CN101043118A - Method and apparatus for liquid guided pump beam - Google Patents
Method and apparatus for liquid guided pump beam Download PDFInfo
- Publication number
- CN101043118A CN101043118A CN 200710086671 CN200710086671A CN101043118A CN 101043118 A CN101043118 A CN 101043118A CN 200710086671 CN200710086671 CN 200710086671 CN 200710086671 A CN200710086671 A CN 200710086671A CN 101043118 A CN101043118 A CN 101043118A
- Authority
- CN
- China
- Prior art keywords
- liquid
- optical fiber
- cooling
- pump
- radiator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 121
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000013307 optical fiber Substances 0.000 claims abstract description 52
- 230000008878 coupling Effects 0.000 claims abstract description 21
- 238000010168 coupling process Methods 0.000 claims abstract description 21
- 238000005859 coupling reaction Methods 0.000 claims abstract description 21
- 230000003287 optical effect Effects 0.000 claims abstract description 18
- 238000001816 cooling Methods 0.000 claims description 33
- 239000013078 crystal Substances 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims 12
- 239000012809 cooling fluid Substances 0.000 claims 9
- 238000007789 sealing Methods 0.000 claims 1
- 239000000835 fiber Substances 0.000 abstract description 17
- 238000005086 pumping Methods 0.000 abstract description 13
- 239000002826 coolant Substances 0.000 abstract description 11
- 230000005693 optoelectronics Effects 0.000 abstract description 2
- 239000000110 cooling liquid Substances 0.000 description 28
- 230000000694 effects Effects 0.000 description 13
- 230000017525 heat dissipation Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 8
- 239000007787 solid Substances 0.000 description 4
- 230000008646 thermal stress Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Lasers (AREA)
Abstract
一种液体导引泵浦光束的方法及装置,属于光学与激光光电子技术领域。它含有泵浦光源、光学耦合装置、液体导引装置和光纤。其中:光学耦合装置接受泵浦光源发出的泵浦光;液体喷嘴,经过光学耦合装置耦合的泵浦光束被耦合到液体喷嘴喷出的液柱中;冷却液收集器的中心线对准液体喷嘴的中心线;回液管,进液端与冷却液收集器连通;散热器和循环泵,相互串联,该散热器的进液口与回液管的出液口相连,而循环泵的输出端与液体喷嘴下端连通;液体喷嘴、冷却液收集器、回液管、散热器和循环泵串接形成了一个液体导引装置。本发明解决了固体激光器和光纤激光器中的高功率泵浦问题,可以使激光器的输出平均功率得到提高,确保激光器系统工作的稳定性和可靠性。
The invention relates to a method and a device for guiding a pump light beam by a liquid, which belong to the technical field of optics and laser optoelectronics. It contains pump light source, optical coupling device, liquid guiding device and optical fiber. Among them: the optical coupling device receives the pump light from the pump light source; the liquid nozzle, the pump beam coupled by the optical coupling device is coupled into the liquid column ejected from the liquid nozzle; the center line of the coolant collector is aligned with the liquid nozzle The center line of the liquid return pipe, the liquid inlet end communicates with the coolant collector; the radiator and the circulation pump are connected in series, the liquid inlet of the radiator is connected with the liquid outlet of the liquid return pipe, and the output end of the circulation pump It communicates with the lower end of the liquid nozzle; the liquid nozzle, the coolant collector, the liquid return pipe, the radiator and the circulating pump are connected in series to form a liquid guiding device. The invention solves the problem of high-power pumping in solid-state lasers and fiber lasers, can increase the average output power of the lasers, and ensures the stability and reliability of the laser system.
Description
技术领域technical field
本发明涉及一种液体引导光束的方法及装置,可以用于激光谐振腔和激光放大器,属于光学与激光光电子技术领域。The invention relates to a method and a device for guiding a light beam by a liquid, which can be used for a laser resonant cavity and a laser amplifier, and belongs to the technical field of optics and laser optoelectronics.
