CN101025345A - 热管 - Google Patents

热管 Download PDF

Info

Publication number
CN101025345A
CN101025345A CNA2006100338028A CN200610033802A CN101025345A CN 101025345 A CN101025345 A CN 101025345A CN A2006100338028 A CNA2006100338028 A CN A2006100338028A CN 200610033802 A CN200610033802 A CN 200610033802A CN 101025345 A CN101025345 A CN 101025345A
Authority
CN
China
Prior art keywords
heat pipe
capillary structure
section
structure layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006100338028A
Other languages
English (en)
Other versions
CN100561105C (zh
Inventor
侯春树
刘泰健
童兆年
孙至贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhun Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Original Assignee
Fuzhun Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhun Precision Industry Shenzhen Co Ltd, Hon Hai Precision Industry Co Ltd filed Critical Fuzhun Precision Industry Shenzhen Co Ltd
Priority to CNB2006100338028A priority Critical patent/CN100561105C/zh
Priority to US11/309,246 priority patent/US7594537B2/en
Publication of CN101025345A publication Critical patent/CN101025345A/zh
Application granted granted Critical
Publication of CN100561105C publication Critical patent/CN100561105C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本发明公开一种热管,包括一密封的金属管壳,其内装入适量工作介质,该管壳内壁设有毛细结构层,该热管包括一冷凝段、一蒸发段及一位于二者之间的绝热段,该蒸发段的毛细结构层厚度小于绝热段的毛细结构层厚度。本发明热管由于蒸发段的毛细结构层的厚度较薄,从而蒸发段的液态工作介质适量而对温度相应速度较快,即汽化启动快使得热管很快进入工作状态,进而提高热管整体热传效率。

