CN100588373C - 声波化学治疗装置 - Google Patents
声波化学治疗装置 Download PDFInfo
- Publication number
- CN100588373C CN100588373C CN200610099774A CN200610099774A CN100588373C CN 100588373 C CN100588373 C CN 100588373C CN 200610099774 A CN200610099774 A CN 200610099774A CN 200610099774 A CN200610099774 A CN 200610099774A CN 100588373 C CN100588373 C CN 100588373C
- Authority
- CN
- China
- Prior art keywords
- mentioned
- treatment
- ultrasonic
- diagnostic image
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0092—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin using ultrasonic, sonic or infrasonic vibrations, e.g. phonophoresis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Dermatology (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Surgical Instruments (AREA)
Abstract
本发明提供一种可一边确认通过空化实现的气泡生成一边进行肿瘤等的治疗的装置等,该空化对进行声波化学治疗有效。声波化学治疗装置(1)具有诊断用超声波照射单元(2)、治疗用超声波照射单元(3)、检测超声波回波的回波检测单元(2)、诊断用控制单元(42)、根据检测出的超声波回波生成诊断图像的诊断图像生成单元(441)、及通过治疗用超声波照射单元(3)照射治疗用超声波的治疗用控制单元(43);其特征在于:治疗用控制单元(43)包含脉冲控制单元(431),该脉冲控制单元(431)进行按预定脉冲数和停止期间照射治疗用超声波的控制;诊断图像生成单元(441)根据治疗用超声波的停止期间的超声波回波,生成诊断图像。
Description
技术领域
本发明涉及利用超声波的治疗装置等,特别是涉及声波化学治疗装置等,该声波化学治疗装置由超声波照射产生空化作用,与通过该空化作用活化了的声波化学治疗用药剂组合进行治疗。
背景技术
作为将超声波用于医疗领域的装置,超声波诊断装置广泛地得到普及。超声波诊断装置与目前医院使用的其它各种图像诊断设备相比,具有许多优点,例如实时性优良,廉价,而且由于体积小,所以还容易使用。另外,超声波诊断装置本来用于诊断内脏器官等的形状,但近年来通过与预定的超声波造影剂组合,从而对内脏器官等的功能也可进行诊断。如实现功能诊断,则可更早地发现癌等疾病,有利于提高患者的生活质量(Quality Of Life)。
另外,超声波不仅用于诊断,而且也用于癌症等的治疗。作为使用超声波的治疗方法,公开了加热凝固治疗,该加热凝固治疗利用吸收到生物组织转换成热的超声波能量而使组织凝固坏死(例如参照非专利文献1)。这样的加热凝固治疗实际上已开始对前列腺肥大、前列腺癌、乳腺癌等疾病实施。
这样,超声波由于可用于诊断和治疗,所以,可提供对串者的治疗效率高而且有效的综合系统(例如参照专利文献1)。
然而,在加热凝固治疗中,将大于等于1kW/cm2的高声波强度的收敛超声波照射到患部,所以,当瞄准产生偏移时,可能使患者的负担增加。另外,加热凝固治疗被认为不适合含有正常组织和癌变组织的那样的浸润性或播种性癌的治疗。
另一方面,公开有声波化学治疗,该声波化学治疗通过组合超声波与药剂,可使用数W/cm2~数10W/cm2程度的较低声波强度的超声波进行治疗(例如参照非专利文献2)。声波化学治疗为这样的方法,即,利用通过超声波照射产生的被称为空化的现象,使预先注入到患者的声波化学治疗用药剂活化,进行患者的治疗。
空化为这样一连串的现象,即,通过超声波产生气泡,产生的气泡长大,长大的气泡产生压缩破坏。当在空化的最后的过程中气泡被压缩破坏时,产生极高压力(数百个大气压)和温度(数千度),在气泡近旁形成特异的反应场。
作为声波化学治疗用的药剂,例如公开了这样的药剂(例如参照专利文献2),该药剂如孟加拉玟红衍生物那样聚集于肿瘤,降低空化所需要的超声波的阈值,当置于通过空化产生的反应场中时,例如生成活性氧,从而体现出抗肿瘤效果。
这样,声波化学治疗可由药剂和超声波双重地瞄准患部,所以,可期待成为选择性非常高的治疗法。
另外,在声波化学治疗中,公开了用于由比已有技术较低的声波强度的超声波引起空化现象的超声波照射方法。例如,在专利文献3中公开了一边切换声场一边照射超声波的方法,在专利文献4中公开了在基波重叠具有其二倍频率的二次谐波的方法,另外,在非专利文献3中公开了错开基波与二次谐波的相位进行重叠的方法。
这些方法都为这样的方法,即,在通过超声波照射生成的气泡达到以照射超声波频率共振的大小之前,促进其生长,从而按良好地效率产生空化。
另外,公开了这样的内容(例如参照非专利文献4、5),即,为了使产生了的气泡生长,需要按大于等于3的脉冲数继续照射超声波。
另外,公开了在超声波结石破坏、超声波加热凝固治疗中对治疗部位进行观察的多个方法。例如在专利文献5公开的方法中,在治疗前用微弱的超声波确认结石位置;在专利文献6公开的方法中,通过从多个不同方位进行超声波摄像,从而检测偶数倍谐波发生位置,确认结石破坏或空穴的压溃位置;在专利文献7公开的方法中,检测偶数倍谐波,确认气泡的生成,从而确认达到可使组织确实地产生热变性的温度。
另外,特别是为了防止在照射加热凝固治疗用超声波的过程中由于与诊断用超声波干涉而使得超声波诊断变得困难,公开了这样的手法,即,使超声波诊断装置与加热凝固治疗装置同步,仅在诊断用超声波用于治疗部位附近的可视化时,停止治疗用超声波,使得可在治疗过程中观察治疗部位(例如参照非专利文献6)。
另外,公开了这样的发明,即,在加热凝固治疗中,仅在治疗用超声波的照射停止期间进行用于获得超声波诊断像的超声波操作(例如参照专利文献8、9)。
[专利文献1]日本特表平11-506636号公报
[专利文献2]国际公开第98/01131号小册子
[专利文献3]日本特开平2-126848号公报
[专利文献4]日本特愿平4-246179号公报
[专利文献5]日本专利第2644217号公报
[专利文献6]日本专利3225526号公报
