CN100545238C - 从反应系统中选择性除去不合乎需要的粒度的催化剂颗粒的方法 - Google Patents

从反应系统中选择性除去不合乎需要的粒度的催化剂颗粒的方法 Download PDF

Info

Publication number
CN100545238C
CN100545238C CNB2004800253226A CN200480025322A CN100545238C CN 100545238 C CN100545238 C CN 100545238C CN B2004800253226 A CNB2004800253226 A CN B2004800253226A CN 200480025322 A CN200480025322 A CN 200480025322A CN 100545238 C CN100545238 C CN 100545238C
Authority
CN
China
Prior art keywords
catalyst
sapo
particle diameter
median particle
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2004800253226A
Other languages
English (en)
Other versions
CN1845981A (zh
Inventor
S·N·沃恩
K·R·克莱姆
K·H·库彻姆
J·R·拉特纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
Exxon Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Chemical Patents Inc filed Critical Exxon Chemical Patents Inc
Publication of CN1845981A publication Critical patent/CN1845981A/zh
Application granted granted Critical
Publication of CN100545238C publication Critical patent/CN100545238C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0065Separating solid material from the gas/liquid stream by impingement against stationary members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0055Separating solid material from the gas/liquid stream using cyclones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/62Catalyst regeneration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4093Catalyst stripping
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Cyclones (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了用于从反应系统中选择性除去不希望粒度的催化剂颗粒的多种方法。在一个实施方案中,从反应系统中排出具有第一中值粒径的众多催化剂颗粒,且将其引入到离析装置比如逆流旋流分离器中。在离析装置中,颗粒被分离为小催化剂料流和大催化剂料流,该小催化剂料流具有小于第一中值粒径的第二中值粒径,而大催化剂料流具有大于第一中值粒径的第三中值粒径。细或大催化剂料流的至少一部分然后被引回到反应系统中,以便保持期望的粒度分布。

Description

从反应系统中选择性除去不合乎需要的粒度的催化剂颗粒的方法
发明领域
本发明涉及从反应系统中选择性去除颗粒的方法。更具体地说,本发明涉及从含氧化合物-烯烃反应系统中选择性去除不希望有的大和/或小催化剂颗粒,以便保持期望的催化剂粒度分布的方法。
发明背景
轻烯烃,本文定义为乙烯和丙烯,用作生产许多化学品的原料。烯烃传统上通过石油裂化来生产。因为石油资源的供应有限和/或成本高,所以由石油资源生产烯烃的成本已经在稳定地增长。
含氧化合物,例如醇,尤其甲醇,二甲醚和乙醇是生产轻烯烃的替代原料。醇可以通过发酵生产,或由来源于天然气、石油液体、碳质材料(包括煤)、再生塑料、城市废物或任何有机材料的合成气生产。因为来源广泛,所以醇、醇衍生物和其它含氧化合物作为用于烯烃生产的经济的、非石油资源很有前途。
在含氧化合物-烯烃转化(OTO)反应系统中,包含含氧化合物的原料中的含氧化合物在有效将至少一部分的含氧化合物转化为轻烯烃的条件下接触分子筛催化剂组合物,轻烯烃在反应流出物中从反应系统中获得。当原料在高重量时空速度下在极限温度和压力条件下接触分子筛催化剂组合物时,一部分催化剂组合物可以剪切或粉碎,例如磨损,从而形成一种或多种较小的催化剂磨碎颗粒。一些催化剂磨碎颗粒的粒度非常小,称为催化剂细粒。由于它们的表面积与质量比相对高,在反应系统中的一部分的催化剂细粒可能不希望地在反应流出物中夹带,并从反应系统中排出,相反,由于它们的相对低的表面积与质量比,较大的颗粒往往选择性地保持在OTO反应系统中。较大颗粒的选择性保留对于高度耐磨颗粒而言尤其是一个问题。
在OTO反应系统中的大催化剂颗粒的积聚产生了两种不希望有的效应。首先,在富含大颗粒的反应系统中,流化床的循环不能良好地起作用,尤其就催化剂在竖管内的循环来说。第二,选择性保留在反应系统中的大颗粒往往随时间流逝而失去它们的效力,例如活性和选择性。也就是说,大颗粒在反应系统中的积聚是不希望有的,因为较大颗粒往往降低了在反应系统中含有的催化剂颗粒的收集的总效力。
用于从反应系统中去除和再生催化剂的方法是已知的。例如Lattner等人的US专利No.6,023,005披露了再生催化剂总反应体积的一部分并将该再生的部分与催化剂总反应体积的未再生部分混合。类似地,用于除去不希望粒度的催化剂颗粒的一种常规技术包括非选择性地除去反应系统中全部催化剂颗粒的一部分,从而为添加新鲜催化剂腾出空间。然而,用于除去不合乎需要粒度的催化剂颗粒的该技术是低效的,因为大量的合乎需要粒度的催化剂颗粒随不合乎需要粒度的催化剂颗粒一起从反应系统中被去除。
Hettinger,Jr.等人,US专利No.5,746,321披露了磁力分离器、催化剂分类器和/或催化剂磨碎机的组合,其磨去催化剂的外层,获得了较低金属含量的高活性催化剂,平均粒度控制更精确,使粒度分布变窄,提供了改进的流化性能和更好的活性与选择性。当加工高金属含量的原料时,该方法是特别有效的。
PCT公开PCT/US01/20676,公开No.WO 02/05950A2,披露了分离和回收磨碎颗粒并将它们引入到催化剂生产装置中,以并入到其它催化剂颗粒的生产中。Friedman,US专利No.2,573,559披露了用新鲜流化催化剂置换活性在使用过程中减低的流化催化剂床的方法,两种催化剂的平均粒度是在40-400目(420微米-37微米)的范围内。新鲜催化剂的平均粒度与部分用过的催化剂的平均粒度相差至少10目大小,优选25目。在使得反应温度不显著增高的条件下将新鲜催化剂引入到反应器中,同时,在低于床的顶部水平以下的部分从反应器中排出催化剂。所排出的催化剂按粒度分离成新鲜催化剂(其返回到反应器中)和钝化催化剂(进行再生)。根据’559专利,催化剂的完全置换可以在正常操作条件下在20-48小时内完成。
在某些反应系统下,小催化剂颗粒的去除可能是理想的。例如,如果反应系统采用耐磨性低的催化剂组合物,那么催化剂组合物可容易磨损并形成催化剂细粒(取决于反应条件)。反应系统中的催化剂细粒的比例的增加将减低反应系统中整个催化剂群体的中值粒径,这可不理想地影响反应系统内的流化特性。不希望的高细粒水平使得很难保持所需的流化床密度,因此不利地影响了与反应区有关的反应速率。结果,希望从反应系统中选择性去除小催化剂颗粒,例如催化剂细粒,以便在反应系统中保持理想的粒度分布。
鉴于在反应系统内,尤其在OTO反应系统内保持理想粒度的催化剂颗粒的重要性,寻求改进的工艺来选择性从OTO反应系统中除去不希望有的粒度的催化剂颗粒。更具体地说,寻求能够在OTO反应系统中保持理想的催化剂粒度分布的改进工艺,从而提供理想的流化和催化活性特性。
发明概述
本发明提供了基于其粒度从OTO反应系统中选择性去除催化剂颗粒的新型工艺和系统。通过从OTO反应系统选择性除去不合乎需要粒度的催化剂颗粒,能够在此实现理想的流化和催化活性特性。
在一个实施方案中,本发明是一种通过从反应系统中选择性除去大催化剂颗粒以在反应系统中保持期望的粒度分布的方法,其中该反应系统包括反应区、分离区(disengaging zone)、任选的催化剂再生器、任选的催化剂冷却器和任选的催化剂汽提器,该方法包括下列步骤:(a)将众多催化剂颗粒进给到反应区;(b)让该众多催化剂颗粒与原料在反应区中在有效将至少一部分的原料转化为产物的条件下接触;(c)将该众多催化剂颗粒的一部分从反应系统引入到离析装置(separation unit),其中众多催化剂颗粒的该部分具有第一中值粒径;(d)在离析装置中,将众多催化剂颗粒的该部分分离为小催化剂料流和大催化剂料流,其中小催化剂料流具有小于第一中值粒径的第二中值粒径,和其中大催化剂料流具有大于第一中值粒径的第三中值粒径;以及(e)将小催化剂料流的至少一部分引入到反应系统中,以在反应系统中保持粒度分布。