背景技术Background technique
在固体激光器与光纤激光器领域,高功率固体激光器与光纤激光器工作时,需要向增益介质内注入大量泵浦光。In the field of solid-state lasers and fiber lasers, when high-power solid-state lasers and fiber lasers work, a large amount of pump light needs to be injected into the gain medium.
在光纤激光器的现有技术中,如图1所示,包括泵浦源1,光学系统2,光纤3和热沉4。泵浦光束经过光学系统2压缩汇聚后,直接入射到光纤3的端面并被光纤吸收,光纤端部热量分布集中,温度高,必须进行冷却,否则会导致光纤涂覆层燃烧,严重时会造成光纤端部炸裂。在高功率光纤激光器和高功率光纤放大器中光纤端部的冷却尤为重要。现有技术中常用的冷却方法是将光纤端部放置在金属热沉4中,光纤端部的热量通过接触传导从热沉中散出。由于这种散热方式中,热沉只与光纤的侧面接触,只能对光纤侧面进行传导冷却,而光纤端面的热量最为集中,因此散热效果不佳;同时侧面冷却还使得光纤产生了非常不均匀的温度分布,中心热边缘冷,使得端面上形成很大的热梯度,其产生的较大的热效应导致激光束的畸变,降低光束质量;光纤较冷的外部制约着较热的内部膨胀,在纤内产生较大的机械应力,严重时会导致光纤产生裂纹。此外,由于光纤直径微小(小于1mm),因此,为确保散热,必须使热沉与光纤侧面紧密接触而又不能太紧使得光纤产生应力,因此热沉的加工精度必须很高。In the prior art of a fiber laser, as shown in FIG. 1 , it includes a
在固体激光器的现有技术中,泵浦光束直接或经过光学系统后入射到固体激光介质的端面、侧面或其他泵浦面。入射端面热量分布集中,温度高,必须对固体激光介质进行冷却,否则激光介质激活区内温度差造成的热效应会使得激光器工作不稳定,光束质量下降,温度差造成的热应力会使得晶体产生形变,过热易导致端面膜层容易烧毁,严重时固体介质会炸裂,因此高效率的散热和热效应的降低通常是设计高平均功率系统时考虑的主要因素。现有技术中常用的冷却方法有液冷和传导冷却两种,都是通过对晶体侧面进行冷却,不能解决晶体端面及中心过热问题,因而散热效果不佳;同时由于中心热边缘冷,使得晶体的温度分布更不均匀,热效应和热应力不能得到有效降低。如图2所示,5是晶体,传导冷却是用金属热沉4与固体激光介质紧密接触,通过接触传导实现散热,由于这种散热方式中,热沉与固体激光介质的冷却结合面质量不是很高(尤其是曲面),因此散热效果不佳,为确保散热,热沉的加工精度也必须很高。如图3所示,液冷由于O型密封圈17要覆盖一定的体积,所以冷却液6不可能充分冷却晶体末端的几毫米长度。In the prior art of solid-state lasers, the pump beam is incident on the end face, side face or other pumping faces of the solid-state laser medium directly or after passing through the optical system. The heat distribution on the incident end surface is concentrated and the temperature is high. The solid laser medium must be cooled, otherwise the thermal effect caused by the temperature difference in the laser medium activation area will make the laser work unstable, the beam quality will decrease, and the thermal stress caused by the temperature difference will cause the crystal to deform. , overheating can easily cause the end film layer to burn easily, and the solid medium will burst in severe cases. Therefore, high-efficiency heat dissipation and reduction of thermal effects are usually the main factors considered when designing high average power systems. The commonly used cooling methods in the prior art include liquid cooling and conduction cooling, both of which cool the side of the crystal, which cannot solve the problem of overheating of the end face and the center of the crystal, so the heat dissipation effect is not good; at the same time, because the center is hot and the edges are cold, the crystal The temperature distribution is more uneven, and the thermal effect and thermal stress cannot be effectively reduced. As shown in Figure 2, 5 is a crystal, conduction cooling is to use the
发明内容Contents of the invention
本发明的目的是提出一种液体引导泵浦光束的方法及装置,克服现有技术中被泵浦端面的散热问题,采用液体引导泵浦光束的方法与装置,实现被泵浦端面的良好散热,有效地改善端部的热梯度,减小热效应和热应力,使得原金属热沉只需主要起夹持作用,解决了泵浦激光注入与机械夹持结构的矛盾,降低了夹持结构的加工精度要求,从而解决了固体激光器和光纤激光器中的高功率泵浦问题,确保激光器系统工作的稳定性和可靠性。The purpose of the present invention is to propose a method and device for guiding the pump beam by liquid, which overcomes the heat dissipation problem of the pumped end face in the prior art, and adopts the method and device for guiding the pump beam by liquid to realize good heat dissipation of the pumped end face , effectively improving the thermal gradient at the end, reducing thermal effects and thermal stress, so that the original metal heat sink only needs to play a clamping role, which solves the contradiction between pump laser injection and mechanical clamping structure, and reduces the clamping structure. Processing accuracy requirements, thus solving the problem of high-power pumping in solid-state lasers and fiber lasers, ensuring the stability and reliability of the laser system.