[专利文献7]日本特开2003-33365号公报
[专利文献8]美国专利第6095980号公报
[专利文献9]日本特开2000-229098号公报
[非专利文献1]P.P.Lele著“Ultrasound;medical applications,biological effects and hazard potential”Plenum Press New York 1987年
[非专利文献2]Yumita等(1989)Jpn.J.Cancer Res.,80:219-222
[非专利文献3]Kawabata等(2003)Jpn.J.Appl.Phys.,42:3246-3250
[非专利文献4]Xu等(2003)IEEE Ultrasonics Symposium Proc.,1086-1089
[非专利文献5]Xu等(2003)IEEE Trans.Ultrason.Ferroelect.Freq.Contr.,51:726-736
[非专利文献6]Vaezy等(2000)Ultraso.Med.Biol.,27:33-42
这样,声波化学治疗有希望成为患者负担少、效果好的肿瘤治疗方法。另外,公开了一种超声波照射方法,即,在声波化学治疗中,即使是低声波强度的超声波,该方法也可高效率地引起成为治疗源的空化现象。
然而,在使用这样的照射方法的场合,如使用已有技术,则也存在难以按良好的再现性引起空化现象的问题。
另外,在照射治疗用超声波期间不能生成适当的诊断图像,所以,超声波照射后经过数日,在实际确认肿瘤的变性之前,不能判定治疗效果。
发明内容
因此,本发明的目的在于提供一种可一边确认通过空化实现的气泡生成一边进行肿瘤等的治疗的装置等,该空化对进行声波化学治疗有效。
为了达到上述目的,本发明的声波化学治疗装置具有照射诊断用超声波的第1超声波照射单元,照射治疗用超声波的第2超声波照射单元,检测超声波回波的回波检测单元,通过上述第1超声波照射单元照射上述诊断用超声波、通过上述回波检测单元检测与上述诊断用超声波对应的超声波回波的诊断控制用单元,根据检测出的上述超声波回波生成诊断图像的诊断图像生成单元,及通过上述第2超声波照射单元照射上述治疗用超声波的治疗用控制单元;其特征在于:上述治疗用控制单元包含脉冲控制单元,该脉冲控制单元进行按预定脉冲数和停止期间通过上述第2超声波照射单元照射上述治疗用超声波的控制;上述诊断图像生成单元根据上述治疗用超声波的上述停止期间的超声波回波,生成诊断图像。
其它发明在本说明书中说明。
按照本发明,可一边确认通过空化实现的气泡生成一边进行肿瘤等的治疗,该空化对进行声波化学治疗有效。
附图说明
图1为示出本实施形式的声波化学治疗装置的构成的框图。
图2为用于说明进行被检查体治疗的场合的声波化学治疗装置控制方法的流程图。
图3为用于说明与治疗用换能器相关的变形例的框图。
图4为用于说明实施例1的实验系统的概略构成图。
图5为在本实施例中使用的作为声波化学药剂的肿瘤聚集性孟加拉玟红衍生物的构造式。
图6为示出在实施例1中从治疗用换能器照射的治疗用超声波形状的图。
图7为在实施例1中显示于显示单元5的诊断图像。
图8为示出老鼠肿瘤切片的图,(a)为未处理的肿瘤切片,(b)为进行了HE染色处理的肿瘤切片。
图9为示出在实施例1中进行治疗时确认到诊断图像上的亮度变化的群与通过肿瘤切片观察确认具有治疗效果的群的相关性的图。
图10为示出在实施例2中从治疗用换能器照射的治疗用超声波的形状的图。
图11为示出在实施例2中进行治疗时确认到诊断图像上的亮度变化的群与通过肿瘤切片观察确认具有治疗效果的群的相关性的图。
具体实施方式
下面,适当地参照附图详细说明用于实施本发明的最佳形式(以下称“实施形式”)。
图1为示出本实施形式的声波化学治疗装置的构成的框图。如图1所示那样,声波化学治疗装置1包含诊断用探头2、治疗用换能器3、装置主体4、及显示单元5。
在包含对象部位7的被检查体6注入预定的声波化学治疗用药剂(以下称“声波化学药剂”)。该声波化学药剂如由通过对对象部位7照射治疗用超声波而产生的空化作用活化,则其组成不特别限定,但最好具有容易局部存在于期望治疗的对象部位7的性质、降低空化所需要的超声波的阈值的性质。
“被检查体”意味着由本实施形式的声波化学治疗装置1进行治疗的对象,但如在其内部具有可发生空化的构成,则什么样的治疗对象都可。例如被检查体6为动植物(包含人)、动植物的生物组织、保持于容器内的悬浊液等。
<诊断用探头>
诊断用探头2(第1超声波照射单元、回波检测单元)为了诊断被检查体6,对被检查体6的对象部位7照射诊断用超声波脉冲,接收与该诊断用超声波脉冲对应的超声波回波。
诊断用探头2包含将电信号转换成振动、将振动转换成电信号的振子2a。该振子2a可利用磁致伸缩共振子或压电共振子等。另外,为了对被检查体6的预定范围进行诊断,最好使振子2a排列多个,从而可在显示单元5显示与各振子2a对应的多个扫描线。振子2a为了诊断宽范围,最好按平面、凸面排列。
诊断用探头2连接于装置主体4。
<治疗用换能器>
治疗用换能器3(第2超声波照射单元)为了治疗被检查体6,对被检查体6的对象部位7照射治疗用超声波脉冲,包含照射基波的治疗用基波发送换能器31和照射基波的2倍频率的二次谐波的治疗用二次谐波发送换能器32。
治疗用基波发送换能器31和治疗用二次谐波发送换能器32的构成可形成为与上述诊断用探头2同样的构成。振子31a和32a为了使超声波收敛,最好按平面、凹面排列(在振子为1个的场合,形成为平面、凹面)。例如,振子31a和32a配置在直径6cm、F数1的球面上,可使几何焦点相同地设计。
通过这样构成治疗用换能器3,从而可在对象部位7容易地重叠基波与二次谐波,效率更高地生成气泡。
治疗用基波发送换能器31和治疗用二次谐波发送换能器32分别连接于装置主体4。
另外,上述诊断用探头2、治疗用基波发送换能器31、及治疗用二次谐波发送换能器32为了以良好的灵敏度进行超声波脉冲的收发,例如隔着除气水那样包含超声波衰减率低的物质的匹配层8设置于被检查体6。
另外,诊断用探头2、治疗用基波发送换能器31、及治疗用二次谐波发送换能器32也可由图中未示出的固定件相互连接,该固定件包含可测定超声波照射面的方向位置检测装置和回转机构。通过形成为这样的构成,可容易地进行治疗用换能器3的定位。
<装置主体>
装置主体4对与从被检查体6收集到的超声波回波对应的电信号(以下称“回波信号”)进行处理,进行与超声波收发相关的控制、与诊断图像的生成·显示·分析等相关的控制。
在这里,装置主体4包含诊断用控制部分42、治疗用控制部分43、及诊断图像处理部分44。
装置主体4的各部分42~44包含由CPU(中央处理器)、ROM(只读存储器)、RAM(随机存取存储器)等构成的存储器和硬盘装置等。装置主体4的各部分42~44与存储于存储器或硬盘装置的程序或数据相当。CPU将程序读出到存储器中进行运算处理,从而实现各处理。