该离析装置任选地选自:旋流分离器,沉降器,筛和空气分级器。任选地,离析装置包括逆流旋流分离器,其任选是可调的。在一个实施方案中,分离步骤包括让众多催化剂颗粒的一部分与湍流化料流在有效形成小催化剂料流和大催化剂料流的条件下接触。在一个实施方案中,分离设备包括可调旋流器。任选地,步骤(b)形成了至少部分钝化的催化剂,且该方法进一步包括下列步骤:在催化剂再生器中将该至少部分钝化的催化剂再生,从而形成该众多催化剂颗粒的一部分,其中步骤(c)包括将众多催化剂颗粒的该部分从催化剂再生器引入到离析装置中。另外,步骤(b)形成了至少部分钝化的催化剂,该方法进一步包括下列步骤:在催化剂汽提器中汽提该至少部分钝化的催化剂,从而形成该众多催化剂颗粒的一部分,其中步骤(c)包括将众多催化剂颗粒的该部分从催化剂汽提器引入到离析装置中。另外,该方法进一步包括下列步骤:在催化剂冷却器中冷却来自反应系统的加热催化剂颗粒,其中步骤(c)包括将该众多催化剂颗粒的一部分从催化剂冷却器引入到离析装置中。任选地,该原料包括含氧化合物以及包含轻烯烃的产物。任选地,该众多催化剂颗粒包括选自SAPO-5,SAPO-8,SAPO-11,SAPO-16,SAPO-17,SAPO-18,SAPO-20,SAPO-31,SAPO-34,SAPO-35,SAPO-36,SAPO-37,SAPO-40,SAPO-41,SAPO-42,SAPO-44,SAPO-47,SAPO-56,AEI/CHA共生物,它们的含金属的形式,它们的共生形式,和它们的混合物中的分子筛。
在另一个实施方案中,从分离区中获得流出料流,其中该流出料流包括催化剂细粒和至少大多数的产物。步骤(e)任选包括将至少一部分的小催化剂料流引入到分离区中。另外,步骤(e)包括将至少一部分的小催化剂料流引入到反应区中。第三中值粒径任选为至少大约100微米。第二中值粒径任选小于大约100微米。第一中值粒径任选为大约60到大约120微米。
在一个实施方案中,该方法进一步包括下列步骤:将该多数的催化剂颗粒从反应区引入到分离区中;以及在有效形成第二多数的催化剂颗粒的条件下从分离区中除去催化剂细粒。在该实施方案中,该方法进一步包括下列步骤:监控第二多数的催化剂颗粒的中值粒径,其中该监控任选地通过激光散射粒度分析仪、库尔特计数器、用于测定沉降速率的设备或机械筛分设备来进行。任选地,步骤(c)响应于对第二多数的催化剂颗粒的中值粒径超过预定极限的在监控步骤中的测定响应。该预定极限是大约100微米到大约120微米。
在另一个实施方案中,本发明涉及一种通过从反应系统中选择性去除小催化剂颗粒以在反应系统中保持期望的粒度分布的方法,其中该反应系统包括反应区,分离区,任选的催化剂再生器,任选的催化剂冷却器和任选的催化剂汽提器,该方法包括下列步骤:(a)将众多催化剂颗粒进给到反应区;(b)让该众多催化剂颗粒与原料在反应区中在有效将至少一部分的原料转化为产物的条件下接触;(c)将该众多催化剂颗粒的一部分从反应系统引入到离析装置中,其中众多催化剂颗粒的该部分具有第一中值粒径;(d)将众多催化剂颗粒的该部分在离析装置中分离为小催化剂料流和大催化剂料流,其中小催化剂料流具有小于第一中值粒径的第二中值粒径,而大催化剂料流具有大于第一中值粒径的第三中值粒径;以及(e)将大催化剂料流的至少一部分引入到反应系统中,以在反应系统中保持粒度分布。
在另一个实施方案中,本发明涉及用于在反应系统中保持催化剂粒度分布的方法,其中该方法包括下列步骤:(a)将具有第一中值粒径的第一多数的催化剂颗粒从反应系统引入到第一离析区中;(b)将该第一多数的催化剂颗粒分离为第一小催化剂料流和第一大催化剂料流,其中第一小催化剂料流具有小于第一中值粒径的第二中值粒径,和其中第一大催化剂料流具有大于第一中值粒径的第三中值粒径;(c)将至少一部分的第一小催化剂料流分离为第二小催化剂料流和第二大催化剂料流,其中第二小催化剂料流具有小于第二中值粒径的第四中值粒径,和其中第二大催化剂料流具有大于第二中值粒径的第五中值粒径;以及(d)将至少一部分的第二大催化剂料流引入到反应系统中。
在另一个实施方案中,本发明涉及用于在反应系统中保持催化剂粒度分布的方法,其中该方法包括下列步骤:(a)将具有第一中值粒径的第一多数的催化剂颗粒从反应系统引入到第一离析区中;(b)将该第一多数的催化剂颗粒分离为第一小催化剂料流和第一大催化剂料流,其中第一小催化剂料流具有小于第一中值粒径的第二中值粒径,和其中第一大催化剂料流具有大于第一中值粒径的第三中值粒径;(c)将至少一部分的第一大催化剂料流分离为第二小催化剂料流和第二大催化剂料流,和其中第二小催化剂料流具有小于第三中值粒径的第四中值粒径,和其中第二大催化剂料流具有大于第三中值粒径的第五中值粒径;以及(d)将至少一部分的第二小催化剂料流引入到反应系统中。
附图说明
结合附图,参考本发明的详细说明可以更好地理解本发明,其中:
图1举例说明了本发明的一个实施方案;
图2举例说明了本发明的另一个实施方案;
图3举例说明了本发明的另一个实施方案;
图4举例说明了根据本发明任选采用的尺寸选择性分离设备;和
图5举例说明了含氧化合物-烯烃反应系统和根据本发明的一个实施方案的分离系统。
发明的详细描述
本发明提供了用于从反应系统中选择性除去不希望的大和/或小催化剂颗粒的多种方法。在一个实施方案中,本发明是用于从反应系统中选择性除去大催化剂颗粒的方法。本文所使用的“反应系统”是指包括反应区、分离区、任选的催化剂再生器、任选的催化剂冷却器和任选的催化剂汽提器的系统。在该方法中,将众多催化剂颗粒引入到反应区中。该众多催化剂颗粒在反应区中在有效将至少一部分的原料转化为产物的条件下接触原料。将具有第一中值粒径的众多催化剂颗粒的一部分从反应系统引入到离析装置中。众多催化剂颗粒的该部分在离析装置中被分离为小催化剂料流和大催化剂料流,其中小催化剂料流具有小于第一中值粒径的第二中值粒径。大催化剂料流具有大于第一中值粒径的第三中值粒径。小催化剂料流的至少一部分被引入到反应系统中。另外或作为替代方案,大催化剂料流的至少一部分被引回到反应系统中。根据本发明,在反应系统中能够保持理想的粒度分布。
在一个优选实施方案中,离析装置包括可调旋流器,在该旋流器中引入湍流化料流。这里使用的“湍流化料流”是引入到旋流分离器中并且至少部分破坏在旋流分离器中含有的较大催化剂颗粒的向下流的气流。实际上,湍流化料流以可控方式减小了旋流分离器的分离效率,使得可以调节颗粒分离的程度。具体地说,湍流化料流在有效控制在小催化剂料流和大催化剂料流之间的切割的条件下接触在旋流分离器中形成的外部旋流(含有较大催化剂颗粒)。
从反应系统中选择性除去催化剂颗粒的方法
在本发明的一个优选实施方案中,从中除去反应系统中的一部分催化剂颗粒,并将其引入到离析装置,用于选择性分离较大催化剂颗粒与较小催化剂颗粒。优选地,所除去的催化剂颗粒部分是催化剂颗粒的等分部分(aliquot portion)。所谓等分是指用于分离大催化剂颗粒与小催化剂颗粒的从反应系统中除去的催化剂颗粒的该部分基本上代表了在反应系统内整个催化剂群体。然而,预期从反应系统中排出的催化剂颗粒的该部分可能是非等分部分。例如,从反应系统中排出的催化剂颗粒的该部分取自反应装置的底部,由于在反应装置中的催化剂沉降,该部分的中值粒径可能稍微大于在反应系统中催化剂颗粒的整个群体的中值粒径。
本文所使用的“中值粒径”是指规定的众多颗粒的d50值。用于本专利说明书和所附权利要求书的目的的dx粒度是指规定的众多颗粒的x体积%具有不大于dx值的粒径。对于该定义来说,用于定义dx值的粒度分布(PSD)采用公知的激光散射技术,用出自Microtrac,Inc.(Largo,Florida)的Microtrac Model S3000粒度分析仪来测定。这里使用的“粒径”是指规定的球形颗粒的直径或非球形颗粒的当量直径,通过使用Microtrac Model S3000粒度分析仪的激光散射来测定。
如上所述,根据本发明,来自反应系统的一部分催化剂颗粒被引入到离析装置中。任选地,该部分的催化剂颗粒从反应区、分离区、催化剂再生器、汽提装置、催化剂冷却器或这些装置的组合中引入到离析装置中。该部分的催化剂颗粒具有第一中值粒径。在该离析装置中,该部分的催化剂颗粒被分离为小催化剂料流和大催化剂料流。该小催化剂料流具有小于第一中值粒径的第二中值粒径,和该大催化剂料流具有大于第一中值粒径的第三中值粒径。在一个实施方案中,最后,将至少一部分的小催化剂料流引回到反应系统中。另外或作为选择方案,至少一部分的大催化剂料流最后被引回到反应系统中。
任选地,第一中值粒径是60-120,65-100或65-85微米。任选地,第二中值粒径小于120微米,不大于或不小于大约100微米,或不大于大约80微米。任选地,第三中值粒径为至少大约100微米,至少大约120微米,至少大约150微米,或至少大约200微米。
如在以下更详细公开的,优选的反应系统是含氧化合物-烯烃转化(OTO)反应系统。OTO反应系统优选地包括反应装置(其定义了反应区),分离装置(disengaging unit)(其定义了分离区),催化剂汽提器,催化剂再生器,催化剂冷却器和连接这些装置的管路。任选地,引入到离析装置的该众多催化剂颗粒的一部分从反应装置、分离装置、催化剂汽提器、催化剂再生器、催化剂冷却器和/或连接这些装置的管路的一个或多个排出。
相反,来自该一个或多个离析装置或其一部分的理想粒度的催化剂料流任选被引入到反应装置、分离装置、催化剂汽提器、催化剂再生器、催化剂冷却器的一个或多个,和/或连接这些装置的管路的一个或多个。在一个特别优选的实施方案中,如以下参考图5更详细说明和论述的,引入到离析装置的该众多催化剂颗粒的一部分从管路排出,将催化剂从催化剂再生器输送到反应装置。
在本发明的一个实施方案中,该反应装置与该分离装置相流通,其确定了分离区,并且提供用于从反应方法的产物中分离催化剂颗粒。在分离区中接收的催化剂颗粒优选包括催化剂细粒,催化剂粗粒,催化剂非细粒(nonfine)和催化剂非粗粒(noncoarse)。
“催化剂细粒”在这里被定义为中值粒径不大于20微米的配制催化剂组合物颗粒的集合。这里所使用的“催化剂非细粒”在这里被定义为中值粒径大于20微米的配制催化剂组合物颗粒的集合。“催化剂粗粒”在这里被定义为中值粒径至少120微米的配制催化剂组合物颗粒的集合。这里使用的“催化剂非粗粒”在这里被定义为中值粒径小于120微米配制催化剂组合物颗粒的集合。“中心切割”在这里被定义为中值粒径大于20微米和小于120微米的配制催化剂组合物颗粒的集合。当提到催化剂颗粒的群体时,本文所使用的术语“大(粗)”和“小(细)”是相对的,是指众多催化剂颗粒的中值粒径。因此,“粗”催化剂料流可以含有一些细的催化剂颗粒,例如催化剂细粒。另外,在“大催化剂料流”和“小催化剂料流”中含有的颗粒的尺寸将根据所要分离成粗和小催化剂料流的母料流的粒度分布来改变。因此,大催化剂料流可能不含有任何催化剂粗粒,如果得到它的母料流不含催化剂粗粒的话。类似地,小催化剂料流可能不含任何催化剂细粒,如果得到它的母料流不含催化剂细粒的话。