本发明的特征之一在于,含有泵浦光源、光学耦合装置8、液体导引装置9和光纤3,其中:One of the features of the present invention is that it contains a pumping light source, an
光学耦合装置8,接受泵浦光源发出的泵浦光;The
液体喷嘴10,经过光学耦合装置8耦合的泵浦光束通过液体喷嘴10前端的透明窗口被耦合到所述的液体喷嘴10喷出的液柱15中;The
冷却液收集器11,一端是开口状,该冷却液收集器的中心线对准液体喷嘴10的中心线,而该冷却液收集器11的出口端插入了光纤3的输入端,由液体喷嘴10喷出的液柱15的中心线精确对准光纤3的中心线;The
回液管12,进液端与冷却液收集器11的下底部连通;The
散热器14和循环泵13,相互串联,该散热器14的进液口与所述回液管12的出液口相连,而循环泵13的输出端经回液管12与开在所述的液体喷嘴10下端的进液口连通;The
所述液体喷嘴10、冷却液收集器11、回液管12、散热器14和循环泵13串接构成的液柱15的闭合环路形成了一个液体导引装置9。The closed loop of the
所述的光纤3可用一个整个浸在冷却液收集器11中的激光晶体16代替。The
所述的液体喷嘴10产生的液柱15的长度为液柱15直径的1倍至10000倍之间。The length of the
本发明的特征之二在于,含有:泵浦光源、光学耦合装置8、液体导引装置9和光纤3,其中:The second feature of the present invention is that it contains: a pumping light source, an
光纤3,有一个激光输出口;The
液体导引装置9含有:冷却液腔17、回液管12、散热器14和循环泵13,其中:The liquid guiding
冷却液腔17,腔体内充满冷却液6,光纤3输入口所在的一端穿过被O型密封圈7封闭的冷却液腔17的沿轴向一侧进入腔体内,并固定在腔体内壁上,冷却液腔17的沿轴向的另一侧与光学耦合装置8的输出端口相连,泵浦光源输出的泵浦光经过光学耦合装置8后被耦合到腔体内的冷却液6中,再沿着光纤3的轴向中心线入射到光纤3输入口的端口上,进入光纤3;Cooling
散热器14和循环泵13,相互串联,散热器14通过回液管12与冷却液腔17靠近激光输出口一侧的底部连通,循环泵13通过回液管12与冷却液腔17靠近光纤输入口一侧的底部连通;The
所述冷却液腔17、散热器14和循环泵13串接构成的冷却液6的闭合回路形成了一个液体导引装置。The closed loop of the
所述的光纤3可用一个整个浸在冷却液腔17中的激光晶体16代替。The
本发明提出的液体引导泵浦光束的方法及装置,由于采取以上技术方案,具有以下优点:本发明采用液体对端面进行冷却,由于液体导热性能好,因此能够迅速带走被泵浦端面的热量,冷却效果好,解决了现有技术存在的散热难题;由于对整个端面进行冷却,改善了中间热边缘冷的问题,减小了热梯度,因而降低了热效应和热应力,改善了光束质量,减小了端部的形变;由于采用液体散热良好,因此对被泵浦介质的机械夹持结构的精度要求降低,结构设计与系统装调更为容易;冷却液可以起到折射率匹配的作用,减少泵浦光在端面上的反射,还可以起到滤波片的作用,消除不需要的泵浦辐射。本发明的冷却方法和装置简单,实施效果显著,解决了固体激光器和光纤激光器中的高功率泵浦问题,可以使激光器的输出平均功率得到进一步的提高,确保激光器系统工作的稳定性和可靠性。在诸多领域都有广阔的应用前景。The method and device for guiding the pumping light beam with liquid proposed by the present invention has the following advantages due to the adoption of the above technical scheme: the present invention uses liquid to cool the end surface, and the heat of the pumped end surface can be quickly taken away due to the good thermal conductivity of the liquid , the cooling effect is good, which solves the problem of heat dissipation in the prior art; due to the cooling of the entire end face, the problem of the cold edge of the middle heat is improved, the thermal gradient is reduced, and the thermal effect and thermal stress are reduced, and the beam quality is improved. The deformation of the end is reduced; due to the good