另外,各部分42、43还适当地具有用于对收发的超声波进行控制的电路。
<诊断用控制部分>
诊断用控制部分42与诊断用探头2电连接,用于进行与诊断用超声波的收发相关的控制。
诊断用控制部分42可通过诊断用探头2收发在通常的超声波诊断装置中使用的大概3~10MHz程度的频率和小于等于大概1W/cm2的声波强度的超声波地构成。
特别是诊断用控制部分42为了有选择地检测与空化相关的气泡生成,最好根据这样的摄像方法构成,即,可比较由多个不同超声波的照射方法获得的信号,抽出非线性成分,强调非线性成分。
下面说明在诊断用控制部分42根据上述摄像方法构成的场合进行与诊断用超声波的收发相关的控制的程序。
诊断用控制部分42生成由与诊断用超声波脉冲对应的预定基波构成的电信号(适当地称为“基波信号”),发送到诊断用探头2,同时,由图中未示出的放大电路将来自诊断用探头2的回波信号放大,输出到诊断图像生成部分441。
同时,诊断用控制部分42相对各扫描线生成与基波信号相反相位的脉冲信号(适当地称为“反相信号”),输出到诊断图像生成部分441。
<诊断图像处理部分>
诊断图像处理部分44根据与从诊断用控制部分42输入的回波信号反相的信号生成强调非线性成分那样的诊断图像,进行分析处理。
诊断图像处理部分44包含生成诊断图像的诊断图像生成部分441、对生成的诊断图像进行分析的诊断图像分析部分442、及在显示单元5显示诊断图像的诊断图像显示部分443。
在这里,说明诊断图像生成部分441根据接收到的回波信号和反相的信号而生成诊断图像的程序的一例。
首先,诊断图像生成部分441由图中未示出的A/D转换电路按适于信号处理的取样频率对接收到的信号和反相的信号进行取样,转换成数字信号。
诊断图像生成部分441进行数字信号的重叠处理,该数字信号分别对应于回波信号和反相的信号。包含于回波信号的基波与非线性成分中的基波由反相信号抵消,从而可作为差分抽出非线性成分。该非线性成分在被检查体6包含体积变化大的成分时容易发生。因此,强调非线性成分的那样的摄像方法与一般用于超声波诊断的B模式相比,更适合用来检测被检查体6内部的气泡。
通常非线性成分包含由基波频率的n倍的频率构成的谐波和由基波的n/m倍的频率构成的分谐波(其中,n和m为任意的自然数)。在本实施形式中,如可使用非线性成分检测与空化相关的气泡,则不限定频率,但在根据基波的1/3、1/2、1的n倍(1≤n≤3)的频率生成诊断图像的场合,可检测更鲜明的气泡。
然后,诊断图像生成部分441进行根据该非线性成分生成诊断图像的处理。该诊断图像生成处理可由在超声波图像诊断领域过去公知的装置构成实现。
诊断图像生成部分441也可相对重叠前的回波信号、重叠后抽出的非线性成分,进行例如高速付里叶变换等频率解析、任意地改变多个信号的大小·符号等进行合成从而进行进一步强调非线性成分的处理。
然后,诊断图像生成部分441将生成的诊断图像输出到诊断图像显示部分443,显示于显示单元5,同时,输出到诊断图像分析部分442。
诊断图像分析部分442根据由诊断图像生成部分441生成的诊断图像检测与空化相关的气泡。
例如,诊断图像分析部分442进行这样的处理,即,比较经治疗用换能器3进行的治疗用超声波照射前与照射后的诊断图像,在诊断图像上的亮度超过预先设定的比例的场合,判定该区域为发生了气泡的区域。
然后,由诊断图像分析部分442检测出的气泡的信息输出到治疗用控制部分43。
诊断图像分析部分442也可形成为进行这样的作业的构成,即,使气泡发生·消失时的超声波的信息与声波化学药剂的种类、被检查体的数据相关联,存储到图中未示出的数据库。
<治疗用控制部分>
治疗用控制部分43与治疗用基波发送换能器31和治疗用二次谐波发送换能器32电连接,进行与治疗用超声波的发送相关的控制。
治疗用控制部分43可通过治疗用基波发送换能器31和治疗用二次谐波发送换能器32发送在通常的超声波治疗装置中使用的大概0.5~4.5MHz程度的频率和小于等于300W/cm2的声波强度的超声波地构成。通过这样构成,从而可照射在被检查体6内的空化生成所需要的频率和声波强度的超声波。
在这里,治疗用控制部分43包含脉冲生成单元431、放大单元432、及相位调制单元433。
脉冲生成单元(脉冲控制单元)431生成用于规定治疗用超声波照射时间、停止期间、及超声波照射结束时刻的脉冲信号。在这里,超声波照射时间为1脉冲时间与脉冲数相乘获得的时间。例如,脉冲生成单元431可由任意波形生成装置实现。
脉冲生成单元431按新气泡发生和一旦发生的气泡长大所需要的脉冲数、及生成的气泡不消灭的时间或以内的停止期间的范围生成脉冲信号。
该气泡生成所需要的脉冲数最好比在通常的超声波诊断装置中使用的诊断用超声波的脉冲数大。
另外,在非专利文献4、5中,公开了这样的内容,即,为了使发生了的气泡长大,需要继续照射大于等于脉冲数3的超声波,所以,最好脉冲数大于等于3。
另外,本发明者的实验表明,即使停止期间长到500ms,气泡也可继续长大。关于停止期间的下限值,只要能够确保可生成适当的诊断图像的时间,则不特别限定。
另外,脉冲生成单元431根据从诊断图像分析部分442输入的气泡的信息决定超声波照射的结束时刻。具体地说,脉冲生成单元431从诊断图像分析部分442输入表示已检测到气泡的信息时,由图中未示出的计时单元开始计时,从输入表示已检测到气泡的信息的时刻经过预定时间后,进行停止脉冲信号的生成的处理。例如,从检测出气泡起,1分钟后停止,通过这样的处理,不将过剩的治疗用超声波照射到被检查体即可获得充分的治疗效果。
在这里,由脉冲生成单元431生成的脉冲信号输出到放大单元432。
放大单元432按任意的放大比放大脉冲信号的电压。例如,放大单元432可由放大器实现。
放大单元432不仅可按一律的放大比放大脉冲信号,而且可按随时间变化的放大比进行放大。即,从治疗用换能器3照射的超声波的声波强度可由放大单元432自由控制。
本发明者已查明,为了使生成的气泡长大,不需要新产生气泡时那样的能量。另外,先生成的气泡压缩破坏时的微小气泡残渣作为新气泡的核,从而使空化的步骤减少1个阶段,可降低继续的气泡发生~长大所需要的超声波声波强度的阈值。
这样,可减小与空化相关的气泡生成所需要的能量,所以,可相对被检查体6减少超声波照射量,减轻被检查体6的负担。
因此,在本实施形式中,放大单元432从诊断图像分析部分442输入表示已检测到气泡的信息时,进行将治疗用超声波的声波强度降低为预定值的控制。
气泡生成后的预定声波强度按比气泡生成确认前照射的治疗用超声波声波强度低的声波强度照射,从而可维持生成的气泡的长大和新气泡的发生,同时可减轻被检查体的负担。为了进一步减轻被检查体的负担,最好将声波强度降低为大于等于1/20、小于等于1/10。而且,在降低到比其更低的场合,有时不能维持气泡的长大,所以,最好一边适当地确认诊断图像的亮度变化,一边决定适当的声波强度。