在一个实施方案中,本发明涉及用于从反应系统中选择性去除大催化剂颗粒的方法,该反应系统包括反应区、分离区、任选的催化剂再生器、任选的催化剂冷却器和任选的催化剂汽提器。该方法包括将众多催化剂颗粒进给到反应区的步骤。该众多催化剂颗粒在有效将至少一部分的原料转化为产物的条件下在反应区中接触原料,其中该众多催化剂颗粒包含催化剂细粒和催化剂非细粒。优选地,该原料包含含氧化合物,优选甲醇,和该产物包括轻烯烃,例如乙烯和丙烯。然后将该产物和众多催化剂颗粒引入到分离区。分离区与反应区相流通。包含至少大多数的产物和至少一部分的催化剂细粒的流出料流从分离区获得。至少大多数的催化剂非细粒从分离区引入到反应区中,且该众多催化剂颗粒的一部分从反应系统(例如从反应区、分离区、催化剂再生器、催化剂冷却器和/或催化剂汽提器的一个或多个)引入到离析区,其中该部分具有第一中值粒径。该部分在离析区中被分离为小催化剂料流和大催化剂料流,其中小催化剂料流具有小于第一中值粒径的第二中值粒径。大催化剂料流具有大于第一中值粒径的第三中值粒径。
在本发明的该实施方案中,离析区任选地包含选自下列之中的离析装置:旋流分离器、沉降器、筛子和空气分级器。优选地,该离析区包括以下所述的逆流旋流分离器。最后,将至少一部分的小催化剂料流引回到反应系统,例如反应区、分离区、催化剂再生器、催化剂冷却器和/或催化剂汽提器的一个或多个。另外或作为选择方案,至少一部分的大催化剂料流被引回到反应系统。
在这些实施方案的每一个中,不合乎需要粒度(例如不合乎需要的大或不合乎需要的小)的催化剂料流的处置可以变化很大。在一个实施方案中,不合乎需要粒度的催化剂料流或其一部分被除去。另外或作为替代方案,将不合乎需要粒度的催化剂料流或其一部分引入到催化剂合成系统中,其中不合乎需要粒度的催化剂料流或其一部分被配制成新分子筛催化剂组合物。另外或作为替代方案,可以将不合乎需要粒度的催化剂料流或其一部分物理破碎,以提供例如更理想粒度的颗粒源。
从反应系统引入到离析装置的催化剂的流速可以变化很大。在本发明的一个优选实施方案中,从反应系统引入到离析装置的催化剂的流速是大约0.01wt%到大约50wt%的催化剂库存/天,更优选大约0.05wt%到大约25wt%的催化剂库存/天,最优选大约0.1wt%到大约10wt%的催化剂库存/天。
在一个实施方案中,本发明的方法提供了在反应系统内保持所需粒度分布的能力,虽然反应系统中的一部分催化剂细粒可以随流出产物一起从反应系统排出。在该实施方案中,本发明提供了用于从反应系统中选择性去除大催化剂颗粒的方法。
该方法包括在反应区中提供第一多数的催化剂颗粒的步骤。该第一多数的催化剂颗粒具有第一中值粒径,并且包括催化剂细粒。该第一多数的催化剂颗粒在反应区中在有效将至少一部分的原料转化为产物的条件下接触原料。该第一多数的催化剂颗粒然后从反应区中引入到分离区。一部分的催化剂细粒在有效在分离区中形成第二多数的催化剂颗粒的条件下从分离区中除去。该第二多数的催化剂颗粒具有大于第一中值粒径的第二中值粒径。一部分的第二多数催化剂颗粒从反应区或分离区引入到离析区。在离析区中,第二多数的催化剂颗粒的该部分被分离为小催化剂料流和大催化剂料流。小催化剂料流具有小于第二中值粒径的第三中值粒径。大催化剂料流具有第四中值粒径,其大于第二中值粒径。最后,至少一部分的小催化剂料流被引入到反应系统中。
该实施方案任选进一步包括监控第二中值粒径的步骤。该监控优选地通过激光散射粒度分析仪,例如出自Microtrac,Inc.(Largo,Florida)的Microtrac Model S3000粒度分析仪来进行。该监控可以在线或离线进行。在该实施方案中,将第二多数的催化剂颗粒的一部分引入到离析区中的步骤优选响应于第二中值粒径已经超过预定极限的监控步骤中的测定。该预定极限可以变化很大,但优选大于120微米,在大约100到大约120微米之间,或大约90到大约100微米之间。任选地,该监控通过激光散射粒度分析仪,库尔特计数器,用于测定沉降速率的设备,或机械筛分设备来进行。
本发明还涉及用于从反应系统中选择性去除小催化剂颗粒的方法,该反应系统包括反应区、分离区、任选的催化剂再生器、任选的催化剂冷却器和任选的催化剂汽提器。在一个实施方案中,该方法包括将众多催化剂颗粒进给到反应区的步骤。该众多催化剂颗粒在反应区中在有效将至少一部分的原料转化为产物的条件下接触原料。该众多催化剂颗粒的一部分从反应系统引入到离析装置,其中众多催化剂颗粒的该部分具有第一中值粒径。众多催化剂颗粒的该部分在离析装置中被分离为小催化剂料流和大催化剂料流,其中小催化剂料流具有第二中值粒径,大催化剂料流具有大于第一中值粒径的第三中值粒径。大催化剂料流的至少一部分被引入到反应系统中。
用于从反应系统中选择性去除细催化剂颗粒的本发明方法理想地适用于采用具有极低耐磨性的催化剂颗粒的反应系统。也就是说,在采用具有低的耐磨性的催化剂颗粒的反应系统中,催化剂颗粒往往以比在采用高耐磨催化剂颗粒的反应系统中更高的速率磨损。结果,当发生磨损时,采用具有较低耐磨性的催化剂颗粒的反应系统的中值粒径将减小。为了在这种反应系统中保持所需的粒度分布,在一个实施方案中,从中除去至少一部分的催化剂细粒,从而保持所需的粒度分布。
在另一个实施方案中,本发明涉及用于在反应系统中保持催化剂粒度分布的方法,其中该方法包括在多个,优选两个分离步骤中分离催化剂颗粒。具体地说,具有第一中值粒径的第一多数的催化剂颗粒从反应系统引入到第一离析区。该第一多数的催化剂颗粒在第一离析区中被分离为第一小催化剂料流和第一大催化剂料流。第一小催化剂料流具有小于第一中值粒径的第二中值粒径,和第一大催化剂料流具有大于第一中值粒径的第三中值粒径。至少一部分的第一小催化剂料流被分离为第二小催化剂料流和第二大催化剂料流。第二小催化剂料流具有小于第二中值粒径的第四中值粒径,和第二大催化剂料流具有大于第二中值粒径的第五中值粒径。至少一部分的第二大催化剂料流被引回到反应系统中。任选地,上述分离步骤的任何一个或两个在选自旋流分离器、沉降设备、筛子和空气分级器中的离析装置中进行。优选地,然而,至少一个,优选两个分离步骤在逆流旋流分离器中进行。
在本发明的一个备选实施方案中,在第一分离步骤中除去不希望有的小催化剂颗粒,例如催化剂细粒,随后在第二分离步骤中分离不希望有的大催化剂颗粒,例如催化剂粗粒。在该实施方案中,具有第一中值粒径的第一多数的催化剂颗粒从反应系统中被引入到第一离析区中。该第一多数的催化剂颗粒被分离成第一小催化剂料流和第一大催化剂料流。第一小催化剂料流具有小于第一中值粒径的第二中值粒径,和第一大催化剂料流具有大于第一中值粒径的第三中值粒径。在该第二分离步骤中,将至少一部分的第一大催化剂料流分离为第二小催化剂料流和第二大催化剂料流。第二小催化剂料流具有小于第三中值粒径的第四中值粒径,和第二大催化剂料流具有大于第三中值粒径的第五中值粒径。至少一部分的第二小催化剂料流被引回到反应系统中。
图1-3举例说明了本发明的三个非限制性示例实施方案。图1例如举例说明了本发明的一个实施方案,其中大催化剂颗粒选择性地与较小的催化剂颗粒分离,再循环到反应系统中。具体地说,优选将含有含氧化合物例如甲醇或乙醇的原料101引入到反应系统102中。在反应系统102中,第一部分的催化剂颗粒在有效将至少一部分的原料101转化为产物的条件下接触该原料,该产物在反应流出料流(未示出)中从反应系统102排出。反应系统102包括反应装置和任选的一个或多个下列装置:分离装置,催化剂汽提器,催化剂再生器,催化剂冷却器,和/或在这些装置之间转移催化剂颗粒的管路。
第二部分的催化剂颗粒103(例如,第一部分的催化剂颗粒的一部分)从反应系统102中排出,并引入到离析系统104中。离析系统104包括一个或多个离析装置,其适于分离大催化剂颗粒与较小的催化剂颗粒。如图所示,离析系统104选择性地将第二部分的催化剂颗粒103分离为小催化剂料流105和大催化剂料流106。小催化剂料流105的中值粒径小于第二部分的催化剂颗粒103的中值粒径,而大催化剂料流106的中值粒径大于第二部分的催化剂颗粒103的中值粒径。如图所示,小催化剂料流105返回到反应系统102,从而催化原料101进一步转化为产物。大催化剂料流106任选再循环到催化剂配制设备中,或被处理掉。在未示出的另一个实施方案中,大催化剂料流106返回到反应系统102中,从而催化原料101进一步转化为产物。在该实施方案中,小催化剂料流105任选再循环到催化剂配制设备中,或被处理掉。
图2举例说明了本发明的另一个实施方案,其中小和大的催化剂颗粒选择性地从反应系统中除去,以形成合乎需要粒度的催化剂颗粒的群体,再引回到反应系统中。具体地说,原料201(优选含有含氧化合物如甲醇或乙醇)被引入到反应系统202中。在反应系统202中,第一部分的催化剂颗粒在有效将至少一部分的原料201转化为产物的条件下接触原料,其在反应流出料流中从反应系统202中排出(未示出)。反应系统202包括反应装置和任选的一个或多个下列装置:分离装置,催化剂汽提器,催化剂再生器,催化剂冷却器,和/或在这些装置之间转移催化剂颗粒的管路。
第二部分的催化剂颗粒203(例如,第一部分的催化剂颗粒的一部分)从反应系统202中排出,再引入到第一离析系统204中。第一离析系统204包括一个或多个离析装置,其适于分离大催化剂颗粒与较小的催化剂颗粒。如图所示,第一离析系统204选择性地将第二部分的催化剂颗粒203分离为第一小催化剂料流205和第一大催化剂料流206。第一小催化剂料流205的中值粒径小于第二部分的催化剂颗粒203的中值粒径,和第一大催化剂料流206的中值粒径大于第二部分的催化剂颗粒203的中值粒径。
第一小催化剂料流205被引入到第二分离系统207中,其包括适于分离小催化剂颗粒与较大催化剂颗粒的一个或多个离析装置。如图所示,第二离析系统207选择性将第一小催化剂料流205分离为第二小催化剂料流208和第二大催化剂料流209。第二小催化剂料流208的中值粒径小于第一小催化剂料流205的中值粒径,和第二大催化剂料流209的中值粒径大于第一小催化剂料流205的中值粒径。理想地,第二大催化剂料流209具有用于在反应系统202中将原料201转化为产物的理想中值粒径,例如中心切割。因此,第二大催化剂料流209优选返回到反应系统202,以将原料201进一步转化为产物。第一大催化剂料流206和/或第二小催化剂料流208任选再循环到催化剂配制设备或被处理掉。
图3举例说明了本发明的另一个实施方案,其中小和大催化剂颗粒选择性地从反应系统中除去,以形成合乎需要粒度催化剂颗粒的群体,再引回到反应系统。具体地说,原料301(优选含有含氧化合物如甲醇或乙醇)被引入到反应系统302中。在反应系统302中,第一部分的催化剂颗粒在有效将至少一部分的原料301转化为产物的条件下接触原料301,该产物在反应流出料流中从反应系统302排出(未示出)。反应系统302包括反应装置和任选的一个或多个下列装置:分离装置,催化剂汽提器,催化剂再生器,催化剂冷却器,和/或在这些装置之间转移催化剂颗粒的管路。