heat dissipation of the liquid, the precision requirements for the mechanical clamping structure of the pumped medium are reduced, and the structural design and system installation are easier; the cooling liquid can play the role of refractive index matching , to reduce the reflection of the pump light on the end face, and also act as a filter to eliminate unnecessary pump radiation. The cooling method and device of the present invention are simple, and the implementation effect is remarkable, which solves the problem of high-power pumping in solid-state lasers and fiber lasers, can further improve the output average power of the laser, and ensure the stability and reliability of the laser system. . It has broad application prospects in many fields.
附图说明Description of drawings
图1为现有技术中端面泵浦光纤激光器的泵浦与散热装置示意图。FIG. 1 is a schematic diagram of a pumping and cooling device of an end-pumped fiber laser in the prior art.
图2为现有技术中固体激光器的传导冷却装置示意图。Fig. 2 is a schematic diagram of a conduction cooling device for a solid-state laser in the prior art.
图3为现有技术中固体激光器的液冷装置示意图。Fig. 3 is a schematic diagram of a liquid cooling device for a solid-state laser in the prior art.
图4为本发明所述的液体导引泵浦光束的方法及装置的第一实施例结构示意图。Fig. 4 is a structural schematic diagram of the first embodiment of the method and device for guiding the pump beam with liquid according to the present invention.
图5为本发明所述的液体导引泵浦光束的方法及装置的第二实施例结构示意图。FIG. 5 is a schematic structural diagram of a second embodiment of the method and device for guiding a pump beam with a liquid according to the present invention.
图6为本发明所述的液体导引泵浦光束的方法及装置的第三实施例结构示意图。FIG. 6 is a structural schematic diagram of a third embodiment of the method and device for guiding a pump beam with a liquid according to the present invention.
图7为本发明所述的液体导引泵浦光束的方法及装置的第四实施例结构示意图。FIG. 7 is a schematic structural diagram of a fourth embodiment of the method and device for guiding a pump beam with a liquid according to the present invention.
图8为本发明所述的液体导引泵浦光束的方法及装置的第五实施例结构示意图。FIG. 8 is a schematic structural diagram of a fifth embodiment of the method and device for guiding a pump beam with a liquid according to the present invention.
具体实施方式Detailed ways
下面结合附图来说明本发明。The present invention is described below in conjunction with accompanying drawing.