在这里,由放大单元432放大后的脉冲信号输出到上述的治疗用换能器3。
相位调制单元433可任意地设定通过治疗用基波发送换能器31和治疗用二次谐波发送换能器32发送的基波和二次谐波的相位差。另外,也可随时间改变相位差。通过这样构成,可使从治疗用换能器3照射的超声波在被检查体6的对象部位7适当地重叠。例如,由本发明者的实验得知,通过使基波与二次谐波的相位错开,使周期的间隔大于等于10ms,从而可按更好的效率引起空化。
《声波化学治疗装置的控制方法》
下面,参照图2所示流程图说明被检查体的治疗的场合的声波化学治疗装置的控制方法。
操作者预先由诊断用探头2获得对象部位7的诊断图像,一边参照诊断图像,一边使从治疗用基波发送换能器31和治疗用二次谐波发送换能器32照射的治疗用超声波的焦点位置与对象部位7的治疗部位对准。
首先,声波化学治疗装置1的治疗用控制部分43通过治疗用换能器3按预定脉冲数和停止期间照射治疗用超声波(步骤S01)。
而且,如上述那样,该脉冲数和停止期间为气泡继续长大的范围。
另外,最好通过治疗用基波发送换能器31和治疗用二次谐波发送换能器32照射由预定频率的基波和上述基波的2倍频率的二次谐波构成的治疗用超声波,在对象部位7上重叠。
然后,声波化学治疗装置1的诊断用控制部分42通过诊断用探头2将诊断用超声波照射到被检查体6的对象部位7,将通过诊断用探头2接收到的回波信号发送到诊断图像处理部分44(步骤S02)。
然后,声波化学治疗装置1的诊断图像处理部分44由诊断图像生成部分441根据治疗用超声波的停止期间的回波信号生成诊断图像(步骤S03)。
然后,声波化学治疗装置1的诊断图像分析部分442判定是否检测到气泡(步骤S04)。声波化学治疗装置1的诊断图像分析部分442在检测到气泡的场合(在步骤S04中为“是”),将表示已检测到气泡的这一信息发送到治疗用控制部分43。
然后,声波化学治疗装置1的治疗用控制部分43接收到气泡的检测时,开始计时,进行使治疗用超声波下降到预定声波强度的控制(步骤S05)。
声波化学治疗装置1的治疗用控制部分43在从接收到表示已检测到气泡的信息经过预定时间后,进行停止治疗用超声波照射的控制(步骤S06)。
在步骤S04中,在声波化学治疗装置1的诊断图像分析部分442未检测到气泡的场合(在步骤S04中为“否”),将表示未检测到气泡的信息发送到治疗用控制部分43。
然后,声波化学治疗装置1的治疗用控制部分43进行使治疗用超声波的声波强度增加的控制(步骤S07)。
然后,声波化学治疗装置1的治疗用控制部分43判定增加了的声波强度是否超过预定的上限值(步骤S08),在不超过预定上限值的场合(在步骤S08中为是),返回到步骤S01的处理。
另一方面,在步骤S08中,当增加了的声波强度超过预定上限值的场合(在步骤S08中为否),视为不能生成气泡,结束处理。
如以上示出的那样,按照本实施形式的声波化学治疗装置1,将在声波化学治疗中照射的治疗用超声波的声波强度抑制到必要最低限,可进行减轻被检查体6的负担的超声波照射。
本发明不限于上述实施形式。
本实施形式的诊断用控制部分42如可检测到气泡,则不限于上述摄像方法。例如,也可根据公知的脉冲反相模式或二次谐波法构成诊断用控制单元42。
另外,也可使来自治疗用换能器3的超声波照射与由诊断用探头2进行的超声波收发同步进行地构成。在该场合,例如可形成从诊断用探头2和治疗用换能器3交替地照射超声波那样的脉冲顺序。然后,诊断图像生成部分441根据与从诊断用探头2照射的诊断用超声波对应的超声波回波生成诊断图像。
另外,在本实施形式中,用于抽出非线性成分的使回波信号与反相信号重叠的处理在将其分别转换成数字信号后重叠,但也可在超声波的阶段、电信号的阶段进行重叠处理。
另外,在本实施形式中,为了观察诊断图像上的亮度变化,增加治疗用超声波的声波强度,在即使将声波强度增加到预定上限值也未检测到亮度变化的场合,视为未生成气泡,结束处理,但也可为进一步增加治疗用超声波的频率从而检测出亮度变化的构成。例如,在本实施形式的声波化学治疗装置中,可使频率增加到4.5MHz。
在频率超过2MHz的场合,也可使治疗用超声波提高到预定声波强度、进行极短时间的照射地控制。这样的控制例如适用于在使用本实施形式的声波化学治疗装置1进行声波化学治疗的途中切换到加热凝固治疗的场合。
<关于治疗用换能器的变形例>
另外,在本实施形式中,示出作为治疗用换能器收敛的形状的振子,但也可使用按平面型配置的换能器的振子。
下面,参照图3说明关于治疗用换能器的变形例。对于与本实施形式相同的部件和构件,采用相同符号,省略说明。如图3所示那样,在本变形例中,治疗用换能器3A的治疗用基波发送换能器31A和治疗用二次谐波发送换能器32A的振子31a、32a形成为平面状。通过这样构成,可在宽区域照射治疗用超声波,所以,可扩大一次能够治疗的范围。
[实施例]
下面,说明使用本实施形式的声波化学治疗装置1进行声波化学治疗的实施例。
<实施例1>
在实施例1的场合,照射治疗用超声波,在诊断图像上确认到与空化相关的气泡后,按相同声波强度继续治疗用超声波的照射。
图4为用于说明实施例1的实验系统的概略构成图。如图4所示那样,声波化学治疗装置1由诊断用探头2、治疗用基波发送换能器31、治疗用二次谐波发送换能器32、装置主体4、显示单元5构成。
装置主体4的内部构成与本实施形式相同,所以,省略说明。
作为被检查体,使用雄CDF1老鼠(以下称“老鼠”)10。老鼠实验肿瘤“colon26”26的1mm方形的微小切片在5周龄的老鼠10的左大腿进行皮下移植,移植后的肿瘤26长大到直径1cm左右时用于实验。
图5为在本实施例中使用的作为声波化学药剂的肿瘤聚集性孟加拉玟红衍生物的构造式。从老鼠10的尾静脉注入该药剂的10mg/mlPBS溶液。注入量为30mg/kg。
注入药剂24小时后,使用戊巴比妥钠将老鼠10麻醉,将肿瘤26近旁的毛剃去,以使肿瘤26处于带孔的丙烯酸树脂板的孔部分的方式固定手足。将丙烯酸树脂板固定到3轴台,如图4所示那样,按各丙烯酸树脂板将老鼠10沉入到水槽11中的除气水12。除气水12连续地除气,温度保持在30℃。然后,将治疗用换能器3和诊断用探头2固定于水槽11中。使老鼠10的肿瘤26处于作为治疗用换能器3的焦点的6cm的位置地由3轴台移动老鼠10。
图6为示出在实施例1中从治疗用换能器照射的治疗用超声波形状的图。如图6所示那样,按2s700ms的脉冲宽度照射治疗用超声波,按中断300ms的脉冲顺序从治疗用换能器3照射超声波。照射的治疗用超声波的频率为0.5MHz(脉冲数:1350)和1.0MHz(脉冲数:2700),同时设定200W/cm2的声波强度。从治疗用换能器3的治疗用超声波的照射与从诊断用探头2照射的诊断用超声波同步。作为治疗用超声波照射1分钟,由显示单元5观察在该脉冲的停止期间生成的诊断图像上的亮度变化。在本实施例1中,按0.5+0.5的声波强度(即1∶1)的比例重叠0.5MHz与1.0MHz的频率的超声波,但也可为0.1+0.9~0.9+0.1(即1∶9~9∶1)的比例。
