CN100577775C - Coal gasification device for circulating fluidized bed and manufacturing method thereof - Google Patents

Coal gasification device for circulating fluidized bed and manufacturing method thereof Download PDF

Info

Publication number
CN100577775C
CN100577775C CN200710011511A CN200710011511A CN100577775C CN 100577775 C CN100577775 C CN 100577775C CN 200710011511 A CN200710011511 A CN 200710011511A CN 200710011511 A CN200710011511 A CN 200710011511A CN 100577775 C CN100577775 C CN 100577775C
Authority
CN
China
Prior art keywords
coal
dust collector
gas
fluidized bed
producer
Prior art date
Application number
CN200710011511A
Other languages
Chinese (zh)
Other versions
CN101054536A (en
Inventor
宋建元
Original Assignee
宋建元
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宋建元 filed Critical 宋建元
Priority to CN200710011511A priority Critical patent/CN100577775C/en
Publication of CN101054536A publication Critical patent/CN101054536A/en
Application granted granted Critical
Publication of CN100577775C publication Critical patent/CN100577775C/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Abstract

A circulating fluidized bed coal gasification apparatus includes coal blending system, generator, cyclone dust collector, exhaust-heat boiler, water-cooling tower and Venturi scrubber, wherein the generator has up-and-down two rows of gasifying agent nozzles, helix dust collector and storage groove. The gas pipe which communicates to the cyclone dust collector is set on the top. A feed back pipe which communicates to the generator is set at the bottom of the cyclone dust collector. The cyclone dust collector communicates to the exhaust-heat boiler by gas pipe. The exhaust-heat boiler communicates to the water-cooling tower by gas pipe and communicates to the Venturi scrubber by gas pipe. The characteristics are: the feed back pipe facing to the generator hearth of the cyclone dust collector is a feed back machine with small-sized fluid bed; the cyclone dust collector is composed of at least two tandem dust collector; coal blending system has wind feeding and dust coal drier. The invention achieves the transition of the boiling bed to the circulating fluidized bed and increases the system gasification efficiency.