Description

热管
【技术领域】
本发明涉及一种热管。
【背景技术】
热管的基本构造是在密闭管材内壁衬以易吸收工作介质的多孔质毛细结构层,而其中央的空间则为空胴状态,并在抽真空的密闭管材内注入相当于毛细结构层细孔总容积的工作介质,依吸收与散出热量的相关位置可分为蒸发段、冷凝段以及其间的绝热段。
随着电子产业不断发展,电子元件(尤是中央处理器)运行速度和整体性能在不断提升。然而,随之产生的高瓦特数的废热问题必须克服。而热管由于具有体积小、可利用潜热快速输送大量热能、温度分布均匀、构造简单、重量轻、无需外加作用力、寿命长、低热阻及可远距离传热等特点,符合目前计算机散热模块的严苛需求,因此被广泛用来辅助散热模块解决散热问题。
一般,热管是主要由真空密封的管形壳体10、其内壁上设置的毛细结构20(如粉体烧结物、沟槽结构、丝网结构等)及其内装入适量的工作介质(如水、乙醇、丙酮等)组成。热管依据其作用主要区分为蒸发段(EvaporatorSection)40、绝热段(Adiabatic Section)50、冷凝段(Condenser Section)60三大部份,如图1所示。该现有热管的毛细结构20为粉体烧结物于金属管壳内壁均匀设置而成,毛细结构的空隙大小相同、空隙率均匀。
其中,当工作介质在蒸发段40吸热汽化产生相变,其由液态体积急速膨胀而成汽态(如图中箭头所示)并快速将热源带离蒸发段40,快速行经绝热段50,此时温差(ΔT)几乎无变异,最后蒸汽在冷凝段60因外加散热模块而放热产生相变作用冷凝成液体,由重力(考虑操作角度效应)或内管壁毛细结构的毛细力作用重回到蒸发段40,如此循环不已。
但在实际应用中,上述热管的三大区域因其个别的功用不同,其毛细结构的特性要求也不一样。例如,图2所示的现有热管,其毛细结构20的空隙尺寸及空隙率形成由蒸发段40朝向冷凝段60方向逐步增大的梯度。其主要功能在于:蒸热段40的毛细结构24的孔隙率与孔隙尺寸最小,主要使用较细颗粒分布的粉体为主体,因其孔隙尺寸小、成核数量多易造成气泡的产生,增加汽化量并缩短热管反应时间。而绝热段50的毛细结构25的孔隙率与孔隙尺寸大于蒸发段毛细结构24的孔隙率与孔隙尺寸,主要使用较粗颗粒分布的粉体为主体,因其孔隙尺寸稍大易于使冷凝的工作介质快速由冷凝段60回到绝热段50及蒸发段40。而在冷凝段60的毛细结构26的孔隙率与孔隙尺寸为最大,主要是增加其渗透率使得工作介质的热量可以直接且快速的经由毛细结构26、金属壳体10表面传递至散热模块或大气中,以达到冷却的目的。
然而,无论图1或图2所示的热管其毛细结构层在蒸发段40、绝热段50、冷凝段60的厚度均相同,其也不符合热管蒸发段及冷凝段的功能不同而所相应的不同需求,例如热管蒸发段的主要功能有除了将液态工作介质快速大量进行汽化外还需要快速启动汽化,其相应的需求是蒸发段的毛细结构层厚度尽量满足能够使工作介质快速大量汽化的前提下较薄为好,以避免液态工作介质过量而对温度相应速度慢,使得汽化启动慢,这些现有热管蒸发段的毛细结构层虽然具有使工作介质快速大量汽化作用,但是较厚而导致对温度相应速度慢,即汽化启动慢,进而热管整体传热性能受限。
【发明内容】
有鉴于此,有必要提供一种热传效率高的热管。
一种热管,包括一密封的金属管壳,其内装入适量工作介质,该管壳内壁设有毛细结构层,该热管包括一冷凝段、一蒸发段及一位于二者之间的绝热段,该蒸发段的毛细结构层厚度小于绝热段的毛细结构层厚度。
所述热管与现有技术相比具有如下优点:由于该热管蒸发段的毛细结构层的厚度较薄,从而热管蒸发段的液态工作介质适量而对温度相应速度较快,即汽化启动快使得热管很快进入工作状态,进而提高热管整体传热效率。
下面参照附图,结合具体实施例对本发明作进一步的描述。
【附图说明】
图1是一种现有热管的剖面示意图。
图2是另一种现有热管的剖面示意图。
图3是本发明热管的第一实施例的剖面示意图。
图4是本发明热管的第二实施例的剖面示意图。
图5是本发明热管的第三实施例的剖面示意图。
图6是本发明热管的第四实施例的剖面示意图。
【具体实施方式】
以下参照图3至图6,就本发明热管的较佳实施例详加说明,俾利完全了解。本发明仅以圆管为例对主要技术特征进行说明。
请参阅图3,是本发明热管的第一实施例的剖面示意图。该热管主要包含一金属管壳100、毛细结构200及金属管壳100内填充的适量工作介质(未标示)。该热管也区分有蒸发段400、绝热段500、冷凝段600三个部分。
其中,该热管蒸发段400的毛细结构层240厚度远离绝热段500的方向逐渐减小(但其封口端处的毛细结构层厚度不在此限),其厚度基本满足对工作介质的快速大量汽化功能前提下,使其毛细结构层240的厚度尽量较薄,将毛细结构层240内部的液态工作介质适量化,从而提高对温度的相应速度即汽化启动速度,使得热管很快进入工作状态。该蒸发段400的毛细结构层240非等断面形状主要系通过在填粉成型时以治具或填充该形状的铜网等方式进行制造。从上述可知,该热管的冷凝段600与绝热段500的毛细结构层260与250的厚度相同并与蒸发段400的毛细结构层240最大厚度相同。
可以理解地,本发明热管主要系通过粉体物于金属管壳100内壁烧结形成其空隙尺寸及空隙率由蒸发段400朝向冷凝段600方向逐步增大的毛细结构200为例进行说明。但,实际应用中,本发明的毛细结构也可为沟槽结构、丝网结构以及复合结构的任何毛细结构。
请参阅图4为本发明热管的第二实施例。其在第一实施例的基础上,将该热管冷凝段600的毛细结构260也设置为非等断面形状,即其厚度远离绝热段500的方向逐渐减小,冷凝段600的毛细结构层260的平均厚度小于蒸发段400的毛细结构层240平均厚度,并越靠近端面其毛细结构层260越薄甚至封口端处没有毛细结构260,从而在冷凝段600管壳与被汽化的汽态工作介质之间的传热阻力小,加速管壳与工作介质之间的热交换,提高热传效率。从上可知,该热管的蒸发段400与冷凝段600的毛细结构层240、260最大厚度相同并与绝热段500的毛细结构层250厚度相同。
请再参阅图5为本发明热管的第三实施例。该实施例与上述第二实施例的区别在于,热管冷凝段及蒸发段的毛细结构层厚度均匀并与绝热段的毛细结构层具有一定的厚度差,而其中冷凝段与蒸发段的厚度相同或不相同也可。还可以理解地,上述第一实施例中的热管蒸发段毛细结构层厚度也可设计为均匀并与绝热段的毛细结构层具有一定的厚度差。
请参阅图6为本发明热管的第四实施例。其在第二实施例(或第一实施例或第三实施例,图未示)的基础上,该热管绝热段500部分的液态工作介质与汽态工作介质之间介设有一较薄隔离层300,从而克服传统热管的液态与汽态工作介质在同一空间内逆向流动而发生夹滞限制,进而造成剪切力而导致热传输效能的降低。
可以理解地,本发明热管所用的隔离层300可适当的向蒸发段400及冷凝段600延伸;该隔离层300可为与毛细结构层200表面结合的薄膜状、各形状的薄管状、细网格状或其它金属或非金属的隔板等。