图7为在实施例1中显示于显示单元5的诊断图像。图7所示最左侧的诊断图像为了与强调非线性成分的摄像方式对比而按在一般的超声波诊断装置中使用的B模式描绘,可识别肿瘤26。右侧3个诊断图像为按强调非线性成分的摄像方式描绘的图像,包含许多线性成分的来自肿瘤26的信号基本上被抵消,不能可视化。在按在图7所示强调非线性成分的摄像方式描绘的诊断图像中,从左分别示出治疗用超声波脉冲的照射前(左2)、照射中(左3)、照射后(左4)。在照射中(左3)的图中,描绘出照射中的治疗的超声波脉冲,不能观察与气泡对应的亮度变化,但在超声波脉冲照射后(左4)的诊断图像中,可在治疗用超声波的焦点27中观察到亮度变化。在照射超声波2天后,使老鼠10安乐死,取出肿瘤26,用福尔马林固定后,制作老鼠肿瘤切片,实际观察肿瘤26,判定治疗效果。
图8为示出老鼠肿瘤切片的图,(a)为未处理的肿瘤切片,(b)为进行了HE(Hematoxylin-Eosin)染色处理的肿瘤切片。如图8(a)所示那样,在未处理的老鼠肿瘤切片中,可明确地观察到坏死区域28。另外,如图8(b)所示那样,在老鼠肿瘤HE染色切片中,上述坏死区域28的Hematoxylin特有的染色与其它部分相比较薄,产生核的消失、浓缩等某种损伤。
图9为示出在治疗中确认到诊断图像上的亮度变化的群与通过肿瘤切片的观察确认到具有治疗效果的群的相关性的图。如图9所示那样,对于在诊断图像上观察到亮度变化(观察结果为○)的场合,3例中的3例都在肿瘤切片观察到坏死区域,看到治疗效果。另一方面,对于在诊断图像上未观察到亮度变化(观察结果为×)的场合,3例中的2例未在肿瘤切片观察到坏死区域。但是,1例观察到坏死区域,看到治疗效果。虽然在未观察到亮度变化的场合有时也可获得治疗效果,但在产生了亮度变化的场合,可确实地获得治疗效果。
换言之,可以看出,在使用本发明声波化学治疗装置进行治疗过程中可观察亮度变化的群与数日后通过实际观察肿瘤切片确认到治疗效果的群明显存在相关。
在与实施例1同样的实验系中,当使0.5MHz与1.0MHz的频率的超声波重叠、同时按60W/cm2左右的低声波强度照射2分钟的场合,不能观察到治疗中的亮度变化。
<实施例2>
在实施例2的场合,照射治疗用超声波脉冲,在诊断图像检测到气泡后,使治疗用超声波脉冲的声波强度下降。
图10为示出在实施例2中从治疗用换能器照射的治疗用超声波的形状的图。如图10所示那样,按2s700ms的脉冲宽度照射治疗用超声波,按中断300ms的脉冲顺序从治疗用换能器3照射超声波。照射的治疗用超声波的频率为0.5MHz(脉冲数:1350)和1.0MHz(脉冲数:2700)。在实施例2中,如图10所示那样,首先,作为第一超声波(在图10中,High),按200W/cm2的高声波强度共计照射3脉冲,此后,作为第二超声波(在图10中,Low),按60W/cm2的低声波强度共计照射1分钟。在本实施例2中,按0.5+0.5的声波强度(即1∶1)的比例重叠0.5MHz与1.0MHz的频率的超声波,但也可为0.1+0.9~0.9+0.1(即1∶9~9∶1)的比例。
然后,由显示单元5观察在超声波脉冲停止期间生成的诊断图像上的亮度变化。在照射超声波2天后,使老鼠10安乐死,取出肿瘤26,用福尔马林固定后,制作老鼠肿瘤切片,实际观察肿瘤26,判定治疗效果。
图11为示出在治疗中确认到诊断图像上的亮度变化的群与通过肿瘤切片的观察确认具有治疗效果的群的相关性的图。
对于在照射第一和第二超声波的过程中连续地在诊断图像上观察到亮度变化的场合(观察结果为○),5例中的5例都在肿瘤切片观察到坏死区域,看到治疗效果。
另一方面,对于在照射第一和第二超声波的过程中在诊断图像上未观察到或在途中未观察到亮度变化的场合(观察结果为×),3例中的2例未在肿瘤切片观察到治疗效果。但是,1例观察到坏死区域,看到治疗效果。可以看出,虽然在未观察到亮度变化的场合有时也可获得治疗效果,但在产生了亮度变化的场合,可确实地获得治疗效果。
根据实施例1和实施例2的结果可以看出,在按200W/cm2的声波强度在诊断图像上观察到亮度变化的场合,在所有例中获得治疗效果。另外,一旦检测到气泡,即使降低治疗用超声波的声波强度,只要在诊断图像上适当地观察到亮度变化,也通过观察肿瘤切片确认到治疗效果。
按照以上的实施例,通过以使用本发明声波化学治疗装置进行治疗过程中的诊断图像上的亮度变化为指标,从而可确认声波化学治疗能够确实地进行。
Claims (15)
1.一种声波化学治疗装置,包括:
第1超声波照射单元,用于照射诊断用超声波;
第2超声波照射单元,用于照射治疗用超声波;
回波检测单元,用于检测超声波回波;
诊断用控制单元,该诊断用控制单元经由上述第1超声波照射单元照射上述诊断用超声波,经由上述回波检测单元检测对应于上述诊断用超声波的超声波回波;
诊断图像生成单元,该诊断图像生成单元基于所检测的上述超声波回波而生成诊断图像;以及
治疗用控制单元,该治疗用控制单元经由上述第2超声波照射单元照射上述治疗用超声波,该声波化学治疗装置的特征在于,
上述治疗用控制单元包括脉冲控制单元,该脉冲控制单元进行控制,使得按预定的脉冲数以及停止期间照射经由上述第2超声波照射单元的上述治疗用超声波,
上述诊断图像生成单元基于在上述治疗用超声波的上述停止期间内的超声波回波而生成诊断图像。
2.根据权利要求1所述的声波化学治疗装置,其特征在于,
上述治疗用控制单元在气泡可继续成长的范围内控制上述脉冲数以及上述停止期间。
3.根据权利要求2所述的声波化学治疗装置,其特征在于,
上述治疗用控制单元进行控制,使得以上述脉冲数大于等于3、上述停止期间小于等于500ms来照射超声波。
4.根据权利要求2所述的声波化学治疗装置,其特征在于,
上述治疗用控制单元对应于上述诊断图像的亮度变化而控制上述脉冲数以及上述停止期间。
5.根据权利要求2所述的声波化学治疗装置,其特征在于,
上述治疗用控制单元进行控制,使得作为上述治疗用超声波,照射由可产生上述气泡的声波强度所形成的第一超声波之后,照射比上述第一超声波的声波强度低、并且由上述气泡可继续成长的声波强度所形成的第二超声波。
6.根据权利要求5所述的声波化学治疗装置,其特征在于,
上述第一超声波的声波强度随时间增加直到检测到气泡为止。
7.根据权利要求1所述的声波化学治疗装置,其特征在于,
上述第2超声波照射单元进行照射,使得在对象部位重叠基本波和频率是该基本波的两倍的波。
8.根据权利要求1所述的声波化学治疗装置,其特征在于,
上述第2超声波照射单元具有使基本波和频率是该基本波的两倍的波的相位错开、使其周期的间隔大于等于10ms的机构。