本发明的第一实施例如图4所示,本发明装置包括耦合系统8,液体导引装置9,以及用于输出的光纤3。液体导引装置9由特制的液体喷嘴10,冷却液收集器11,回液管12,循环泵13和散热器14组成。如图4所示,本发明的特点是经过耦合系统8的泵浦光通过前端带有一透明窗口的特制液体喷嘴10后被耦合进喷嘴喷出的液柱15中,液柱15的中心线精确对准光纤3的中心线,将一呈管状的冷却液收集器11的后端密封套设在光纤3上,冷却液收集器11的前端进液口探出光纤3的输入端,且呈开放状对准液体喷嘴10,在冷却液收集器11与液体喷嘴10进液端之间设置一回液管12,在回液管12上设置一循环泵13和散热器14,使整个冷却系统形成一冷却循环回路。本发明装置工作时,从液体喷嘴10喷出的压力液体,形成一段液体柱15,泵浦光在液体柱15内全内反射被导引入射到光纤3的输入端,由光纤3继续传输,喷射到光纤3输入端的液体由冷却液收集器11收集,并通过散热器14进行冷却,经过循环泵13回到液体喷嘴10的输入端继续循环使用。液体喷嘴10与光纤3输入端之间的距离也即稳定的液体柱15的有效长度最长可达液柱直径的10000倍,可根据实际情况取适当的长度。该实施例中,通过液体柱15导引泵浦光束入射到光纤3端面的过程中,液体柱对泵浦光束波长的折射率越高,液体柱导引泵浦光能力越强;液体柱对泵浦光束波长的吸收系数越小,液体柱吸收泵浦光的功率越少,可导引的功率越高;液体柱的比热越大,液体柱对光纤3端部的冷却效果越好。因此,冷却液回路中的液体可以采用具有较高折射率(至少大于1)、对泵浦波长吸收小,且冷却作用好的液体,比如:水。在此实施例中,如果泵浦光为光束质量足够好的激光或其他调教好的光束则可以不经耦合系统8而直接入射喷嘴10直接耦合进液柱15中。The first embodiment of the present invention is shown in FIG. 4 , the device of the present invention includes a
本发明的第二实施例如图5所示,本发明装置包括第一实施例所述的耦合系统8,液体导引装置9,以及光纤耦合器中的支路光纤3。装置设置与工作原理与第一实施例所述相同。Second Embodiment of the Present Invention As shown in FIG. 5 , the device of the present invention includes the
本发明的第三实施例如图6所示,本发明装置包括第一实施例所述的耦合系统8,液体导引装置9,以及激光晶体3。装置设置与工作原理与第一实施例所述相同。此外,整个激光晶体浸没在冷却液收集器11中由冷却液6实现液冷,使得晶体5的侧面也可以得到简单有效的冷却。The third embodiment of the present invention is shown in FIG. 6 , the device of the present invention includes the
本发明的第四实施例如图7所示,本发明装置包括耦合系统8,液体导引装置9,以及激光晶体16。液体导引装置9由回液管12,循环泵13,散热器14和冷却液腔17组成。本发明的特点是耦合系统8与冷却液腔17以及晶体16共同构成一密闭腔,里面充满了冷却液6,在冷却液腔17上设置了回液管12,在回液管12上设置一循环泵13和散热器14,使整个冷却系统形成一冷却循环回路。泵浦光经过耦合系统8入射到晶体16端面被晶体吸收。几乎整个激光晶体16都浸没在冷却液6中因而可以得到充分有效的冷却。The fourth embodiment of the present invention is shown in FIG. 7 , the device of the present invention includes a
本发明的第五实施例如图8所示,本发明装置包括耦合系统8,液体导引装置9,以及光纤3。液体导引装置9如第四实施例所述由回液管12,循环泵13,散热器14和冷却液腔17组成。本发明的特点是耦合系统8与冷却液腔17共同构成一密闭腔,里面充满了冷却液6,在冷却液腔17上设置了回液管12,在回液管12上设置一循环泵13和散热器14,使整个冷却系统形成一冷却循环回路。泵浦光经过耦合系统8入射到光纤端面被光纤吸收。光纤端部都浸没在冷却液中因而可以得到充分有效的冷却。The fifth embodiment of the present invention is shown in FIG. 8 , the device of the present invention includes a
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100866714A CN100452570C (en) | 2007-03-23 | 2007-03-30 | Method and apparatus for liquid guided pump beam |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710064683 | 2007-03-23 | ||
CN200710064683.7 | 2007-03-23 | ||
CNB2007100866714A CN100452570C (en) | 2007-03-23 | 2007-03-30 | Method and apparatus for liquid guided pump beam |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101043118A true CN101043118A (en) | 2007-09-26 |
CN100452570C CN100452570C (en) | 2009-01-14 |
Family
ID=38808427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007100866714A Expired - Fee Related CN100452570C (en) | 2007-03-23 | 2007-03-30 | Method and apparatus for liquid guided pump beam |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100452570C (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011130897A1 (en) * | 2010-04-19 | 2011-10-27 | 华中科技大学 | Disc-shaped solid laser |
CN102244340A (en) * | 2011-05-24 | 2011-11-16 | 中国科学院上海光学精密机械研究所 | Cooling method of non-quartz fiber laser |
CN102684044A (en) * | 2012-04-26 | 2012-09-19 | 深圳市创鑫激光技术有限公司 | Optical fiber laser and cooling method thereof |