Description

A kind of circulation fluidized bed coal gasifying device and use this device to generate the method for coal gas
Technical field
The present invention relates to a kind of gas production equipment and technical process thereof, particularly relate to a kind of gasification of coal particularly low-grade coal gasification circulation fluidized bed coal gasifying device and use the method for this device generation coal gas, be to the improvement of existing gas production equipment and technical process thereof, belong to the gasification production technology.
Background technology
Coal Gasification Technology is looked gas-solid state and mode of motion in the stove, and mainly be divided into three major types: (10~50mm) is the fixed bed of raw material with lump coal; With fine coal (less than 10mm) is the fluidized-bed of raw material; With fine coal (less than 0.1mm) is the air flow bed of raw material.For improving single stove ability and cutting down the consumption of energy, all (supercharging fixed bed, pressurized fluidized bed and pressurized air stream bed technique have correspondingly appearred to modern vapourizing furnace in 1.5~4.5MPa) times operations at suitable pressure.
Advanced fixed bed gasification technology is representative with the strange moving-bed pressurized gasification in Shandong, and its major advantage comprises: can use gasification of poor coal; Pressurized gasification throughput height; Oxygen consumption is low, is the minimum method of oxygen consumption in the present three class gasification process.Its shortcoming is that fixed bed gasification can only be a raw material with grume coal not, raw material costliness not only, gasification intensity is low, and gas-solid countercurrent flow, the band of gas of coming out of the stove has large quantity of moisture and coal tar, benzene and phenol etc., condensation and the Sewage treatment systems more complicated of washing make the purification process lengthening, have increased investment and cost.
The air flow bed (Texaco's stove, K-T stove, shell stove) that with fine coal is raw material is moved (1300-1500 ℃) under excessive temperature, gasification intensity is high, single stove ability has reached 2500 tons of coal/days, does not contain tar, phenols in the gas, is fit to very much the requirement of Chemical Manufacture and advanced power generation system.The advantage of entrained flow gasification technology comprises. coal subject range broad, and technology is flexible, synthetic gas quality height, product gas is synthetic applicable to chemical industry, hydrogen manufacturing and combined cycle generation etc. vapor pressure height, throughput height. free from environmental pollution, the three wastes are handled more convenient.This technology shortcoming is, the coal slurry gasifier brown coal (pulping difficulty) that should not gasify generally speaking, high-temperature gasification is easy to discharge for making lime-ash, require used coal ash fusion temperature low (less than 1300 ℃), ash content low (being lower than 10%-15%), otherwise need add people's fusing assistant (CaO or Fe2O3) and increase running cost.This point is unfavorable for the use of China's coal especially.In addition, high-temperature gasification oven refractory and nozzle are all at high temperature worked, and height is lacked, cost an arm and a leg, invests to the life-span, and vapourizing furnace is in hot operation, and the oxygen consumption is high, and powder process slurrying difficulty etc. has also improved the gas production cost.
The vapourizing furnace that the domestic overwhelming majority is moving still is water-gas or semi-water gas fixed bed, demands urgently renovating.The problem that is faced is: feed coal utilizes restricted, and the starting material of vapourizing furnace only limit to anthracite block coal now, cause coal source anxiety; The anthracite block coal price is too high, and present price is more than 800 yuan/ton; The blowing air of interrupter method is polluted big; Not only cost investment is too high for technology such as employing shell, and the annual technology usage charges of also wanting the Shanghai Communications University amount.Use fine coal can use low grade coals such as bituminous coal, brown coal, coal gangue as the fluidization of raw material because of its feed coal, and its production capacity is big, characteristics such as facility investment is few relatively are fit to China's national situation and receive publicity.The brown coal that circle fluidized-bed gasification furnace adopted, not only low price, and product source is abundant, predesigne, ton price ratio lump coal cheap 1/2nd to 1/3rd; Because continuous gasification does not have blowing air to pollute, the heater outlet temperature height does not have the tar phenol-containing wastewater, and environmental protection is greatly improved; Circle fluidized-bed gasification furnace gas exit pressure belongs to normal pressure, meets the flow process of present medium and small chemical fertilizer, and existing fixedly batch furnace is changed into fluid bed furnace, need not do big change on flow process, and technological transformation is relatively easy, and less investment, is easily accepted by enterprise.