Claims (12)

1.一种热管,包括一密封的金属管壳,其内装入适量工作介质,该管壳内壁设有毛细结构层,该热管包括一冷凝段、一蒸发段及一位于二者之间的绝热段,其特征在于:该蒸发段的毛细结构层厚度小于绝热段的毛细结构层厚度。
2.如权利要求1所述的热管,其特征在于:所述蒸发段的毛细结构层厚度向远离绝热段方向逐渐减小。
3.如权利要求2所述的热管,其特征在于:所述冷凝段的毛细结构层厚度向远离绝热段方向逐渐减小。
4.如权利要求3所述的热管,其特征在于:所述冷凝段的毛细结构层平均厚度小于蒸发段的毛细结构层平均厚度。
5.如权利要求1所述的热管,其特征在于:所述蒸发段的毛细结构层厚度均匀并与绝热段的毛细结构层具有一定厚度差。
6.如权利要求5所述的热管,其特征在于:所述冷凝段的毛细结构层厚度均匀并与绝热段的毛细结构层具有一定厚度差。
7.如权利要求1至6中任一项所述的热管,其特征在于:所述热管对应绝热段的毛细结构层表面设有汽-液分流隔离层。
8.如权利要求7所述的热管,其特征在于:所述隔离层两端可分别向蒸发段与冷凝段适当延伸。
9.如权利要求7所述的热管,其特征在于:所述隔离层沿毛细结构层接口延伸而形成管状体,其横截面形状为圆形、椭圆形或多边形。
10.如权利要求7所述的热管,其特征在于:所述隔离层呈薄膜状或细网格状。
11.如权利要求1至6中任一项所述的热管,其特征在于:所述毛细结构为沟槽状、网格状、纤维状、烧结粉体、波浪状薄板的一种或该等结构的复合。
12.如权利要求11所述的热管,其特征在于:所述毛细结构的孔隙尺寸及孔隙率在冷凝段大于绝热段、绝热段大于蒸发段。
CNB2006100338028A 2006-02-17 2006-02-17 热管 Expired - Fee Related CN100561105C (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNB2006100338028A CN100561105C (zh) 2006-02-17 2006-02-17 热管
US11/309,246 US7594537B2 (en) 2006-02-17 2006-07-19 Heat pipe with capillary wick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100338028A CN100561105C (zh) 2006-02-17 2006-02-17 热管