第二部分的催化剂颗粒303(例如,第一部分的催化剂颗粒的一部分)从反应系统302排出,并引入到第一离析系统304中。第一离析系统304包括一个或多个离析装置,其适于分离小催化剂颗粒与较大的催化剂颗粒。如图所示,第一离析系统304选择性地将第二部分的催化剂颗粒303分离为第一小催化剂料流305和第一大催化剂料流306。第一小催化剂料流305的中值粒径小于第二部分的催化剂颗粒303的中值粒径,和第一大催化剂料流306的中值粒径大于第二部分的催化剂颗粒303的中值粒径。
第一大催化剂料流306被引入到第二离析系统307中,该离析系统307包括适于分离大催化剂颗粒与较小催化剂颗粒的一个或多个离析装置。如图所示,第二离析系统307选择性地将第一大催化剂料流306分离为第二小催化剂料流308和第二大催化剂料流309。第二小催化剂料流308的中值粒径小于第一大催化剂料流306的中值粒径,和第二大催化剂料流309的中值粒径大于第一大催化剂料流306的中值粒径。理想地,第二小催化剂料流308具有用于在反应系统302中将原料301转化为产物的理想的中值粒径,例如中心切割。因此,第二小催化剂料流308优选返回到反应系统302中,从而催化原料301进一步转化为产物。第一小催化剂料流305和/或第二大催化剂料流309任选再循环到催化剂配制设备或被处理掉。
图5举例说明了根据本发明的一个实施方案的与离析系统524流通的反应系统500的详细示意图。如图所示,通过管路501将包含至少一些汽化形式的含氧化合物的含氧化合物原料供给反应装置503。反应装置503确定了包含进口区505的反应区504,其含有可流化催化剂颗粒。含氧化合物转化反应在反应区504中发生,包含主烯烃(prime olefin)的产物在反应区504中形成。至少一部分的可流化催化剂颗粒从反应区504被运送到分离装置506,该分离装置506确定了分离区507。在分离区507中,从含氧化合物转化反应的产物中分离出催化剂颗粒,其通过管路508从分离区507获得。分离区507的横截面积明显大于反应区504,因此显著减慢了分离区507中的气体表观速度,使大部分的催化剂随重力沉降,并大部分与含氧化合物转化产物和可能存在的任何稀释剂或未被转化的含氧化合物转化原料分离。一部分的催化剂颗粒(其可以被含氧化合物转化反应的产物夹带)被携带至分离设备509,该分离设备509优选包含一个或多个旋流分离器。在分离设备509中,催化剂颗粒与含氧化合物转化产物和可能存在的任何稀释剂或未转化的含氧化合物转化原料分离。分离的催化剂颗粒落入到一个或多个浸入管510中,后者将分离的催化剂颗粒引入到分离区507中。来自分离区507的一部分催化剂可以流入到任选的催化剂再循环管路511中,且随后流入到管路512中,在那里它加入来自催化剂再生器502的催化剂。如图所示,在管路521和管路512中的催化剂用提升气体抗重力提升,该提升气体经由管路513进入,并且将催化剂运输到进口区505。任选地,可以在催化剂再循环管路511上使用控制阀514。
来自分离区507的另一部分的催化剂可以流入到催化剂汽提器515,在本实例中它也在分离装置506内含有。催化剂汽提器515任选含有增强汽提作用的各种元件,例如塔盘,通常伞形塔盘(shed tray)和本领域技术人员所公知的其它元件。汽提气体可以经由管路516引入到催化剂汽提器515中,以便在将催化剂输送到催化剂再生器502之前(通常经由管路517通过重力),增强从催化剂中除去填隙烃类、夹带的含氧化合物转化产物和任何未转化的含氧化合物原料。任选地,在管路517中可以使用控制阀518。气体材料可以从催化剂汽提器515向上流入到分离区507。再生催化剂可以返回到进口区505,在本实例中,在已于催化剂冷却器519中冷却之后,经过与另一管路521流通的管路520,再与在管路512中通过分离区507再循环的催化剂结合。任选地,可以在管路512中使用控制阀522。在管路508中从反应系统500中除去由反应区504的含氧化合物转化反应获得的含氧化合物转化产物和任何未转化的含氧化合物原料。由于在催化剂汽提器515中的汽提的性质不完全,此类材料的一些小的措施可以引入到催化剂再生器502中。
在一个优选实施方案中(未示出),催化剂冷却器519在具有催化剂再生器502的封闭环路中运行。也就是说,在本实施方案中,催化剂冷却器519接收来自催化剂再生器502的催化剂,并将冷却的催化剂引回到催化剂再生器502。
根据本发明,如上所述,来自反应系统500的一部分催化剂颗粒从中排出,并引入到离析系统524,其中除去不合乎需要粒度的催化剂颗粒。如图5所示,从管路521中除去一部分的催化剂颗粒,并通过管路523引入到离析系统524。离析系统524可以由一种或多种尺寸选择性分离装置形成,其配置参考图1-3在以上进行了详细说明。而且,离析系统524任选用于选择性从反应系统500中除去大颗粒、小颗粒或二者。具有不合乎需要粒度(例如不合乎需要的中值粒径)的选择性分离的催化剂颗粒通过管路526从离析系统524中除去,而具有期望粒度或中值粒径的颗粒经由管路525返回到反应系统500。
虽然图5举例说明的离析系统524接收来自管路521的催化剂颗粒,其将催化剂颗粒返回到反应装置503,在离析系统524中有待分离的催化剂颗粒的一部分可以从反应系统500的各个区域排出,不会偏离本发明的范围。例如,离析系统524任选地接收来自反应系统的一个或多个下列部分的催化剂颗粒:反应装置503(例如,来自进口区505和/或来自反应区504),分离装置506(例如来自分离区507),分离设备509(例如来自浸入管510),催化剂汽提器515,催化剂再生器502,催化剂冷却器519,和/或来自管路511、517、521和/或512中的一个或多个。
类似地,合乎需要粒度的催化剂颗粒可以经由管路525从离析系统524引入到反应系统500的下列区域的一个或多个中:反应装置503(例如进口区505和/或反应区504),分离装置506(例如分离区507),分离设备509,催化剂汽提器515,催化剂再生器502,催化剂冷却器519,和/或来自管路511、517、521和/或512中的一个或多个。
示例性分离设备
根据本发明可以采用任何离析装置来将众多催化剂颗粒分离为小催化剂料流和大催化剂料流。可以根据本发明使用的离析装置的非限制性、示例名单包括:旋流分离器,沉降器,筛子,和空气分级器。
旋流分离器的设计和操作是本领域技术人员所已知的。例如,参见US专利Nos.5,518,695;5,290,431;4,904,281;4,670,410;2,934,494和2,535,140。在旋流分离器的操作中,蒸气(vapor)组分和任选的少量的夹带颗粒被压缩空气压力向旋流分离器上方推进,并通过顶部出口,而较重的颗粒由于其惯性和离心力,往往向外侧分离器壁移动,由此它们由于重力按向下方向被推进到接收器中,并最终通过粗颗粒料流出口。在极大直径、低阻力旋流器中,用于加速的离心分离力可以是5倍重力,而在极小的高阻力装置中,达到2500倍重力。
具体地说,气体材料和颗粒材料的集合通过切向进口进入旋流分离器。颗粒材料的集合优选包括不同粒度的催化剂颗粒;一些颗粒比其它颗粒更大和/或更小。气体和颗粒材料的切向进入在旋流分离器内部产生了气体和颗粒材料的涡流作用,并建立了内涡流模式和外涡流模式。
颗粒材料在旋流分离器中的离心加速往往将较大颗粒材料向外推向旋流分离器的壁。结果,外涡流模式往往比内涡流包括更大量的较大颗粒材料,内涡流包括气体组分和较小的颗粒材料,例如催化剂细粒。除了离心力以外,重力往往将外涡流中的较大颗粒材料向下推进。在一个实施方案中,较大颗粒材料沿着旋流分离器的壁下降,并收集在旋流分离器的漏斗中。收集的颗粒材料然后任选被引入到再循环设备,在那里,收集的颗粒材料被配制成具有所需粒度特性的催化剂组合物。任选地,全部或一部分的较大催化剂颗粒被引回到反应装置。
在旋流分离器内的一些位置,外涡流终止,内涡流形成,该内涡流包括气体组分和较小的颗粒材料。内涡流在压缩空气压力下通过旋流分离器向上行进,并进入出口管,在此还被称为内中空圆筒形元件,其优选连接于横向延伸的顶面,该顶面确定了旋流分离器的顶部。出口管任选具有接近内旋流涡流的外周的直径。任选地,出口管横贯旋流分离器的横向延伸的顶面,并向下延伸到旋流分离器的内部体积中,从而促进尺寸选择性分离。任选地,全部或一部分的较小催化剂颗粒被引回到反应装置。
在结构上,旋流分离器优选包括在其远端具有横向延伸的顶面和在其近端具有开口端的外中空圆筒形元件。这里使用的规定组件的近端是最靠近参考水准面(grade)的组件的那一端。相反,规定组件的远端是最远离参考水准面(grade)的那一端。外中空圆筒形元件的开放端优选与具有宽远端和变窄成窄近端的中空圆锥形元件保持连通。中空圆锥形元件的窄近端优选在其顶部形成开口。该顶部开口任选与适于运输大颗粒材料的竖管连通。
出口管优选横贯旋流分离器的横向延伸的顶面,并延伸到由外中空圆筒形元件所形成的内部体积中。在其近端,内中空圆筒形元件包括小料流(small stream)出口,其优选适于接收来自在旋流分离器内产生的内涡流的细小组分(small component)。外中空圆筒形元件还包括进口,其适于接收来自反应系统的颗粒状满载料流。理想地,外中空圆筒形元件的进口以相对于外中空圆筒形元件的切向方式引入颗粒状满载料流,使得在将颗粒状满载料流引入到外中空圆筒形元件时,它在外中空圆筒形元件内形成了外涡流。
在运转中,当将催化剂颗粒引入到旋流分离器中时,较大的催化剂颗粒沿着外中空圆筒形元件的内表面推进,而较小的催化剂颗粒由于质量较低,往往被气体组分所夹带,并在旋流分离器内形成内涡流。重力和离心力倾向于将较大且较重的催化剂颗粒从外中空圆筒形元件通过其开放端引入到中空圆锥形元件内。该中空圆锥形元件往往将较大的催化剂颗粒从外中空圆筒形元件引入到顶端开口,并任选到竖管。引入到分离器进口的较细小的组分往往被迫进入小料流出口,再通过压缩空气压力进入内中空圆筒形元件。这样,进入旋流分离器的较小的颗粒和气体组分往往与较重的颗粒材料分开。
在本发明的一个特别优选的实施方案中,该分离装置包括逆流旋流分离器。逆流旋流分离器以类似于正常旋流分离器的方式运转。然而,在逆流旋流分离器中,沿着旋流分离器外壁流动的较重的催化剂颗粒,例如外涡流,接触湍流化料流,其在逆流旋流分离器内产生了湍流环境。在逆流旋流分离器内的湍流环境的形成往往将由外涡流中的较大催化剂颗粒所夹带的较小的颗粒材料推进到内涡流中,并最终与存在于内涡流中的气体和较小的颗粒组分一起从逆流旋流分离器中出来。也就是说,湍流化料流使外涡流中的一部分颗粒(通常较小的颗粒)转移到内涡流中。