Publication number is that the Chinese invention patent of CN1299859 has provided a kind of " coal powder gasifying fluid bed equipoment and technical process thereof ", comprise the fine coal funnel, coal bunker and the transfer roller of delivering coal to coal bunker from funnel, producer and the coal feeder of delivering coal to producer from coal bunker, and round shape cyclonic separator, waste heat boiler, the ash ejector of producer bottom and ash-pit is characterized in that having adopted, following two-layer vaporized chemical nozzle, the ebullated bed fine coal gas producer of no fire grate and the vapour generator that in housing, has vertical tube bundle, multilayer coiled pipe vapor superheater and soft water preheater are in the waste heat boiler of one; The bottom is that conical cyclonic separator places near the producer, its top is higher than the producer top, on have gas pipe to communicate with producer, under have return line to lead to the generation burner hearth, waste heat boiler places the device afterbody, there is gas pipe that it is communicated with cyclonic separator, all has ash releasing tube to insert in the water sealed tank respectively in the bottom of waste heat boiler inlet bottom, housing and gas exit.Coal powder gasifying fluid bed equipoment that provides in the technique scheme and technical process thereof, though improved gasification efficiency and thermo-efficiency height, have advantages such as output is big, pollution is low, but cyclonic separator can't satisfy the dedusting requirement, cause and have to adopt special vapour generator in the waste heat boiler thereafter with vertical tube bundle, thereby the manufacturing cost of equipment is strengthened, and the transportation maintenance is inconvenient; Technique scheme directly adopts feed back pipe coupling tornado dust collector and vapourizing furnace, not only because the interior malleation of stove, negative pressure in the separator and cause the flue gas short circuit, directly enter the separator inner core by the feed back pipe, even cause the feed back difficulty because of the separator negative pressure, dust stratification in separator, coking, and force shutdown maintenance.This device exists also that gasification efficiency is still lower in addition, the flying dust amount is big and flying dust in higher, the shortcoming such as waste heat recovery efficient is low, 240 ℃ of coal gas direct water-cooling are fallen of carbon content.
Summary of the invention
Purpose of the present invention just is to overcome the prior art above shortcomings, improves by research, provides a kind of novel circulation fluidized bed coal gasifying device and uses this device to generate the method for coal gas.The present invention looks as a whole systems engineering with Chemical Manufacture, each operation equipment used in the technical process is carried out global design, improvement, and the layout of the science of carrying out, make every effort to overcome the deficiencies in the prior art, for example, the present invention adopts the material returning device that has small-sized fluidized bed, has realized that coal gasification method is by the thorough transformation of fluidized-bed to circulating fluidized bed; The present invention adopts placed in-line cyclonic separator to carry out 2 grades or multistage gathering dust, and obviously reduces flying dust output, improves gasification efficiency, reduces flying dust and contains the charcoal rate; The present invention goes back the general-purpose equipment of selection standard, reduces non-standard equipment as far as possible, thereby has reduced the purchase cost of equipment; The present invention has increased the fine coal drying installation after waste heat recovery, not only can utilize the waste heat of synthesis gas to produce superheated vapour, can also be used to dry fine coal, compare the temperature of not only having saved energy consumption but also can further reduce synthesis gas with prior art, alleviated the pressure of the cool but equipment in back.
The technical solution that the present invention provides is: this circulation fluidized bed coal gasifying device includes by coal dust broken, screening plant, coal storage tank and the coaling system that adds the feed bin composition, producer, tornado dust collector, waste heat boiler, water-cooling tower and Venturi scrubber, wherein saidly be provided with the screw stoker of delivering coal at the bottom of adding feed bin to producer, producer is provided with, two arrange the vaporized chemical nozzles down, the producer bottom is provided with spiral Machine for cleaning-out ash and ash-pit, producer top is provided with the gas pipe that communicates with the tornado dust collector upper end, the tornado dust collector bottom is provided with the feed back pipe that communicates with producer, tornado dust collector communicate with waste heat boiler by gas pipe, waste heat boiler communicates with water-cooling tower by gas pipe, water-cooling tower communicates with Venturi scrubber by gas pipe, be characterized in that it is the material returning device that has small-sized fluidized bed that the return line that burner hearth takes place is led in described tornado dust collector lower end, but dynamic adjustments feed back amount has effectively realized two key functions: the one, and make recirculation bed material get back to burner hearth continuously and stably from tornado dust collector; Two provide the sealing between tornado dust collector negative pressure and the lower combustion chamber's malleation; This material returning device is by standpipe, blast cap or airduct, the bottom air compartment, the sidepiece air compartment, revert pipe, fluidising chamber, laterally air distribution plate and vertically air distribution plate formation, wherein be provided with