9.根据权利要求1所述的声波化学治疗装置,其特征在于,
上述第2超声波照射单元照射收敛超声波。
10.根据权利要求9所述的声波化学治疗装置,其特征在于,
上述第2超声波照射单元具有可改变上述收敛超声波的焦点位置的机构。
11.根据权利要求1所述的声波化学治疗装置,其特征在于,
上述诊断用控制单元进行控制,使得在照射上述治疗用超声波的期间内,停止上述诊断用超声波。
12.根据权利要求1所述的声波化学治疗装置,其特征在于,
上述诊断图像生成单元基于包含在上述回波检测单元所接收的超声波内的非线性成分而生成诊断图像。
13.根据权利要求12所述的声波化学治疗装置,其特征在于,
上述非线性成分包含由基本波频率的n倍的频率所形成的高次谐波、以及由基本波的n/m倍的频率所形成的分谐波,其中n,m为任意自然数。
14.根据权利要求1所述的声波化学治疗装置,其特征在于,
具有当在上述诊断图像中不能检测亮度变化时将从上述第2超声波照射单元照射的上述治疗用超声波的频率提升至4.5MHz的机构。
15.根据权利要求1所述的声波化学治疗装置,其特征在于,
从上述第2超声波照射单元照射的上述治疗用超声波的脉冲数大于从上述第1超声波照射单元照射的上述诊断用超声波的脉冲数。
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2005194238 | 2005-07-01 | ||
| JP2005194238A JP4369907B2 (ja) | 2005-07-01 | 2005-07-01 | 音響化学治療装置 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1891167A CN1891167A (zh) | 2007-01-10 |
| CN100588373C true CN100588373C (zh) | 2010-02-10 |
Family
ID=37596545
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN200610099774A Expired - Fee Related CN100588373C (zh) | 2005-07-01 | 2006-06-30 | 声波化学治疗装置 |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US7780598B2 (zh) |
| JP (1) | JP4369907B2 (zh) |
| CN (1) | CN100588373C (zh) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101869486A (zh) * | 2010-07-16 | 2010-10-27 | 珠海仁威医疗科技有限公司 | 超声诊断治疗一体机 |
Families Citing this family (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7617005B2 (en) * | 2002-04-08 | 2009-11-10 | Ardian, Inc. | Methods and apparatus for thermally-induced renal neuromodulation |
| US20050283074A1 (en) * | 2004-06-22 | 2005-12-22 | Siemens Medical Solutions Usa, Inc. | Ultrasound feedback for tissue ablation procedures |
| US20090062724A1 (en) * | 2007-08-31 | 2009-03-05 | Rixen Chen | System and apparatus for sonodynamic therapy |
| US20090287205A1 (en) * | 2008-05-16 | 2009-11-19 | Boston Scientific Scimed, Inc. | Systems and methods for preventing tissue popping caused by bubble expansion during tissue ablation |
| GB0820377D0 (en) * | 2008-11-07 | 2008-12-17 | Isis Innovation | Mapping and characterization of cavitation activity |
| CN101530320B (zh) * | 2009-03-31 | 2010-11-10 | 西安交通大学 | 聚焦超声空化及其微汽泡实时提取装置与检测方法 |
| WO2010127495A1 (zh) * | 2009-05-07 | 2010-11-11 | Li Peng | 一种脉冲式超声治疗装置 |
| KR101638144B1 (ko) * | 2009-08-18 | 2016-07-11 | 아이 테크 케어 | 고강도 초음파 빔을 생성하는 수단을 포함하는 초음파 디바이스를 위한 파라미터 |
| CN102481156B (zh) * | 2009-09-11 | 2015-02-04 | 奥林巴斯医疗株式会社 | 治疗设备和手术系统 |
| WO2011033682A1 (en) * | 2009-09-18 | 2011-03-24 | Olympus Medical Systems Corp. | Treatment apparatus and operation system |
| JP4734448B2 (ja) * | 2009-12-04 | 2011-07-27 | 株式会社日立製作所 | 超音波治療装置 |
| JP5735488B2 (ja) * | 2010-04-09 | 2015-06-17 | 株式会社日立製作所 | 超音波診断治療装置 |
| MY174431A (en) * | 2010-05-14 | 2020-04-17 | Univ Sabanci | An apparatus for using hydrodynamic cavitation in medical treatment |
| EP2962642A4 (en) * | 2013-02-28 | 2016-11-23 | Alpinion Medical Systems Co | CAVITATION DETECTION METHOD AND CORRESPONDING ULTRASONIC MEDICAL APPARATUS |