具体地说,在逆流旋流分离器中,颗粒状满载料流在一个或多个分离器进口切向进入外中空圆筒形元件或中空圆锥形元件。与常规旋流器一样,气体和颗粒材料的切向进入在逆流旋流分离器的内部产生了气体和颗粒材料的涡流作用,并建立了内涡流模式和外涡流模式。颗粒材料在旋流分离器中的离心加速往往将较大的颗粒材料向外推向旋流分离器的壁。结果,外涡流模式往往包括比内涡流更大量的较大颗粒材料,该内涡流包括气体组分和较小的颗粒材料,例如催化剂细粒。除了离心力以外,重力往往将外涡流中的较大颗粒材料向下推进。然而,外涡流可以含有少量的夹带的细小或中等粒度的颗粒,如下所述,它的一部分任选通过湍流化料流转移到内涡流中。
在逆流旋流分离器内的一些位置,外涡流终止,内涡流形成,该内涡流包括气体组分和较小的颗粒材料。该内涡流在压缩空气压力下通过旋流分离器向上推进,并进入内中空圆筒形管,在此还称之为“出口管”,其优选连接于确定旋流分离器顶部的横向延伸的顶面。出口管任选具有接近内旋流涡流的外周的直径。任选地,出口管横贯逆流旋流分离器的横向延伸的顶面,并向下延伸到旋流分离器的内部体积中,以便促进尺寸选择性分离。任选地,全部或一部分的较小的催化剂颗粒被引回到反应装置中。
在结构上,逆流旋流分离器优选包括在其远端具有横向延伸的顶面和在其近端具有开放端的外中空圆筒形元件。外中空圆筒形元件的开放端优选与具有宽远端和变窄成窄近端的中空圆锥形元件连通。中空圆锥形元件的窄近端优选在其顶部形成了开口。该顶点开口任选与适于从逆流旋流分离器运走大颗粒材料的竖管连通。
另外,逆流旋流分离器包括用于接收湍流化料流的第二进口。第二进口任选位于外中空圆筒形元件或中空圆锥形元件。第二进口任选将该湍流化料流引入到外中空圆筒形元件或中空圆锥形元件的一个或多个中。在逆流旋流分离器内部,在外涡流中的众多催化剂颗粒的至少一部分在有效从外涡流中分离一些较小的催化剂颗粒的条件下接触湍流化料流。至少一部分的这些分离的较小的催化剂颗粒被内涡流所夹带,并随气体和较小的催化剂颗粒一起通过出口管从旋流分离器排出。
第二进口优选接收来自湍流化料流储存装置,例如加压罐或其它储存容器,或来自与工厂公用工程管线流通的管路的湍流化料流,例如含空气或氮气的料流。湍流化料流管路将湍流化料流从储存罐或工厂公用工程管线运输到第二进口。优选地,湍流化料流管路包括适于可调控制引入到逆流旋流分离器的湍流化料流的流动的一个或多个流动控制阀,取决于所需的分离特性。
在操作中,当湍流化料流经由第二进口引入到逆流旋流分离器中时,湍流化料流往往扰乱以湍流方式由逆流旋流分离器中的催化剂颗粒形成的旋流。通过扰乱逆流旋流分离器中的催化剂颗粒的流动,较小的催化剂颗粒往往从外涡流转移到内涡流中,并最终进入由内中空圆筒形元件所确定的小料流出口。虽然将湍流化料流引入到逆流旋流分离器中,但较大的催化剂颗粒往往继续通过竖管运输,并最后从大料流(large stream)出口排出。任选地,全部或一部分的这些较大的催化剂颗粒被引回到反应装置中。
因此,不象常规旋流分离器,逆流旋流分离器往往有利于除去由外涡流中的较大催化剂颗粒夹带的较小的催化剂颗粒。有利地,如果逆流旋流分离器包括湍流化料流管路的一个或多个流动控制阀,那么小催化剂料流的粒度分布(其经由小料流出口排出逆流旋流分离器)通过该一个或多个流动控制阀的起动完全可控。在另一个优选的实施方案中,逆流旋流分离器包括多个中空圆锥形元件和多个圆筒形元件,优选以交替方式排列。任选地,多个逆流旋流分离器可以彼此连通,以促进不合乎需要粒度的催化剂颗粒与合乎需要粒度的催化剂颗粒的分离。
根据本发明采用的湍流化料流可以变化很大。湍流化料流的示例性非限制性名单包括:空气,氮气,蒸汽,烟道气和它们的混合物。任选地,内中空圆筒形元件与涡形出口相连通,该涡形出口将小催化剂料流的流动偏离大约90度。
图4举例说明了逆流旋流分离器,总体上表示为400。如图所示,逆流旋流分离器400包括外中空圆筒形元件401,中空圆锥形元件402,进口403,和内中空圆筒形元件404,例如出口管。外中空圆筒形元件401包括近端416和远端417,并形成了确定内部体积406的壁。由外中空圆筒形元件401形成的壁具有内表面407和外表面408。外圆筒形元件401的近端416与中空圆锥形元件402连通,该圆锥形元件402也具有内表面407和外表面408。外中空管形元件401的远端417部分被横向延伸的顶面405所限制,该顶面40.5也具有内表面和外表面。
外中空圆筒形元件401也与进口403连通,该进口403优选以相对于外中空管形元件401的外表面408的切向方式定位。在操作中,进口403以切向方式接收来自反应系统的含催化剂的料流,并形成了含有较细小组分的内涡流,在内部体积406和413中形成了纵向延伸的中心轴α。该进口也在内部体积406和413中产生含有较大催化剂颗粒的外涡流。外涡流与内涡流同轴,并包围该内涡流,并且与中心轴α同轴。外涡流的外部界限受外中空圆筒形元件401的内表面407和中空圆锥形元件402的内表面407的限制。
如图所示,内中空管形元件404横贯顶面405,并延伸到内部体积406中。内中空管形元件404的近端形成了开口412(例如,小料流出口),其适于接收在逆流旋流分离器400中形成的内涡流,该内涡流包括在逆流旋流分离器400中接收的更轻的组分。
中空圆锥形元件402包括宽远端415和窄近端414,并且形成了确定内部体积413的壁。与由外中空圆筒形元件401确定的壁连续的由圆锥形元件402形成的壁也具有内表面407和外表面408。窄近端414形成了顶部开口411,通过该开口,在外涡流中含有的较大颗粒材料由逆流旋流分离器400获得。
中空圆锥形元件402优选确定了第二进口409,其与湍流化料流管路418连通。湍流化料流管路418接收来自湍流化料流源的湍流化料流,并将湍流化料流引入到第二进口409。在操作中,湍流化料流流过中空圆锥形元件402,并进入内部体积413,从而至少部分破坏外涡流的向下流。这样,从中除去一部分的在外涡流中夹带的较轻的颗粒组分,并转移到内涡流中,以便经由开口412和内中空圆筒形元件404从逆流旋流分离器400除去。湍流化料流管路418任选包括控制阀410,以便控制湍流化料流进入逆流旋流分离器400的流速。粒度“切割”的控制可以理想地通过调节进入逆流旋流分离器400的湍流化料流流速来获得。
含氧化合物-烯烃转化反应系统
如上所述,本发明尤其适合于含氧化合物-烯烃转化(OTO)反应系统,这在以下详细说明。在OTO反应方法中,含氧化合物,例如甲醇,在反应装置中在有效将至少一部分含氧化合物转化为轻烯烃的条件下接触分子筛催化剂组合物。
根据本发明分离的催化剂组合物可用于各种工艺,包括:裂化,例如石脑油原料裂化为轻烯烃(US专利No.6,300,537)或高分子量(MW)烃裂化为低MW烃;加氢裂化,例如重油和/或环状原料的加氢裂化;异构化,例如芳族化合物比如二甲苯的异构化;聚合,例如形成聚合物产物的一种或多种烯烃的聚合;重整;氢化;脱氢;脱蜡,例如用于除去直链链烷烃的烃的脱蜡;吸收,例如,用于分离出其异构体的烷基芳族化合物的吸收;烷基化,例如,芳族烃类例如苯和烷基苯任选用丙烯的烷基化(生产枯烯)或用长链烯烃的烷基化;烷基转移,例如,芳族和多烷基芳族烃的结合物的烷基转移;脱烷基化;氢化开环;歧化,例如制备苯和对二甲苯的甲苯的歧化;低聚,例如,直链和支链烯烃的低聚;和脱氢环化。
优选的工艺是转化工艺,包括:石脑油至高芳族混合物的转化;轻烯烃至汽油、馏出物和润滑剂的转化;含氧化合物至烯烃的转化;轻链烷烃至烯烃和/或芳族化合物的转化;以及不饱和烃(乙烯和/或乙炔)至醛的转化,再转化为醇、酸和酯。本发明的最优选的方法是涉及包含一种或多种含氧化合物的原料转化为一种或多种烯烃的工艺。
分子筛催化剂组合物尤其可用于不同原料的转化工艺。通常,原料含有一种或多种含脂族结构部分的化合物,包括醇,胺,羰基化合物,例如醛,酮和羧酸,醚,卤化物,硫醇,硫化物等,和它们的混合物。含脂族结构部分的化合物的脂族结构部分通常含有1到大约50个碳原子,优选1到20个碳原子,更优选1到10个碳原子,最优选1-4个碳原子。
含脂族结构部分的化合物的非限制性例子包括醇(例如甲醇和乙醇),烷基硫醇(例如甲基硫醇和乙基硫醇),烷基硫(例如甲硫醚),烷基胺(例如甲胺),烷基醚(例如二甲醚,二乙醚和甲基乙基醚),烷基卤化物(例如甲基氯和乙基氯),烷基酮(例如二甲基酮),甲醛类,和各种酸(例如乙酸)。
在本发明方法的一个优选实施方案中,原料含有一种或多种含氧化合物,更具体地说,一种或多种含有至少一个氧原子的有机化合物。在本发明方法的最优选的实施方案中,原料中的含氧化合物是一种或多种醇,优选脂族醇,其中醇的脂族结构部分具有1-20个碳原子,优选1-10个碳原子,最优选1-4个碳原子。在本发明的方法中用作原料的醇包括低级直链和支链脂族醇和它们的不饱和对应物。
含氧化合物的非限制性例子包括甲醇,乙醇,正丙醇,异丙醇,甲基乙基醚,二甲醚,二乙醚,二异丙基醚,甲醛,碳酸二甲酯,二甲基酮,乙酸,和它们的混合物。在最优选的实施方案中,原料选自甲醇、乙醇、二甲醚、二乙醚或它们的结合物中的一种或多种,更优选甲醇和二甲醚,最优选甲醇。
上述各种原料,尤其含有含氧化合物的原料,更尤其含有醇的原料主要被转化为一种或多种烯烃。由该原料生产的烯烃或烯烃单体一般具有2-30个碳原子,优选2-8个碳原子,更优选2-6个碳原子,还更优选2-4个碳原子,最优选是乙烯和/或丙烯。烯烃单体的非限制性例子包括乙烯,丙烯,1-丁烯,1-戊烯,4-甲基-1-戊烯,1-己烯,1-辛烯和1-癸烯,优选乙烯,丙烯,1-丁烯,1-戊烯,4-甲基-1-戊烯,1-己烯,1-辛烯和它们的异构体。其它烯烃单体包括不饱和单体,具有4-18个碳原子的二烯烃,共轭或非共轭二烯,多烯,乙烯基单体和环烯烃。
在最优选的实施方案中,原料,优选一种或多种含氧化合物在本发明的分子筛催化剂组合物的存在下被转化为具有2-6个碳原子,优选2-4个碳原子的烯烃。最优选地,单独或结合的烯烃由含有含氧化合物,优选醇,最优选甲醇的原料转化成优选的烯烃乙烯和/或丙烯。
有许多工艺用于将原料转化为烯烃,包括各种裂化工艺,例如蒸汽裂化、热再生裂化、流化床裂化、流化催化裂化、深度催化裂化、和减粘裂化。最优选的方法一般被称为气体-烯烃(GTO)转化工艺或甲醇-烯烃(MTO)转化工艺。在GTO工艺中,通常,天然气被转化为合成气,再转化为氧化的原料,优选含有甲醇,其中氧化的原料在分子筛催化剂组合物的存在下转化为一种或多种烯烃,优选乙烯和/或丙烯。在该OTO反应过程中,通常,氧化的原料,最优选含甲醇的原料在分子筛催化剂组合物的存在下转化为一种或多种烯烃,优选和主要是乙烯和/或丙烯,常常称为轻烯烃。