horizontal air distribution plate and vertical air distribution plate in the material returning device, and the space segmentation in the material returning device become fluidising chamber, bottom air compartment and sidepiece air compartment three parts, one end of described standpipe is connected with tornado dust collector, its the other end is connected with fluidising chamber, one end of revert pipe is connected with fluidising chamber, its the other end is connected with producer, high pressure gas from gas blower enter bottom air compartment and sidepiece air compartment by inlet pipe, blow to backflow dust in the fluidising chamber by blast cap on the air distribution plate or airduct, thereby constitute a small-sized fluidized bed, when wherein the air distribution plate of vertically placing in the sidepiece air compartment is dried, can make the lower zone of standpipe and fluidising chamber connection form a negative pressuren zone, both helped entering fluidising chamber smoothly by standpipe, also solved U type in the prior art from the flying dust of tornado dust collector, the J type, what material returning devices such as L type occurred can't loop back the problem that burner hearth takes place by revert pipe by standpipe anti-channeling and flying dust amount after a little while.
For better finishing purpose of the present invention, help the fluidisation and the circulation of dust stratification, also help to fluidized-bed and and the sealing of fly-ash separator, be provided with a vertical clapboard in the air compartment of described bottom, there is a node this dividing plate upper end with horizontal air distribution plate connection, this dividing plate can be around node 0---and regulate between 180 degree, can realize node left and right sides two portions blast on the air distribution plate by the angle of regulating dividing plate.
For better finishing purpose of the present invention, reduce flying dust output, improve gasification efficiency, reduce flying dust and contain the charcoal rate, described tornado dust collector are formed for the placed in-line tornado dust collector of at least two groups, there is gas pipe to communicate on the wherein last group tornado dust collector with producer, there is the material returning device that has small-sized fluidized bed to lead to the generation burner hearth down, one group of tornado dust collector top, back is higher than last group of tornado dust collector top, on have gas pipe to communicate with last group of tornado dust collector, down have the material returning device that has small-sized fluidized bed to lead to the generation burner hearth.
For better finishing purpose of the present invention, include the wind-force delivery system of forming by compressor, safe gas surge tank, coal lock hopper and hay tank in the described coaling system, compressor wherein communicates with safe gas surge tank, coal lock hopper and hay tank respectively by pipeline, be respectively equipped with the safe gas inlet on coal storage tank and the ash-pit, hay tank is arranged on to add on the feed bin and with adding feed bin and communicates, and the coal lock hopper is arranged on coal storage tank bottom and leads on the pipeline of hay tank.
For better finishing purpose of the present invention, make full use of the waste heat of synthesis gas, coal dust in the described coaling system is broken, also be provided with the fine coal drying machine between screening plant and the coal storage tank, this fine coal drying machine is broken with coal dust respectively by conveying belt, screening plant is connected with the coal storage tank, also is installed with the gas pipe that connects waste heat boiler and water-cooling tower in this fine coal drying machine.
What the present invention provided prepares the method for coal gas by above-mentioned circulation fluidized bed coal gasifying device, is characterized in including following steps:
(1). feed coal enters fine coal drying machine drying after pulverizing, sieving, leave steam-in and smoke inlet on this drying machine, when the synthesis gas shortage of heat, can replenish steam or other flue gases, dry good fine coal is delivered to the coal storage tank, be delivered to hay tank through the coal lock hopper by wind-force, realize that at this bottle coal separates, the safe gas after the separation is transmitted back to the safe gas surge tank, realizes recycle;
(2). isolating coal enters and adds in the feed bin in the hay tank, be sent to producer gas generator through screw stoker, gasification rapidly under the effect of the vaporized chemical that two-layer nozzle about the warp sprays into, the synthesis gas that generates is mingled with a large amount of flying dusts and does not have the fully coal dust of gasification, through multistage the gathering dust of the placed in-line tornado dust collector of at least two groups, isolated ash turns back in the vapourizing furnace through the material returning device that has small-sized fluidized bed of tornado dust collector lower end, the furnace bottom lime-ash is discharged in the ash-pit through the spiral Machine for cleaning-out ash, overheated for preventing the spiral Machine for cleaning-out ash, can be connected with the recirculated water cooling;
(3). the coal gas after the cyclone dust removal enters the waste heat boiler recovery waste heat, produce superheated vapour, coal gas enters that the fine coal drying machine is further lowered the temperature, recovery waste heat behind waste heat boiler, and dry fine coal, gas temperature is reduced to below 150 ℃, enter into water-cooling tower again and further lower the temperature after the dedusting,, become the normal temperature clean gas through the Venturi scrubber desulfurization.