| JP2014195581A (ja) * | 2013-03-29 | 2014-10-16 | オリンパス株式会社 | 超音波治療装置 |
| EP3302264B1 (en) * | 2015-06-03 | 2025-03-19 | Montefiore Medical Center | Low intensity focused ultrasound for treating cancer and metastasis |
| CN105943087B (zh) * | 2016-07-26 | 2019-03-19 | 飞依诺科技(苏州)有限公司 | 超声微泡空化设备的成像处理方法及处理系统 |
| CN106730424B (zh) | 2016-12-19 | 2018-10-30 | 西安交通大学 | 共焦谐波叠加百微秒脉冲超声组织毁损模式控制方法 |
| WO2018158805A1 (ja) * | 2017-02-28 | 2018-09-07 | オリンパス株式会社 | 超音波医療装置 |
| CN110831665B (zh) * | 2017-06-29 | 2022-03-04 | 医视特有限公司 | 用于破坏靶组织以进行治疗以及评估靶组织破坏的系统 |
| WO2019094802A1 (en) | 2017-11-09 | 2019-05-16 | Montefiore Medical Center | Low energy immune priming for treating cancer and metastasis |
| CA3128067C (en) * | 2019-02-13 | 2025-11-25 | Alpheus Medical, Inc. | NON-INVASIVE SOUND DYNAMIC THERAPY |
| WO2020243319A1 (en) | 2019-05-29 | 2020-12-03 | Sonalasense, Inc. | Sonosensitization |
| EP4041387A1 (en) | 2019-10-11 | 2022-08-17 | Insightec Ltd. | Pre-treatment tissue sensitization for focused ultrasound procedures |
| CN113117262B (zh) * | 2019-12-30 | 2023-06-02 | 重庆融海超声医学工程研究中心有限公司 | 用于检测空化效应的装置、超声治疗设备 |
| GB202009079D0 (en) * | 2020-06-15 | 2020-07-29 | Oxsonics Ltd | Mapping of cavitation activity |
| CN116209470A (zh) | 2020-08-07 | 2023-06-02 | 阿尔菲斯医疗股份有限公司 | 用于治疗癌症的用于增强的声动力疗法的超声阵列 |
| GB202017979D0 (en) * | 2020-11-16 | 2020-12-30 | Oxsonics Ltd | Passive acoustic mapping using compressive sensing |
| KR20250011781A (ko) * | 2023-07-13 | 2025-01-22 | (주)아이엠지티 | 집속 초음파 처리 장치 및 그 방법 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5694936A (en) * | 1994-09-17 | 1997-12-09 | Kabushiki Kaisha Toshiba | Ultrasonic apparatus for thermotherapy with variable frequency for suppressing cavitation |
| CN1186420A (zh) * | 1995-06-06 | 1998-07-01 | ImaRx药物公司 | 同时进行超声诊断和治疗的方法和设备 |
| CN1443083A (zh) * | 2000-07-17 | 2003-09-17 | 乌尔特拉佐尼克斯Dnt股份公司 | 非侵入超声治疗椎间盘疾病的设备 |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4610255A (en) | 1983-12-02 | 1986-09-09 | Fujitsu Limited | Ultrasonic non-linear parameter measuring system |
| DE69331692T2 (de) * | 1992-09-16 | 2002-10-24 | Hitachi, Ltd. | Ultraschallbestrahlungsgeraet |
| US5520188A (en) * | 1994-11-02 | 1996-05-28 | Focus Surgery Inc. | Annular array transducer |
| US6113558A (en) * | 1997-09-29 | 2000-09-05 | Angiosonics Inc. | Pulsed mode lysis method |
| US6095980A (en) * | 1997-10-02 | 2000-08-01 | Sunnybrook Health Science Centre | Pulse inversion doppler ultrasonic diagnostic imaging |
| JP2000229098A (ja) | 1998-12-09 | 2000-08-22 | Toshiba Corp | 超音波治療装置 |
-
2005
- 2005-07-01 JP JP2005194238A patent/JP4369907B2/ja not_active Expired - Lifetime
-
2006
- 2006-06-29 US US11/476,866 patent/US7780598B2/en not_active Expired - Fee Related
- 2006-06-30 CN CN200610099774A patent/CN100588373C/zh not_active Expired - Fee Related