Publications (2)

Publication Number Publication Date
CN101025345A true CN101025345A (zh) 2007-08-29
CN100561105C CN100561105C (zh) 2009-11-18

Family

ID=38426977

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100338028A Expired - Fee Related CN100561105C (zh) 2006-02-17 2006-02-17 热管

Country Status (2)

Country Link
US (1) US7594537B2 (zh)
CN (1) CN100561105C (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012728A (zh) * 2010-11-26 2011-04-13 中山市锐盈电子有限公司 一种集中散热式电脑机箱
CN103512414A (zh) * 2012-06-15 2014-01-15 奇鋐科技股份有限公司 热管结构、散热模组与电子装置
CN104296573A (zh) * 2014-10-30 2015-01-21 山东省粮油收储有限公司 一种用于低温储粮的反重力热管及低温储粮方法
CN107025992A (zh) * 2017-06-08 2017-08-08 东莞市瑞为电器配件有限公司 一种变压器的接线柱结构
CN107388862A (zh) * 2017-06-12 2017-11-24 海蓝星光学科技(东莞)有限公司 一种双毛细芯led导热管及其制备工艺
CN110736376A (zh) * 2018-07-18 2020-01-31 实迈公司 具有带可变渗透率的管芯结构的热管
CN110940215A (zh) * 2019-11-14 2020-03-31 上海卫星装备研究所 变截面热管的结构及制造方法
CN112129148A (zh) * 2020-09-24 2020-12-25 四川大学 一种烧结复合芯热管及其制备方法
CN117537642A (zh) * 2024-01-10 2024-02-09 四川力泓电子科技有限公司 热管、散热器及电子设备