Described in the present invention main production equipments, for example coal dust is broken, screening plant, producer, tornado dust collector, waste heat boiler, water-cooling tower and Venturi scrubber etc., is employed equipment in the prior art; Described vaporized chemical is identical with employed vaporized chemical in the prior art.
Compared with prior art, beneficial effect of the present invention is:
1. adopt the material returning device that has small-sized fluidized bed, realized that Coal Gasification Technology by the thorough transformation of ebullated bed to circulating fluidized bed, has obviously improved system's gasification efficiency.
2. adopt placed in-line cyclonic separator to carry out 2 grades and gather dust, obviously reduce flying dust output, improve gasification efficiency, reduce flying dust and contain the charcoal rate;
3. after waste heat recovery, increased the fine coal drying installation, not only can utilize the waste heat of synthesis gas to produce superheated vapour, can also be used to dry fine coal, not only saved energy consumption but also can further reduce the temperature of synthesis gas, alleviated the pressure of the cool but equipment in back;
4. the general-purpose equipment of selection standard reduces non-standard equipment as far as possible, thereby has reduced the purchase cost of equipment, also is convenient to routine maintenance;
5. the coal storage tank is connected with safe gas up and down, adopts wind-force to carry fine coal, i.e. environmental protection is safety again, can also reduce coal consumption.
Description of drawings
Fig. 1 is that equipment of the present invention connects synoptic diagram;
Fig. 2 is the structural representation that has the material returning device of small-sized fluidized bed.
Number in the figure is: 1. safe gas surge tank, and 2. the coal storage tank 3. adds feed bin, 4. producer, 5. ash-pit, 6,7. tornado dust collector, 8. waste heat boiler, 9. fine coal drying machine, 10. coal dust is broken, screening plant, 11. water-cooling tower, 12. Venturi scrubbers, 13. circulating water pools, 14. compressor, 15. coal lock hoppers, 16. screw stokers, 17. hay tank, 18,19. the vaporized chemical nozzle, 20. have the material returning device of small-sized fluidized bed, 21. the spiral Machine for cleaning-out ash, 22. water sealed tanks, 23. standpipes, 24. blast cap or airduct, 25. bottom air compartments, 26. sidepiece air compartments, 27. fluidising chamber, 28. horizontal air distribution plates, 29. vertical air distribution plates, 30. revert pipe, 31. nodes, 32. dividing plates, 33. negative pressuren zone, 34,35. the safe gas inlet, 36. safe gas are replenished inlet, and 37. feed coals are carried, 38. pulverizing the back coal carries, 39. dry back coal is carried, 40. vaporized chemical pipelines, the recirculated water of 41. cooling usefulness.
Embodiment
Below in conjunction with embodiment concrete technical scheme of the present invention is described further:
As described in Figure 1, this circulation fluidized bed coal gasifying device includes by coal dust broken, screening plant 10, coal storage tank 2 and the coaling system that adds feed bin 3 compositions, be provided with, two arrange the producer 4 of vaporized chemical nozzles 18 and 19 down, by two groups of placed in-line tornado dust collector 6 and 7 tornado dust collector of forming, waste heat boiler 8, water-cooling tower 11 and Venturi scrubber 12, wherein said 3 ends of feed bin that add, be provided with the screw stoker 16 of delivering coal to producer 4, producer 4 bottoms are provided with spiral Machine for cleaning-out ash 21 and ash-pit 5, producer 4 tops are provided with the gas pipe that communicates with last group of tornado dust collector 6 upper ends, tornado dust collector 6 bottoms are provided with the material returning device that has small-sized fluidized bed 20 that communicates with producer 4, last group of tornado dust collector 6 upper ends are provided with and the one group of gas pipe that tornado dust collector 7 communicate in back, the bottom of the one group of tornado dust collector 7 in back also is provided with the material returning device that has small-sized fluidized bed 20 that communicates with producer 4, tornado dust collector 7 upper ends communicate with waste heat boiler 8 by gas pipe, waste heat boiler 8 communicates with water-cooling tower 11 by gas pipe, water-cooling tower 11 communicates with Venturi scrubber 12 by gas pipe, also include in the described coaling system by compressor 14, safe gas surge tank 1, the wind-force delivery system that coal lock hopper 15 and hay tank 17 are formed, compressor 14 wherein by pipeline respectively with safe gas surge tank 1, coal lock hopper 15 and hay tank 17 communicate, be respectively equipped with safe gas inlet 35 and 34 on coal storage tank 2 and the ash-pit 5, hay tank 17 be arranged on add feed bin 3 upper ends and with add feed bin 3 and communicate, coal lock hopper 15 is arranged on coal storage tank 2 bottoms and leads on the pipeline of hay tank 17, coal dust in the described coaling system is broken, also be provided with fine coal drying machine 9 between screening plant 10 and the coal storage tank 2, this fine coal drying machine 9 is broken with coal dust respectively by conveying belt, screening plant 10 is connected with coal storage tank 2, also is installed with the gas pipe that connects waste heat boiler 8 and water-cooling tower 11 in this fine coal drying machine 9.For reduce sewage discharge as far as possible, also be provided with circulating water pool 13, to handle the sewage of each procedure discharging.