在用于转化原料,优选含有一种或多种含氧化合物的原料的该方法的一个实施方案中,以所生产的烃的总重量为基准计,所生产的烯烃的量高于50wt%,优选高于60wt%,更优选高于70wt%,最优选高于75wt%。在用于将一种或多种含氧化合物转化为一种或多种烯烃的方法的另一个实施方案中,以所生产的烃产物的总重量为基准计,所生产的乙烯和/或丙烯的量高于65wt%,优选高于70wt%,更优选高于75wt%,最优选高于78wt%。
在用于将一种或多种含氧化合物转化为一种或多种烯烃的该方法的另一个实施方案中,以所生产的烃产物的总重量为基准计,所生产的乙烯的量高于30wt%,更优选高于35wt%,最优选高于40wt%。在用于将一种或多种含氧化合物转化为一种或多种烯烃的方法的另一个实施方案中,以所生产的烃产物的总重量为基准计,所生产的丙烯的量高于20wt%,优选高于25wt%,更优选高于30wt%,最优选高于35wt%。
在一个实施方案中,原料含有一种或多种稀释剂,它们通常用来降低原料的浓度,且一般不与原料或分子筛催化剂组合物反应。稀释剂的非限制性例子包括氦,氩,氮,一氧化碳,二氧化碳,水,基本上不反应的链烷烃(尤其诸如甲烷、乙烷和丙烷之类的链烷烃),基本上不反应的芳族化合物,和它们的混合物。最优选的稀释剂是水和氮气,其中水是特别优选的。
稀释剂可以液体或蒸气形式,或它们的结合物使用。稀释剂可以直接加入到进入反应装置的原料中,或者直接加入到反应装置中,或者与分子筛催化剂组合物一起添加。在一个实施方案中,以原料和稀释剂的总摩尔数为基准计,在原料中的稀释剂的量是大约1到大约99mol%,优选大约1到大约80mol%,更优选大约5到大约50mol%,最优选大约5到大约25mol%。
在一个实施方案中,将其它烃类直接或间接地加入到原料中,包括烯烃、链烷烃、芳族化合物(例如参见US专利No.4,677,242)或它们的混合物,优选丙烯,丁烯,戊烯,和其它具有4个或更多个碳原子的烃类,或它们的混合物。
在本发明的分子筛催化剂组合物的存在下转化原料,尤其含有一种或多种含氧化合物的方法在反应装置中在反应过程中进行,其中该方法是固定床方法,流化床方法(包括湍流床方法),例如连续流化床方法,最优选连续高速流化床方法。
该反应过程可以在各种催化反应装置,例如具有联结在一起的致密床或固定床反应区和/或快速流化床反应区的混合反应装置,循环流化床反应装置,提升管反应器等中进行。适合的常规反应装置例如描述在US专利No.4,076,796,US专利No.6,287,522,和“流化工程”(Fluidization Engineering),D.Kunii和O.Levenspiel,RobertE.Krieger Publishing Company,New York,New York 1977中。优选的反应装置包括在“提升管反应器、流化和流体-颗粒系统”(RiserReactor,Fluidization and Fluid-Particle Systems),第48-59页,F.A.Zenz和D.F.Othmo,Reinhold Publishing Corporation,New York,1960,和US专利No.6,166,282,和2000年5月4日提出的US专利申请序号No.09/564,613(公开No.WO01/85872)中概述的提升管反应器。
该反应系统优选地包括具有在一个或多个提升管反应器内的第一反应区和在至少一个分离装置内的第二反应区(优选包括一个或多个旋流器)的流化床反应器系统。在一个实施方案中,该一个或多个提升管反应器和分离装置被包含于单一容器内。优选将含有一种或多种含氧化合物和任选的一种或多种稀释剂的新鲜原料进给到该一个或多个反应装置(优选提升管反应器),其中在反应装置中引入分子筛催化剂组合物或其焦化变型。在一个实施方案中,在引入到反应装置之前,分子筛催化剂组合物或其焦化变型与液体或气体或它们的结合物接触。优选地,该液体是水或甲醇,气体是惰性气体如氮气。
在一个实施方案中,单独或与蒸气原料一起进给到反应系统的液体原料的量是0.1到大约85wt%,优选大约1到大约75wt%,更优选大约5到大约65wt%,以包括其中所含任何稀释剂的原料的总重量为基准计。该液体和蒸气原料优选具有相似或相同的组成,或者可以含有不同比例的相同或不同原料与相同或不同稀释剂。
进入反应装置的原料优选在第一反应区中部分或完全转化为气体流出物,其与焦化分子筛催化剂组合物一起进入分离装置。在优选的实施方案中,在分离装置内的旋流器设计用于从分离区内的含有一种或多种烯烃的气体流出物中分离出分子筛催化剂组合物,优选焦化分子筛催化剂组合物。旋流器是优选的,然而,在分离装置内的重力效应也可从气体流出物中分离催化剂组合物。从气体流出物中分离催化剂组合物的其它方法包括使用板、帽、弯管等。
在一个实施方案中,分离装置在其底部包括催化剂汽提器。在催化剂汽提器中,焦化分子筛催化剂组合物与气体,优选蒸汽(steam)、甲烷、二氧化碳、一氧化碳、氢或惰性气体例如氩气中的一种或结合物接触,以便从焦化分子筛催化剂组合物中回收吸附的烃类,然后任选地引入到催化剂再生器中。在另一个实施方案中,催化剂汽提器是在分离装置的一个独立容器中,且气体以1hr-1到大约20,000hr-1的气时表观速度(GHSV,以相对于焦化分子筛催化剂组合物的气体的体积为基准计),优选在250到大约750℃,优选大约350到650℃的高温下在焦化分子筛催化剂组合物上通过。
在转化工艺中,具体地说在反应系统内使用的转化温度是在大约200到大约1000℃,优选大约250到大约800℃,更优选大约250到大约750℃,还更优选大约300到大约650℃,进一步优选大约350到大约600℃,最优选大约350到大约550℃的范围内。
在转化工艺中,具体地说在反应系统内使用的转化压力在包括自生压力的宽压力范围内变化。转化压力基于不包括任何稀释剂的原料的分压。通常,在该方法中采用的转化压力是在大约0.1kPaa到大约5MPaa,优选大约5kPaa到大约1MPaa,和更优选大约20kPaa到大约500kPaa的范围内。
重量时空速度(WHSV),尤其在反应区内在分子筛催化剂组合物的存在下转化含有一种或多种含氧化合物的原料的工艺中,被定义为不包括任何稀释剂的原料的总重量/小时/反应区中分子筛催化剂组合物中的分子筛的重量。WHSV保持在足以在反应装置内将催化剂组合物保持在流化状态的水平下。
通常,WHSV是大约1hr-1到大约5000hr-1,优选大约2hr-1到大约3000hr-1,更优选大约5hr-1到大约1500hr-1,最优选大约10hr-1到大约1000hr-1。在一个优选实施方案中,WHSV高于20hr-1,优选地,用于转化包含甲醇和二甲醚的原料的WHSV是大约20hr-1到大约300hr-1
在反应系统内包括稀释剂和反应产物的原料的表观气体速度(SGV)优选足以流化在反应装置中在反应区内的分子筛催化剂组合物。在该方法中,尤其在反应系统内,更尤其在一个或多个反应装置内的SGV是至少0.1米/秒(m/sec),优选高于0.5m/sec,更优选高于1m/sec,还更优选高于2m/sec,进一步优选高于3m/sec,最优选高于4m/sec。
在使用硅铝磷酸盐分子筛催化剂组合物将含氧化合物转化为烯烃的该方法的一个优选实施方案中,该方法在至少20hr-1的WHSV和低于0.016,优选低于或等于0.01的温度校正的标称化甲烷选择性(TCNMS)下操作。例如参见US专利No.5,952,538。在使用分子筛催化剂组合物将含氧化合物如甲醇转化为一种或多种烯烃的方法的另一个实施方案中,WHSV是0.01到大约100hr-1,温度大约350到550℃,硅石与Me2O3(Me是元素周期表的IIIA或VIII族元素)摩尔比为300-2500。例如参见EP-0 642 485 B1。使用分子筛催化剂组合物将含氧化合物如甲醇转化为一种或多种烯烃的其它方法在2001年4月5日出版的PCT WO 01/23500中有述(至少1.0的在平均催化剂原料曝露下的丙烷减少)。
从分离装置中排出焦化分子筛催化剂组合物,优选通过一个或多个旋流器,再引入到再生系统。该再生系统包括催化剂再生器,在那里,焦化催化剂组合物与再生介质,优选含氧气体,在温度、压力和停留时间的常规再生条件下接触。再生介质的非限制性例子包括下列的一种或多种:氧,O3,SO3,N2O,NO,NO2,N2O5,空气,用氮气或二氧化碳、氧和水稀释的空气(US专利No.6,245,703),一氧化碳和/或氢。再生条件是能够燃烧焦化催化剂组合物中的焦炭,优选达到基于进入再生系统的焦化分子筛催化剂组合物的总重量的低于0.5wt%的水平的那些。从催化剂再生器排出的焦化分子筛催化剂组合物形成了再生分子筛催化剂组合物。
再生温度可以是大约200到大约1500℃,优选大约300到大约1000℃,更优选大约450到大约750℃,最优选大约550到700℃。再生压力是大约15psia(103kPaa)到大约500psia(3448kPaa),优选大约20psia(138kPaa)到大约250psia(1724kPaa),更优选大约25psia(172kPaa)到大约150psia(1034kPaa),最优选大约30psia(207kPaa)到大约60psia(414kPaa)。优选的分子筛催化剂组合物在再生器中的停留时间是大约1分钟到几小时,最优选大约1分钟到100分钟,且在该气体中优选的氧的体积是大约0.01mol%到大约5mol%,以气体的总体积为基准计。
在一个实施方案中,再生促进剂,通常将含金属的化合物例如铂,钯等直接加入到催化剂再生器中,或间接加入到催化剂再生器中,例如与焦化催化剂组合物一起。还有,在另一个实施方案中,将新鲜分子筛催化剂组合物加入到含有氧和水的再生介质的催化剂再生器中,如在US专利No.6,245,703中所述。在又一个实施方案中,来自催化剂再生器的焦化分子筛催化剂组合物的一部分直接返回到该一个或多个反应装置,或间接地通过与原料预接触,或与新鲜分子筛催化剂组合物接触,或与再生分子筛催化剂组合物或以下所述的冷却的再生分子筛催化剂组合物接触而间接返回到该一个或多个反应装置中。