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100552365C (zh) * 2005-11-18 2009-10-21 富准精密工业(深圳)有限公司 热管
CN100480612C (zh) * 2006-04-28 2009-04-22 富准精密工业(深圳)有限公司 热管
US8919427B2 (en) * 2008-04-21 2014-12-30 Chaun-Choung Technology Corp. Long-acting heat pipe and corresponding manufacturing method
CN101754656B (zh) * 2008-12-10 2013-02-20 富准精密工业(深圳)有限公司 均温板
US20110214841A1 (en) * 2010-03-04 2011-09-08 Kunshan Jue-Chung Electronics Co. Flat heat pipe structure
GB201009264D0 (en) * 2010-06-03 2010-07-21 Rolls Royce Plc Heat transfer arrangement for fluid washed surfaces
US11454454B2 (en) 2012-03-12 2022-09-27 Cooler Master Co., Ltd. Flat heat pipe structure
TWI457528B (zh) * 2012-03-22 2014-10-21 Foxconn Tech Co Ltd 扁平熱管
US9273909B2 (en) * 2012-08-23 2016-03-01 Asia Vital Components Co., Ltd. Heat pipe structure, and thermal module and electronic device using same
US9752832B2 (en) * 2012-12-21 2017-09-05 Elwha Llc Heat pipe
CN104266519B (zh) * 2013-02-17 2016-04-27 上海交通大学 具有孔密度渐变的通孔金属泡沫热管换热装置
US10660236B2 (en) * 2014-04-08 2020-05-19 General Electric Company Systems and methods for using additive manufacturing for thermal management
WO2016032759A1 (en) * 2014-08-25 2016-03-03 J R Thermal LLC Temperature glide thermosyphon and heat pipe
US10356945B2 (en) 2015-01-08 2019-07-16 General Electric Company System and method for thermal management using vapor chamber
US9909448B2 (en) 2015-04-15 2018-03-06 General Electric Company Gas turbine engine component with integrated heat pipe
JP2017072340A (ja) * 2015-10-09 2017-04-13 株式会社フジクラ ヒートパイプ
CN105698141A (zh) * 2016-03-16 2016-06-22 南京航空航天大学 一种散热装置
US10209009B2 (en) 2016-06-21 2019-02-19 General Electric Company Heat exchanger including passageways
US11320211B2 (en) * 2017-04-11 2022-05-03 Cooler Master Co., Ltd. Heat transfer device
US10048015B1 (en) * 2017-05-24 2018-08-14 Taiwan Microloops Corp. Liquid-vapor separating type heat conductive structure
US11131511B2 (en) 2018-05-29 2021-09-28 Cooler Master Co., Ltd. Heat dissipation plate and method for manufacturing the same
JP6560425B1 (ja) * 2018-11-09 2019-08-14 古河電気工業株式会社 ヒートパイプ
US11913725B2 (en) 2018-12-21 2024-02-27 Cooler Master Co., Ltd. Heat dissipation device having irregular shape
JP6640401B1 (ja) * 2019-04-18 2020-02-05 古河電気工業株式会社 ヒートシンク
WO2020252555A1 (en) * 2019-06-17 2020-12-24 Huawei Technologies Co., Ltd Heat transfer device and method for manufacturing such a heat transfer device
US11260953B2 (en) 2019-11-15 2022-03-01 General Electric Company System and method for cooling a leading edge of a high speed vehicle
US11427330B2 (en) 2019-11-15 2022-08-30 General Electric Company System and method for cooling a leading edge of a high speed vehicle
US11267551B2 (en) 2019-11-15 2022-03-08 General Electric Company System and method for cooling a leading edge of a high speed vehicle
US11352120B2 (en) 2019-11-15 2022-06-07 General Electric Company System and method for cooling a leading edge of a high speed vehicle
US11260976B2 (en) 2019-11-15 2022-03-01 General Electric Company System for reducing thermal stresses in a leading edge of a high speed vehicle
CN113494862A (zh) * 2020-03-19 2021-10-12 亚浩电子五金塑胶(惠州)有限公司 热管
US11745847B2 (en) 2020-12-08 2023-09-05 General Electric Company System and method for cooling a leading edge of a high speed vehicle
US11407488B2 (en) 2020-12-14 2022-08-09 General Electric Company System and method for cooling a leading edge of a high speed vehicle
US11577817B2 (en) 2021-02-11 2023-02-14 General Electric Company System and method for cooling a leading edge of a high speed vehicle
TWI780923B (zh) * 2021-09-23 2022-10-11 劍麟股份有限公司 可抗飽和蒸汽壓的熱管及其製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3754594A (en) 1972-01-24 1973-08-28 Sanders Associates Inc Unilateral heat transfer apparatus
JPS5835388A (ja) 1981-08-26 1983-03-02 Hisateru Akachi 回転式ヒ−トパイプ
US4489777A (en) * 1982-01-21 1984-12-25 Del Bagno Anthony C Heat pipe having multiple integral wick structures
US5010951A (en) * 1989-08-03 1991-04-30 Lockhead Missiles & Space Company, Inc. Graded-groove heat pipe
KR20030065686A (ko) * 2002-01-30 2003-08-09 삼성전기주식회사 히트 파이프 및 그 제조 방법
CN2613740Y (zh) 2003-04-17 2004-04-28 鸿富锦精密工业(深圳)有限公司 热管
US6997243B2 (en) * 2004-04-23 2006-02-14 Hul-Chun Hsu Wick structure of heat pipe
US7134485B2 (en) * 2004-07-16 2006-11-14 Hsu Hul-Chun Wick structure of heat pipe
US6997244B2 (en) * 2004-07-16 2006-02-14 Hsu Hul-Chun Wick structure of heat pipe
CN2735283Y (zh) 2004-09-15 2005-10-19 大连熵立得传热技术有限公司 锥形吸液芯热管导热柱

