拟分配),从而清除聚集在喷嘴150表面的液晶(S304)。除了虚拟分配方法,也可以通过向清洁器驱动单元210输出控制信号驱动清洁器220清除聚集在喷嘴150表面的液晶(S305)。先执行虚拟分配然后通过清洁器执行清除也可以清除聚集在喷嘴150表面的液晶。
同时,清除聚集在喷嘴表面上液晶的工序(如清洗工序)可以在任何时间执行。例如,可以在向液晶分配装置加载基板以前清洗喷嘴,或者在向液晶分配装置加载基板以后清洗喷嘴。而且,清洗工序可以在两块基板分配工序之间的间隙执行。
如前所述,在本发明中,可以有效清除聚集在喷嘴150表面的液晶。本发明可以适用于任何用喷嘴分配液晶的液晶分配装置。同时,在本发明中,无论喷嘴的结构如何,都可以安装检测液晶聚集的传感器,因此,本发明可以应用于不同结构的喷嘴。更进一步地说,本发明不仅适用于不锈钢制成的喷嘴,而且也适用于用含氟树脂制成的一次性喷嘴。
当然,本发明还可有其他多种实施例,在不脱离本发明精神及实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都属于本发明所附的权利要求的保护范围。