CN103199413A (en) * | 2013-03-29 | 2013-07-10 | 中国科学院半导体研究所 | Cooling method and cooling device of end pump laser |
CN104124604A (en) * | 2013-04-28 | 2014-10-29 | 深圳市大族激光科技股份有限公司 | Thin disc laser |
WO2015081758A1 (en) * | 2013-12-05 | 2015-06-11 | 方强 | A high-power optical fiber head, collimator, isolator and frequency combiner |
WO2016026377A1 (en) * | 2014-08-21 | 2016-02-25 | 方强 | Optical component with cooling function |
CN111244733A (en) * | 2020-02-11 | 2020-06-05 | 中国工程物理研究院应用电子学研究所 | Variable-caliber multi-pass laser amplifier based on direct liquid cooling array distribution gain module |
CN111478175A (en) * | 2020-06-02 | 2020-07-31 | 福州市纳飞光电科技有限公司 | Laser energy amplifier |
EP2747218B1 (en) * | 2012-12-18 | 2021-08-25 | A.R.C. Laser GmbH | Cooling assembly for laser active solid materials, laser system and method for cooling a laser active solid material |
CN115621820A (en) * | 2022-12-06 | 2023-01-17 | 武汉光谷航天三江激光产业技术研究院有限公司 | Linear polarization output laser structure for effectively compensating thermal depolarization effect |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023053685A (en) * | 2021-10-01 | 2023-04-13 | 三菱重工業株式会社 | optical connector |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4732450A (en) * | 1985-02-27 | 1988-03-22 | Amada Engineering & Service Co., Inc. | Input/output coupling device for optical fiber used in high power laser beam delivery |
US4657014A (en) * | 1985-03-11 | 1987-04-14 | Shiley, Inc. | Liquid interface fiberoptic coupler |
JPS63272085A (en) * | 1987-04-30 | 1988-11-09 | Matsushita Electric Ind Co Ltd | Solid-state laser oscillator |
JPH07140350A (en) * | 1993-11-17 | 1995-06-02 | Fanuc Ltd | Light transmission device |
US20030142710A1 (en) * | 2000-03-17 | 2003-07-31 | Jorg Meister | Device for producing laser light |
US6937629B2 (en) * | 2001-11-21 | 2005-08-30 | General Atomics | Laser containing a distributed gain medium |
CN100336664C (en) * | 2004-03-30 | 2007-09-12 | 三星电子株式会社 | Method for making ink-jet printing head using liquid jet flow to guide laser |
JP4844715B2 (en) * | 2005-08-25 | 2011-12-28 | 澁谷工業株式会社 | Hybrid laser processing equipment |
-
2007
- 2007-03-30 CN CNB2007100866714A patent/CN100452570C/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011130897A1 (en) * | 2010-04-19 | 2011-10-27 | 华中科技大学 | Disc-shaped solid laser |
CN102244340A (en) * | 2011-05-24 | 2011-11-16 | 中国科学院上海光学精密机械研究所 | Cooling method of non-quartz fiber laser |
CN102684044A (en) * | 2012-04-26 | 2012-09-19 | 深圳市创鑫激光技术有限公司 | Optical fiber laser and cooling method thereof |
EP2747218B1 (en) * | 2012-12-18 | 2021-08-25 | A.R.C. Laser GmbH | Cooling assembly for laser active solid materials, laser system and method for cooling a laser active solid material |
CN103199413B (en) * | 2013-03-29 | 2015-08-26 | 中国科学院半导体研究所 | The cooling means of end-pumped laser and cooling device |
CN103199413A (en) * | 2013-03-29 | 2013-07-10 | 中国科学院半导体研究所 | Cooling method and cooling device of end pump laser |
CN104124604A (en) * | 2013-04-28 | 2014-10-29 | 深圳市大族激光科技股份有限公司 | Thin disc laser |
CN104124604B (en) * | 2013-04-28 | 2018-07-06 | 大族激光科技产业集团股份有限公司 | Thin-sheet laser |