焦炭的燃烧是放热反应,在一个实施方案中,再生系统内的温度通过本领域中的各种技术来控制,包括将冷却气体进给到以间歇、连续或半连续方式或这些方式的组合来运转的催化剂再生器。优选的技术包括从催化剂再生中排出再生的分子筛催化剂组合物,且使再生的分子筛催化剂组合物通过催化剂冷却器,形成冷却的再生分子筛催化剂组合物。在一个实施方案中,该催化剂冷却器是位于催化剂再生器的内部或外部的换热器。在一个实施方案中,按连续循环将冷却的再生分子筛催化剂组合物返回到催化剂再生器中。另外,(参见US专利No.6,613,950),冷却的再生分子筛催化剂组合物的一部分以连续循环返回到催化剂再生器,冷却的再生分子筛催化剂组合物的另一部分直接或间接返回到反应装置中,或者再生的分子筛催化剂组合物或冷却的再生分子筛催化剂组合物的一部分与气体流出物内的副产物接触(2000年8月24日公开的PCT WO 00/49106)。在另一个实施方案中,再生分子筛催化剂组合物接触醇,优选乙醇,1-丙醇,1-丁醇,或它们的混合物,并被引入到反应系统中,如US专利No.6,441,262中所述。运行再生系统的其它方法公开在US专利No.6,290,916中。
从催化剂再生器,优选催化剂冷却器中排出的再生分子筛催化剂组合物与新鲜分子筛催化剂组合物和/或再循环分子筛催化剂组合物和/或原料和/或新鲜气体或液体合并,并返回到反应装置中。在另一个实施方案中,从再生系统排出的再生分子筛催化剂组合物直接返回到反应装置,任选在通过催化剂冷却器之后。在一个实施方案中,半连续或连续的载体,比如惰性气体,原料蒸气,蒸汽等,促进再生分子筛催化剂组合物引入到反应装置,优选该一个或多个提升管反应器中。
在一个实施方案中,通过控制再生分子筛催化剂组合物或冷却的再生分子筛催化剂组合物从催化剂再生器到反应装置的流量,在反应区中的分子筛催化剂组合物上保持了最佳焦炭水平。在Michael Louge,“循环流化床实验技术”(Experimental Techniques,CirculatingFluidized Beds),Grace,Avidan和Knowlton,eds.,Blackie,1997(336-337)中描述了控制分子筛催化剂组合物的流量的许多技术。在另一个实施方案中,通过控制流入到催化剂再生器的含氧气体的流速,即部分再生,保持了在反应区中的分子筛催化剂组合物上的最佳焦炭水平。通过在工艺中的某个位置从转化工艺中排出分子筛催化剂组合物并测定其碳含量来测量分子筛催化剂组合物上的焦炭水平。在再生之后,在分子筛催化剂组合物上的典型焦炭水平是0.01wt%到大约15wt%,优选大约0.1wt%到大约10wt%,更优选大约0.2wt%到大约5wt%,最优选大约0.3wt%到大约2wt%,以分子筛的总重量,而非分子筛催化剂组合物的总重量为基准计。
在一个优选实施方案中,在反应区中的新鲜分子筛催化剂组合物和/或再生分子筛催化剂组合物和/或冷却的再生分子筛催化剂组合物的混合物含有大约1到50wt%,优选大约2到30wt%,更优选大约2到大约20wt%,最优选大约2到大约10wt%的焦炭或碳质沉积物,以分子筛催化剂组合物的混合物的总重量为基准计。例如,参见US专利No.6,023,005。应该认识到,反应区中的分子筛催化剂组合物由具有不同水平的碳和碳类沉积物(例如焦炭)的再生和新鲜分子筛催化剂组合物的混合物组成。这些沉积物,具体地说焦炭的测定水平代表了在各分子筛催化剂组合物颗粒上的平均水平。
从分离装置排出气体流出物,再通入回收系统。有许多公知的用于从气体流出物中分离烯烃和纯化烯烃的回收系统、技术和程序。回收系统一般包括各种分离、分级和/或蒸馏塔、柱、分流器或设备组,反应系统比如乙基苯生产系统(US专利No.5,476,978)和其它派生工艺比如醛、酮和酯生产系统(US专利No.5,675,041),和其它相关设备,例如各种冷凝器,换热器,冷冻系统或冷却设备组,压缩机,分离鼓或分离罐,泵等的一种或多种或结合物。单独或结合使用的这些塔、柱、分流器或设备组的非限制性例子包括脱甲烷塔,优选高温脱甲烷塔,脱乙烷塔,脱丙烷塔,优选湿脱丙烷塔,洗涤塔(常常称为碱洗塔)和/或骤冷塔,吸收器,吸附器,膜,乙烯(C2)分流器,丙烯(C3)分流器和丁烯(C4)分流器的一种或多种。
用于主要回收烯烃,比如乙烯,丙烯和/或丁烯的各种回收系统描述在US专利No.5,960,643,US专利Nos.5,019,143,5,452,581和5,082,481,US专利5,672,197,US专利No.6,069,288,US专利No.5,904,880,US专利No.5,927,063,US专利No.6,121,504,US专利No.6,121,503,和US专利No.6,293,998中。
大多数回收系统通常附带的是与优选的主产物一道的其它产物、副产物和/或污染物的产生、形成或积聚。通常提纯优选的主产物,轻烯烃,比如乙烯和丙烯,用于派生生产工艺比如聚合工艺。因此,在回收系统的最优选实施方案中,回收系统还包括纯化系统。例如,将尤其在MTO工艺中生成的轻烯烃通入纯化系统,除去低水平的副产物或污染物。污染物和副产物的非限制性例子包括通常的极性化合物例如水,醇,羧酸,醚,碳氧化物类,硫化合物,例如硫化氢,硫化羰和硫醇类,氨和其它氮化合物,胂,膦,和氯化物。其它污染物或副产物包括氢和烃类比如乙炔,甲基乙炔,丙二烯,丁二烯和丁炔。
包括纯化系统(例如用于提纯烯烃)的其它回收系统在“Kirk-Othmer Encyclopedia of Chemical Technology”,第4版,第9卷,John Wiley&Sons,1996,第249-271页和894-899页中有述。纯化系统例如还在US专利No.6,271,428,US专利No.6,293,999,和US专利No.6,593,506中有述。
通常,在将一种或多种含氧化合物转化为具有2或3个碳原子的方法中,形成或生产出了一定量的烃类,尤其烯烃,特别是具有≥4个碳原子的烯烃以及其它副产物。在本发明的回收系统中包括了用于转化在从反应装置中排出的流出气体内含有的产物或转化作为所用回收系统的结果产生的那些产物的反应系统。
在一个实施方案中,从反应装置排出的流出气体通过回收系统,生产出一个或多个含烃料流,尤其,含有三个或三个以上碳原子(C3+)烃的料流。在该实施方案中,含C3+烃的料流通过第一分馏区,产生粗C3烃和含C4+烃的料流,含C4+烃的料流通过第二分馏区,生产出粗C4烃和含C5+烃的料流。四个或四个以上碳的烃类包括丁烯类例如1-丁烯和2-丁烯,丁二烯类,饱和丁烷类,和异丁烷类。
从转化工艺,尤其MTO工艺排出的流出气体通常含有少量的具有≥4个碳原子的烃类。具有≥4个碳原子的烃类的量通常低于20wt%,优选低于10wt%,更优选低于5wt%,最优选低于2wt%,以从MTO工艺排出的流出气体的总重量为基准计(不包括水)。尤其,对于采用分子筛催化剂组合物将含氧化合物转化为烯烃的转化工艺,所得流出气体一般包含大多数的乙烯和/或丙烯和少量的四碳和更高碳数产物和其它副产物,不包括水。
作为回收系统的一部分的适合的公知反应系统主要地采用较低价值产物并将它们转化为较高价值产物。例如,使用C4烃类、1-丁烯和2-丁烯来制备具有8-13个碳原子的醇和其它专用化学品。例如,使用异丁烯来制备汽油添加剂甲基叔丁基醚,在选择性氢化装置中的丁二烯被转化为1-丁烯和2-丁烯,并且丁烷可用作燃料。反应系统的非限制性例子包括US专利No.5,955,640,US专利No.4,774,375,US专利No.6,049,017,US专利Nos.4,287,369和5,763,678,US专利No.4,542,252,US专利No.5,634,354,以及Cosyns,J.等人,“用于C3、C4和C5烯属料流改质的工艺”(Process for UpgradingC3,C4and C5 Olefinic Streams),Pet.&Coal,Vol.37,No.4(1995)中。
用上述任何一种方法,优选转化工艺所生产的优选轻烯烃是含有高于80wt%,优选高于90wt%,更优选高于95wt%,最优选不低于大约99wt%的量的单一碳数烯烃的高纯度主烯烃产物,以烯烃的总重量为基准计。在一个实施方案中,高纯度主烯烃在本发明的方法中以高于5kg/天,优选高于10kg/天,更优选高于20kg/天,最优选高于50kg/天的速度生产。在另一个实施方案中,高纯度乙烯和/或高纯度丙烯通过本发明的方法以高于4,500kg/天,优选高于100,000kg/天,更优选高于500,000kg/天,还更优选高于1,000,000kg/天,进一步优选高于1,500,000kg/天,再更优选高于2,000,000kg/天,最优选高于2,500,000kg/天的速度生产。
其它转化工艺,尤其在分子筛催化剂组合物的存在下含氧化合物至一种或多种烯烃的转化工艺(尤其在分子筛由硅、磷和铝源合成的情况下)包括例如在下列文献中所述的那些:US专利No.6,121,503,US专利No.6,187,983,1999年4月15日公开的PCT WO 99/18055,2001年8月23日公开的PCT WO 01/60770和US专利No.6,441,261,2000年2月22日提出的US专利申请序号No.09/507,838,以及US专利No.6,518,475。
在一个实施方案中,一种综合方法涉及由烃原料,优选烃气体原料,更优选甲烷和/或乙烷生产轻烯烃。该方法的第一步是将气体原料,优选与水料流一起通入合成气生产区,以生产出合成气(syngas)料流。合成气生产方法是公知的,典型合成气温度是大约700到大约1200℃,合成气压力是大约2MPa到大约100MPa。合成气料流由天然气,石油液体和含碳材料比如煤,再循环塑料,城市废物或任何其它有机材料生产。优选,合成气料流由天然气的蒸汽转化来生产。通常,多相催化剂,典型地铜基催化剂,与合成气料流,通常二氧化碳和一氧化碳和氢气接触,生成醇,优选甲醇,常常与水结合。在一个实施方案中,于合成温度为大约150到大约450℃和合成压力为大约5MPa到大约10MPa下,合成气料流通过氧化碳转化区,生成含有含氧化合物的料流。
该含有含氧化合物的料流,或粗甲醇,通常含有醇产物和各种其它组分比如醚,尤其二甲醚,酮,醛,溶解气体比如氢,甲烷,氧化碳和氮气,以及燃料油。在优选的实施方案中,将该含有含氧化合物的料流,粗甲醇通入公知的提纯工艺,蒸馏,分离和分级,获得了提纯的含有含氧化合物的料流,例如,工业A和AA级甲醇。含有含氧化合物的料流或提纯的含有含氧化合物的料流,任选与一种或多种稀释剂一起,在上述任何一种方法中与一种或多种上述分子筛催化剂组合物接触,生成各种主产物,尤其轻烯烃,乙烯和/或丙烯。该综合方法的非限制性例子描述在EP-B-0933345中。在另一更完全的综合方法(任选与上述综合方法结合)中,所生成的烯烃在一个实施方案中涉及用于生产各种聚烯烃的一种或多种聚合工艺。例如,参见2000年7月13日提出的US专利申请序号No.09/615,376(公开No.WO02/06188)。