As shown in Figure 2, the structure of the material returning device that has small-sized fluidized bed that burner hearth takes place is led in described tornado dust collector lower end, by standpipe 23, blast cap or airduct 24, bottom air compartment 25, sidepiece air compartment 26, revert pipe 30, fluidising chamber 27, horizontal air distribution plate 28, vertically air distribution plate 29 and dividing plate 32 constitute, wherein be provided with horizontal air distribution plate 28 and vertical air distribution plate 29 in the material returning device, and the space segmentation in the material returning device become fluidising chamber 27, bottom air compartment 25 and sidepiece air compartment 26 3 parts, one end of standpipe 23 is connected with tornado dust collector, its the other end is connected with fluidising chamber 27, revert pipe 30 an end be connected with fluidising chamber 27, its the other end is connected with producer 4, high pressure gas from gas blower enter bottom air compartment 25 and sidepiece air compartment 26 respectively by inlet pipe, by horizontal air distribution plate 28 with vertically the blast cap on the air distribution plate 29 or airduct 24 blow to backflow dust in the fluidising chamber 27, thereby constitute a small-sized fluidized bed, wherein air compartment 25 pairs of high pressure gas from blower fan in bottom play shock absorption, it is even to make the blast cap of horizontal air distribution plate 28 or phoenix manage 24 pressure, make the fluidized of dust stratification in the fluidising chamber 27 stable, avoided the dead angle, the circulation feed back is stable a vital role to keeping; When vertical air distribution plate 29 of placing in the sidepiece air compartment 26 is dried, can make the standpipe 23 and the lower zone of fluidising chamber 27 connections form a negative pressuren zone 33, both helped entering fluidising chamber 27 from the flying dust of tornado dust collector smoothly by standpipe 23, what solved also that material returning devices such as U type, J type, L type occur in the prior art can't loop back the problem that burner hearth takes place by revert pipe by standpipe anti-channeling and flying dust amount after a little while.Also be provided with a vertical clapboard 32 in the air compartment 25 of bottom, there is a node 31 these dividing plate 32 upper ends with horizontal air distribution plate 28 connections, this dividing plate 32 can be regulated between 0~180 degree around node 31, can realize node 31 left and right sides two portions blast on the horizontal air distribution plate 28 by the angle of regulating dividing plate 32, help the fluidisation and the circulation of dust stratification, also help fluidized-bed and and the sealing of separator.
The feed back amount can dynamically be adjusted according to fly ash content, has both played to make recirculation bed material get back to burner hearth continuously and stably from tornado dust collector, and the sealing between tornado dust collector negative pressure and the lower combustion chamber's malleation can be provided again.The arc height of revert pipe 26 can be calculated according to pressure reduction in the pressure of on-the-spot producer 4 burner hearths and the fly-ash separator by the designer to be determined, can play sealing function just, can promote the flying dust circulation again.
For accomplishing safety in production, be connected with safe gas in coal storage tank 2, the ash-pit 5 during operation, prevent back flow of gas in the stove 4; There is filtering net that fine coal is separated with safe gas in the filter vat 17, realizes the safe gas recycle; The screw stoker 16 that adds feed bin 3 bottoms is used for delivering coal toward producer 4, and producer 4 has two-layer gasification nozzle 18,19, helps gasification; Slag is discharged in the airtight ash-pit 5 by the spiral dusting machine 21 that the recirculated water cooling is arranged, and has gate to help ash discharge under it; Before and after two groups of cyclonic separators 6 and 7 liner be equipped with thermal insulation layer, adopt 2 grades of separation can reduce flying dust output greatly, make the carbon that is not gasified totally in most flying dusts loop back gasification again in the producer 4 by material returning device, carbon gasification efficient is more than 90%, improve nearly 10 percentage point than prior art, improved gasification efficiency greatly; The logotype of waste heat boiler 8 and fine coal drying machine 9, not only can utilize the waste heat of synthesis gas to produce superheated vapour, all right dry fine coal is compared with other technologies, save energy consumption but also can further reduce the temperature of synthesis gas, alleviated the pressure of back water-cooling tower 11; Water-cooling tower 11 can be further to synthesis gas cooling dedusting, and Venturi scrubber 12 can be to the effective desulfurization of synthesis gas.
The testing data that the present invention obtains is:
1. carbon gasification efficient improves more than 10 percentage points than prior art more than 90%;
2. calorific value can be regulated in the 1500-2500 kilocalorie according to the proportioning of vaporization agent;
3. every production 1000M 3But coal gas byproduct steam 550-650kg.