WO2015081758A1 (en) * | 2013-12-05 | 2015-06-11 | 方强 | A high-power optical fiber head, collimator, isolator and frequency combiner |
WO2016026377A1 (en) * | 2014-08-21 | 2016-02-25 | 方强 | Optical component with cooling function |
CN111244733A (en) * | 2020-02-11 | 2020-06-05 | 中国工程物理研究院应用电子学研究所 | Variable-caliber multi-pass laser amplifier based on direct liquid cooling array distribution gain module |
CN111244733B (en) * | 2020-02-11 | 2021-08-10 | 中国工程物理研究院应用电子学研究所 | Variable-caliber multi-pass laser amplifier based on direct liquid cooling array distribution gain module |
CN111478175A (en) * | 2020-06-02 | 2020-07-31 | 福州市纳飞光电科技有限公司 | Laser energy amplifier |
CN115621820A (en) * | 2022-12-06 | 2023-01-17 | 武汉光谷航天三江激光产业技术研究院有限公司 | Linear polarization output laser structure for effectively compensating thermal depolarization effect |
Also Published As
Publication number | Publication date |
---|---|
CN100452570C (en) | 2009-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100452570C (en) | Method and apparatus for liquid guided pump beam | |
CN105305207A (en) | End-pumped single-pass traveling wave laser amplifier | |
CN105071198B (en) | A kind of devices and methods therefor for eliminating the wavefront distortion caused by window-shaped becomes of laser gain module | |
CN100399651C (en) | Reflective glass realizes slab laser with Z-shaped optical path | |
CN210334744U (en) | Laser processing head with stray light absorption surface | |
CN102064469A (en) | Diode pumping slab fixed laser | |
IL130740A (en) | Thermally improved slab laser pump cavity apparatus with integral concentrator | |
CN1159810C (en) | An angle pumping method for slabs and its solid-state laser gain module | |
CN111769431A (en) | A structure and implementation method for increasing one-pass gain by angular side pumping | |
CN101572386A (en) | Inclined Slab Laser Amplifier | |
CN101604813A (en) | A Hybrid Cooled Laser Diode Pumped Slab Gain Block | |
CN105511088A (en) | High-power optical fiber output system with cladding light filtering-out function | |
CN114824998A (en) | High-overlapping-efficiency distributed reflection type direct liquid-cooling laser gain device | |
CN101593927A (en) | A semiconductor side pump module | |
CN107104350B (en) | A laser amplifier | |
CN1547295A (en) | Dual wavelength combined pumping method of slab laser gain medium and its gain module | |
CN201868726U (en) | Mixed cooling laser diode pumping slab laser | |
CN101276985A (en) | A laser diode end-pumped wedge solid-state laser | |
CN1885643A (en) | Semiconductor laser pumping prism beam-expanded solid batten laser | |
US10511135B2 (en) | Laser system with mechanically-robust monolithic fused planar waveguide (PWG) structure | |
CN116598880A (en) | Planar waveguide laser amplifier of ytterbium double-concentration doped yttrium aluminum garnet | |
CN104332807A (en) | Slab laser amplifier and laser output method | |
CN2899202Y (en) | High Power Lamp Pumped High Power Solid State Lasers | |
CN204179475U (en) | A kind of slab laser amplifier | |
CN2927419Y (en) | Slab laser for realizing Z-shaped light path by reflecting glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090114 Termination date: 20110330 |