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5694936A (en) * | 1994-09-17 | 1997-12-09 | Kabushiki Kaisha Toshiba | Ultrasonic apparatus for thermotherapy with variable frequency for suppressing cavitation |
| CN1186420A (zh) * | 1995-06-06 | 1998-07-01 | ImaRx药物公司 | 同时进行超声诊断和治疗的方法和设备 |
| CN1443083A (zh) * | 2000-07-17 | 2003-09-17 | 乌尔特拉佐尼克斯Dnt股份公司 | 非侵入超声治疗椎间盘疾病的设备 |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101869486A (zh) * | 2010-07-16 | 2010-10-27 | 珠海仁威医疗科技有限公司 | 超声诊断治疗一体机 |
| CN101869486B (zh) * | 2010-07-16 | 2012-06-27 | 珠海仁威医疗科技有限公司 | 超声诊断治疗一体机 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN1891167A (zh) | 2007-01-10 |
| JP2007007279A (ja) | 2007-01-18 |
| JP4369907B2 (ja) | 2009-11-25 |
| US20070038099A1 (en) | 2007-02-15 |
| US7780598B2 (en) | 2010-08-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN100588373C (zh) | 声波化学治疗装置 | |
| CN100446732C (zh) | 超声波诊断治疗装置 | |
| EP1711109B1 (en) | Localized production of microbubbles and control of cavitational and heating effects by use of enhanced ultrasound | |
| EP2667810B1 (en) | Ultrasonic surgical instrument and related manufacturing method | |
| CN104225810B (zh) | 基于双频共焦超声分时激励的超声力学毁损和热凝固装置及方法 | |
| CN106730424A (zh) | 共焦谐波叠加百微秒脉冲超声组织毁损模式控制方法 | |
| JPS62120846A (ja) | 超音波による結石の位置決め・治療方法及び装置 | |
| JP2007144183A (ja) | 造影剤を用いた超音波造影及び治療装置 | |
| CN101301210B (zh) | 超声波摄像系统 | |
| EP1761173A1 (en) | Enhancement of ultrasonic cavitation | |
| KR20140094956A (ko) | 초음파 시스템 및 이의 제어 방법 | |
| US20240108368A1 (en) | System and method for comminution of biomineralizations using microbubbles | |
| CN101980667B (zh) | 超声波照射装置 | |
| Zhang et al. | Improved assessment sensitivity of time-varying cavitation events based on wavelet analysis | |
| Wang et al. | Imaging feedback for histotripsy by characterizing dynamics of acoustic radiation force impulse (ARFI)-induced shear waves excited in a treated volume | |
| JP5851127B2 (ja) | 超音波照射装置及び超音波照射装置の作動方法 | |
| Rybyanets et al. | Multi-frequency harmonics technique for HIFU tissue treatment | |
| Simoni et al. | Ex vivo assessment of multiple parameters in high intensity focused ultrasound | |
| WO2008097998A1 (en) | Ultrasound method and apparatus for tumor ablation, clot lysis, and imaging | |
| Sutin et al. | Prospective medical applications of nonlinear time reversal acoustics | |
| JP4387947B2 (ja) | 超音波治療装置 | |
| Setyawan | Analysis of the use of Extracorporeal Shock Wave Lithotripsy (ESWL) based on piezoelectric lithotripter for kidney stone | |
| US12458381B2 (en) | Apparatus for destroying biological tissue and method for trapping biological tissue in fluids flow using the same | |
| Girnyk et al. | Ultrasound Doppler monitoring of soft tissues in vitro and tissue phantoms heating and thermal destruction induced by acoustic remote palpation | |
| Suzuki et al. | A STUDY ON PROCESSING PERFORMANCE FOR NON-INVASIVE ULTRASOUND THERAPY |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100210 Termination date: 20180630 |