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012728A (zh) * 2010-11-26 2011-04-13 中山市锐盈电子有限公司 一种集中散热式电脑机箱
CN103512414A (zh) * 2012-06-15 2014-01-15 奇鋐科技股份有限公司 热管结构、散热模组与电子装置
CN103512414B (zh) * 2012-06-15 2015-07-29 奇鋐科技股份有限公司 热管结构、散热模组与电子装置
CN104296573A (zh) * 2014-10-30 2015-01-21 山东省粮油收储有限公司 一种用于低温储粮的反重力热管及低温储粮方法
CN107025992A (zh) * 2017-06-08 2017-08-08 东莞市瑞为电器配件有限公司 一种变压器的接线柱结构
CN107388862A (zh) * 2017-06-12 2017-11-24 海蓝星光学科技(东莞)有限公司 一种双毛细芯led导热管及其制备工艺
CN110736376A (zh) * 2018-07-18 2020-01-31 实迈公司 具有带可变渗透率的管芯结构的热管
CN110736376B (zh) * 2018-07-18 2023-02-24 实迈公司 具有带可变渗透率的管芯结构的热管
CN110940215A (zh) * 2019-11-14 2020-03-31 上海卫星装备研究所 变截面热管的结构及制造方法
CN110940215B (zh) * 2019-11-14 2021-05-11 上海卫星装备研究所 变截面热管的结构及制造方法
CN112129148A (zh) * 2020-09-24 2020-12-25 四川大学 一种烧结复合芯热管及其制备方法
CN117537642A (zh) * 2024-01-10 2024-02-09 四川力泓电子科技有限公司 热管、散热器及电子设备
CN117537642B (zh) * 2024-01-10 2024-03-19 四川力泓电子科技有限公司 热管、散热器及电子设备

Also Published As

Publication number Publication date
US20070193723A1 (en) 2007-08-23
CN100561105C (zh) 2009-11-18
US7594537B2 (en) 2009-09-29

Similar Documents

Publication Publication Date Title
CN100561105C (zh) 热管
CN100561106C (zh) 热管
Tang et al. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling
Blet et al. Heats pipes for temperature homogenization: A literature review
CN100498185C (zh) 热管
US7213637B2 (en) Heat pipe operating fluid, heat pipe, and method for manufacturing the heat pipe
CN100420912C (zh) 热传组件的复合式毛细结构
US10976112B2 (en) Heat pipe
CN100480611C (zh) 热管
CN100552365C (zh) 热管
CN100495692C (zh) 带有微沟槽翅结构的毛细泵吸冷却装置及其制造方法
US20070240852A1 (en) Heat pipe with heat reservoirs at both evaporating and condensing sections thereof
US20070240856A1 (en) Heat pipe
CN201138911Y (zh) 实现高热流密度传热的散热装置
Rashidi et al. Abilities of porous materials for energy saving in advanced thermal systems
CN109870053B (zh) 一种用于空间站科学载荷柜的多柔性蒸发器环路热管控温系统和方法
US20070240854A1 (en) Heat pipe and method for producing the same
CN101581549A (zh) 一种扁形热管及其制作方法
US20070240851A1 (en) Heat pipe
CN109458864B (zh) 一种具备外空间工作能力的毛细泵回路热管及工作方法
CN104266519A (zh) 具有孔密度渐变的通孔金属泡沫热管换热装置
Khairnasov et al. Heat pipes application in electronics thermal control systems
CN101819001A (zh) 超导元件结构
Chang et al. Sustainable dropwise condensation enabled ultraefficient heat pipes
US20240102743A1 (en) Performance enhancement in thermal system with porous surfaces

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091118

Termination date: 20120217