Claims (6)

1. circulation fluidized bed coal gasifying device, include by coal dust broken, screening plant, coal storage tank and the coaling system that adds the feed bin composition, producer, tornado dust collector, waste heat boiler, water-cooling tower and Venturi scrubber, wherein saidly be provided with the screw stoker of delivering coal at the bottom of adding feed bin to producer, producer is provided with, two arrange the vaporized chemical nozzles down, the producer bottom is provided with spiral Machine for cleaning-out ash and ash-pit, producer top is provided with the gas pipe that communicates with the tornado dust collector upper end, the tornado dust collector bottom is provided with the feed back pipe that communicates with producer, tornado dust collector communicate with waste heat boiler by gas pipe, waste heat boiler communicates with water-cooling tower by gas pipe, water-cooling tower communicates with Venturi scrubber by gas pipe, it is characterized in that it is the material returning device that has small-sized fluidized bed that the return line that burner hearth takes place is led in described tornado dust collector lower end, this material returning device is by standpipe, blast cap or airduct, the bottom air compartment, the sidepiece air compartment, revert pipe, fluidising chamber, laterally air distribution plate and vertically air distribution plate formation, wherein be provided with horizontal air distribution plate and vertical air distribution plate in the material returning device, and the space segmentation in the material returning device become fluidising chamber, bottom air compartment and sidepiece air compartment three parts, one end of described standpipe is connected with tornado dust collector, its the other end is connected with fluidising chamber, one end of revert pipe is connected with fluidising chamber, and its other end is connected with producer.
2. circulation fluidized bed coal gasifying device according to claim 1 is characterized in that being provided with a vertical clapboard in the air compartment of described bottom, and there is a node this dividing plate upper end with horizontal air distribution plate connection.
3. circulation fluidized bed coal gasifying device according to claim 1 and 2, it is characterized in that described tornado dust collector are the placed in-line tornado dust collector composition of at least two groups, there is gas pipe to communicate on the wherein last group tornado dust collector with producer, there is the material returning device that has small-sized fluidized bed to lead to the generation burner hearth down, one group of tornado dust collector top, back is higher than last group of tornado dust collector top, on have gas pipe to communicate with last group of tornado dust collector, down have the material returning device that has small-sized fluidized bed to lead to the generation burner hearth.
4. circulation fluidized bed coal gasifying device according to claim 3, it is characterized in that including in the described coaling system wind-force delivery system of forming by compressor, safe gas surge tank, coal lock hopper and hay tank, compressor wherein communicates with safe gas surge tank, coal lock hopper and hay tank respectively by pipeline, be respectively equipped with the safe gas inlet on coal storage tank and the ash-pit, hay tank is arranged on to add on the feed bin and with adding feed bin and communicates, and the coal lock hopper is arranged on coal storage tank bottom and leads on the pipeline of hay tank.
5. circulation fluidized bed coal gasifying device according to claim 4, it is characterized in that coal dust in the described coaling system is broken, also be provided with the fine coal drying machine between screening plant and the coal storage tank, this fine coal drying machine is broken with coal dust respectively by conveying belt, screening plant is connected with the coal storage tank, also is installed with the gas pipe that connects waste heat boiler and water-cooling tower in this fine coal drying machine.
6. prepare the method for coal gas by the described circulation fluidized bed coal gasifying device of claim 1, it is characterized in that including following steps:
(1). feed coal enters fine coal drying machine drying after pulverizing, sieving, leave steam-in and smoke inlet on this drying machine, when the synthesis gas shortage of heat, can replenish steam, dry good fine coal is delivered to the coal storage tank, be delivered to hay tank through the coal lock hopper by wind-force, realize that at this bottle coal separates, the safe gas after the separation is transmitted back to the safe gas surge tank, realizes recycle;
(2). isolating coal enters and adds in the feed bin in the hay tank, send into producer gas generator through screw stoker, gasification rapidly under the effect of the vaporized chemical that two-layer nozzle about the warp sprays into, the synthesis gas that generates is mingled with a large amount of flying dusts and does not have the fully coal dust of gasification, through multistage the gathering dust of the placed in-line tornado dust collector of at least two groups, isolated ash turns back in the vapourizing furnace through the material returning device that has small-sized fluidized bed of tornado dust collector lower end, the furnace bottom lime-ash is discharged in the ash-pit through the spiral Machine for cleaning-out ash, overheated for preventing the spiral Machine for cleaning-out ash, be connected with the recirculated water cooling;
(3). the coal gas after the cyclone dust removal enters the waste heat boiler recovery waste heat, produce superheated vapour, coal gas enters that the fine coal drying machine is further lowered the temperature, recovery waste heat behind waste heat boiler, and dry fine coal, gas temperature is reduced to below 150 ℃, enter into water-cooling tower again and further lower the temperature after the dedusting,, become the normal temperature clean gas through the Venturi scrubber desulfurization.
CN200710011511A 2007-05-31 2007-05-31 Coal gasification device for circulating fluidized bed and manufacturing method thereof CN100577775C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200710011511A CN100577775C (en) 2007-05-31 2007-05-31 Coal gasification device for circulating fluidized bed and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200710011511A CN100577775C (en) 2007-05-31 2007-05-31 Coal gasification device for circulating fluidized bed and manufacturing method thereof

Publications (2)

Publication Number Publication Date
CN101054536A CN101054536A (en) 2007-10-17
CN100577775C true CN100577775C (en) 2010-01-06

Family

ID=38794593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710011511A CN100577775C (en) 2007-05-31 2007-05-31 Coal gasification device for circulating fluidized bed and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN100577775C (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8137655B2 (en) * 2008-04-29 2012-03-20 Enerkem Inc. Production and conditioning of synthesis gas obtained from biomass
CN101608136B (en) * 2008-06-19 2012-10-24 侯长连 Efficient coal gasification furnace
CN101899328A (en) * 2008-08-26 2010-12-01 顾鸣海 Baffle plate device for fluidized bed and spouted bed
CN101921627B (en) * 2010-07-30 2013-03-13 陕西华祥能源科技集团有限公司 Air-oil co-production device forcoupling fluidized bed pulverized coal gasification and solid heat carrier pyrolysis and method therefor
CN102041103A (en) * 2010-10-20 2011-05-04 北京低碳清洁能源研究所 Low-and-medium-temperature pyrolysis system for coal and method for producing upgraded coal, high-calorific-value pyrolysis gas and tar or liquefied synthetic oil by using same
CN102465038B (en) * 2011-01-19 2013-07-03 湖南美锦能源科技有限公司 Preparation method for low-cost clean coal gas
CN102329647B (en) * 2011-08-31 2013-07-17 辽宁禹华环保设备有限公司 Generation furnace and production method of heat clean gas
JP6139845B2 (en) * 2012-10-09 2017-05-31 三菱日立パワーシステムズ株式会社 Carbon fuel gasification system
CN102911741B (en) * 2012-10-18 2013-12-25 东南大学 Coal gasification device for circulating fluidized bed
CN102977930A (en) * 2012-11-22 2013-03-20 三门峡天昊干燥工程有限公司 Superhigh-temperature ash slag cooling machine and superhigh-temperature ash slag cooling system composed of same
CN102994162B (en) * 2012-12-10 2014-03-12 中国五环工程有限公司 Circulating fluidized bed gasifier system and starting method thereof
CN103589461A (en) * 2013-11-25 2014-02-19 淄博义丰机械工程有限公司 Gas purification treatment device and process with phenolic water treatment for two-sectional type gas producer
CN104131158B (en) * 2014-07-18 2017-12-15 杨谋森 A kind of folded formula recirculating fluidized bed gasification magnetizing roasting device and technique
CN106196097A (en) * 2016-08-30 2016-12-07 安徽今朝环保科技有限公司 Industrial slag salt bubbling fluidized bed burns harmless treatment device and method
CN109401792B (en) * 2017-08-17 2020-06-09 中国石油化工股份有限公司 Catalytic gasification combined fluidized bed reaction device and reaction method
CN107562086B (en) * 2017-08-24 2020-02-14 沈阳鼓风机集团往复机有限公司 Gas constant temperature control device and mixed gas throttling system
CN107474882B (en) * 2017-09-15 2020-11-06 中科清能燃气技术(北京)有限公司 Method for recovering heat of high-temperature coal gas and preheating air in coal gasification process
CN109628193B (en) * 2019-01-25 2020-11-03 廊坊蓝净环保燃料有限公司 Waste bacteria stick fuel production system

Also Published As

Publication number Publication date
CN101054536A (en) 2007-10-17

Similar Documents

Publication Publication Date Title
EP1286113B1 (en) Apparatus for fluidized-bed gasification and melt combustion
CA2236805C (en) Method and apparatus for utilizing biofuel or waste material in energy production
CN101701535B (en) Process for upgrading and recycling lignite to jointly produce power, steam, coal gas, tar and moulded coal
CN101481631B (en) Fuel feed system for a gasifier and method of gasification systems start-up
CN103740389B (en) The multi-production process of low-rank coal cascade utilization
CN101412929B (en) High temperature gasification technological process and system for preparing synthesis gas by using biomass
CN101240196B (en) Fine coal pressurization dense phase transporting bed gasification method and device
CN101921627B (en) Air-oil co-production device forcoupling fluidized bed pulverized coal gasification and solid heat carrier pyrolysis and method therefor
EP2551331A1 (en) Process and system for producing synthesis gas from biomass by pyrolysis
US20120000175A1 (en) Mild gasification combined-cycle powerplant
CN105861066B (en) A kind of colm segmented couples gasification installation and gasification process
CN102798133B (en) Fan grinding hot blast powder feeding and pulverizing system utilizing flue gas drying and water recycling
CN101220299B (en) Device and method for production synthesis gas energy conservation and emission reduction of static bed gas making furnace
CN101245264B (en) Single-bed self-heating type thermal decomposition gasification combustion reactor and thermal decomposition gasification combustion method
US20130312328A1 (en) Method and apparatus for particle recycling in multiphase chemical reactors
KR101437425B1 (en) Method and apparatus for biomass pyrolysis gasification via two interconnected furnaces
CN1931959B (en) Compositely circulating high temperature gasifying process for making synthetic gas with biomass
CN2740609Y (en) Powdery coal gasifier of pressurized selecting ash-ejecting fluidized bed
CN1219857C (en) Solid slag-discharing dry-powder air-current bed gasification process and apparatus
KR20130069586A (en) Process and ststem for producing synthesis gas from biomass by carbonization
CN103436296B (en) Slag gasifier for pressurized fixed bed
CN101942344B (en) Method and device for gasifying multi-segment staged converted fluidized bed
CN1173015C (en) Fluidized bed water gas production method equipped with auxiliary bed reactor and installation thereof
CN1944593A (en) Method and device for high-capacity entrained flow gasifier
CN202229208U (en) Furnace smoke drying and water recycling warehouse-type fan mill hot air powder supplying and making system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100106

Termination date: 20120531