聚合工艺包括溶液、气相、淤浆相和高压工艺,或者它们的结合。尤其优选的是一种或多种烯烃(其至少一种是乙烯或丙烯)的气相或淤浆相聚合。这些聚合工艺采用可以包括上述分子筛催化剂的任何一种或结合物的聚合催化剂,然而,优选的聚合催化剂是那些齐格勒-纳塔催化剂,菲利普类催化剂,金属茂催化剂,金属茂类催化剂和先进(advanced)聚合催化剂,和它们的混合物。用上述聚合工艺生产的聚合物包括线性低密度聚乙烯,弹性体,塑性体,高密度聚乙烯,低密度聚乙烯,聚丙烯和聚丙烯共聚物。用聚合工艺生产的丙烯型聚合物包括无规立构聚丙烯,全同立构聚丙烯,间同立构聚丙烯,以及丙烯无规、嵌段或抗冲共聚物。
在一个优选的实施方案中,该综合方法包括在聚合反应器中在聚合催化剂体系的存在下聚合一种或多种烯烃以生产出一种或多种聚合物产物的方法,其中该一种或多种烯烃通过使用分子筛催化剂组合物转化醇,尤其甲醇来制备。优选的聚合工艺是气相聚合工艺,且至少一种烯烃是乙烯或丙烯,优选,聚合催化剂体系是担载金属茂催化剂体系。在该实施方案中,担载金属茂催化剂体系包括载体,金属茂或金属茂类化合物和活化剂,优选地,该活化剂是非配位阴离子或铝氧烷,或者它们的结合物,最优选,活化剂是铝氧烷。
除了聚烯烃以外,可由上述任何一种方法,尤其转化工艺,更尤其GTO工艺或MTO工艺回收的烯烃来形成许多其它烯烃衍生的产物。它们包括、但不限于醛,醇,乙酸,线性α-烯烃,乙酸乙烯酯,二氯乙烯和氯乙烯,乙基苯,环氧乙烷,枯烯,异丙醇,丙烯醛,烯丙基氯,环氧丙烷,丙烯酸,乙烯-丙烯橡胶,和丙烯腈,以及乙烯、丙烯或丁烯类的三聚体和二聚体。
分子筛催化剂组合物
分子筛具有各种化学、物理和骨架特性。分子筛已经由国际沸石协会的结构委员会(Structure Commission of the InternationalZeolite Association)按照IUPAC委员会关于沸石命名法的规则进行了完善的分类。分子筛的“骨架类型”描述了构成骨架的四面体配位原子的连接和拓扑结构,并且概括了这些材料的具体性能。其结构已被确定的骨架类型沸石和沸石类型分子筛被给予三字母代码,并且描述在“沸石骨架类型图册”(Atlas of Zeolite Framework Types),第5版,Elsevier,London,England(2001)中。
这些分子筛的非限制性实例是小孔分子筛,AEI,AFT,APC,ATN,ATT,ATV,AWW,BIK,CAS,CHA,CHI,DAC,DDR,EDI,ERI,GOO,KFI,LEV,LOV,LTA,MON,PAU,PHI,RHO,ROG,THO,和它们的取代形式;中孔分子筛,AFO,AEL,EUO,HEU,FER,MEL,MFI,MTW,MTT,TON,和它们的取代形式;以及大孔分子筛,EMT,FAU,和它们的取代形式。其它分子筛包括ANA,BEA,CFI,CLO,DON,GIS,LTL,MER,MOR,MWW和SOD。优选的分子筛,尤其用于将含有含氧化合物的原料转化为烯烃的分子筛的非限制性例子包括AEL,AFY,BEA,CHA,EDI,FAU,FER,GIS,LTA,LTL,MER,MFI,MOR,MTT,MWW,TAM和TON。在一个优选的实施方案中,本发明的分子筛具有AEI骨架类型或CHA骨架类型,或者它们的结合,最优选CHA骨架类型。
结晶分子筛材料全部具有共角TO4四面体的三维骨架结构,其中T是任何四面体配位阳离子。这些分子筛一般根据确定孔的环的尺寸来描述,其中该尺寸是以环中的T原子的数目为基础的。其它骨架类型特性包括形成笼的环的配置,当存在时,通道的尺寸和在笼之间的空间。参见van Bekkum等人,“沸石科学和实践引导”(Introductionto Zeolite Science and Pratice),Second Completely Revised andExpanded Edition,第137卷,第1-67页,Elsevier Science,B.V.,Amsterdam,Netherlands(2001)。
小、中和大孔分子筛具有4环到12环或更大骨架类型。在一个优选实施方案中,沸石分子筛具有8、10或12环结构或更大环结构和大约
Figure C20048002532200441
(0.3nm)到
Figure C20048002532200442
(1.5nm)的平均孔径。在最优选的实施方案中,本发明的分子筛,优选硅铝磷酸盐分子筛具有8环和小于大约
Figure C20048002532200443
(0.5nm)的平均孔径,优选
Figure C20048002532200444
(0.3nm)到大约
Figure C20048002532200445
(0.5nm),更优选
Figure C20048002532200446
(0.3nm)到大约
Figure C20048002532200447
(0.45nm),最优选
Figure C20048002532200448
(0.35nm)到大约
Figure C20048002532200449
(0.42nm)的平均孔径。
分子筛,尤其沸石和沸石类分子筛,优选具有一个,优选两个或多个共角[TO4]四面体单元,更优选两个或多个[SiO4]、[AlO4]和/或[PO4]四面体单元,最优选[SiO4]、[AlO4]和[PO4]四面体单元的分子骨架。这些硅、铝和磷基分子筛和含金属的硅、铝和磷基分子筛已经详细地描述在许多公开物中,例如包括US专利No.4,567,029(MeAPO,其中Me是Mg,Mn,Zn或Co),US专利No.4,440,871(SAPO),欧洲专利申请EP-A-0 159 624(ELAPSO,其中E1是As,Be,B,Cr,Co,Ga,Ge,Fe,Li,Mg,Mn,Ti或Zn),US专利No.4,554,143(FeAPO),US专利No.4,822,478,4,683,217,4,744,885(FeAPSO),EP-A-0 158975和US专利No.4,935,216(ZnAPSO),EP-A-0 161 489(CoAPSO),EP-A-0 158 976(ELAPO,其中E1是Co,Fe,Mg,Mn,Ti或Zn),US专利No.4,310,440(AlPO4),EP-A-0 158 350(SENAPSO),US专利No.4,973,460(LiAPSO),US专利No.4,789,535(LiAPO),US专利No.4,992,250(GeAPSO),US专利No.4,888,167(GeAPO),US专利No.5,057,295(BAPSO),US专利No.4,738,837(CrAPSO),US专利Nos.4,759,919和4,851,106(CrAPO),US专利Nos.4,758,419,4,882,038,5,434,326和5,478,787(MgAPSO),US专利No.4,554,143(FeAPO),US专利No.4,894,213(AsAPSO),US专利No.4,913,888(AsAPO),US专利Nos.4,686,092,4,846,956和4,793,833(MnAPSO),US专利Nos.5,345,011和6,156,931(MnAPO),US专利No.4,737,353(BeAPSO),US专利No.4,940,570(BeAPO),US专利Nos.4,801,309,4,684,617和4,880,520(Ti APSO),US专利Nos.4,500,651,4,551,236和4,605,492(TiAPO),US专利Nos.4,824,554,4,744,970(CoAPSO),US专利No.4,735,806(GaAPSO),EP-A-0293937(QAPSO,其中Q是骨架氧化物单元[QO2]),以及US专利Nos.4,567,029,4,686,093,4,781,814,4,793,984,4,801,364,4,853,197,4,917,876,4,952,384,4,956,164,4,956,165,4,973,785,5,241,093,5,493,066和5,675,050。在R.Szostak,“分子筛手册”(Handbook of Molecular Sieves),Van Nos trand Reinhold,NewYork,New York(1992)中描述了其它分子筛。
更优选的含硅、铝和/或磷的分子筛,以及含铝、磷和任选的硅的分子筛包括铝磷酸盐(ALPO)分子筛和硅铝磷酸盐(SAPO)分子筛和取代,优选金属取代的ALPO和SAPO分子筛。最优选的分子筛是SAPO分子筛,以及金属取代的SAPO分子筛。在一个实施方案中,金属是元素周期表的IA族的碱金属,元素周期表的IIA族的碱土金属,IIIB族的稀土金属,包括镧系元素:镧,铈,镨,钕,钐,铕,钆,铽,镝,钬,铒,铥,镱和镥;以及元素周期表的钪或钇,元素周期表的IVB、VB、VIB、VIIB、VIIIB和IB族的过渡金属,或任何这些金属物质的混合物。在一个实施方案中,该金属选自Co,Cr,Cu,Fe,Ga,Ge,Mg,Mn,Ni,Sn,Ti,Zn和Zr,以及它们的混合物。在另一个优选实施方案中,上述这些金属原子可以通过四面体单元比如[MeO2]插入到分子筛的骨架内,并且携带取决于金属取代基的价态的净电荷。例如,在一个实施方案中,当金属取代基具有+2,+3,+4,+5或+6的价态时,四面体单元的电荷是-2到+2。
在一个实施方案中,分子筛,如在上述许多US专利中所述,用以下经验式(按无水基准)来表示:
mR:(MxAlyPz)O 2
其中R表示至少一种模板剂,优选有机模板剂;m是R的摩尔数/mol的(MxAlyPz)O2且m具有0-1,优选0-0.5,最优选0-0.3的值;x,y和z表示作为四面体氧化物的M、Al和P的摩尔分数,其中M是选自元素周期表的IA、IIA、IB、IIIB、IVB、VB、VIB、VIIB、VIIIB族和镧系元素之一的金属。优选地,M选自Co,Cr,Cu,Fe,Ga,Ge,Mg,Mn,Ni,Sn,Ti,Zn和Zr之一。在一个实施方案中,m大于或等于0.2,以及x、y和z大于或等于0.01。在另一个实施方案中,m为大于0.1到大约1,x为大于0到大约0.25,y是0.4-0.5,以及z是0.25到0.5,更优选0.15-0.7,x是0.01-0.2,y是0.4-0.5,以及z是0.3-0.5。
本发明的SAPO和ALPO分子筛的非限制性实例包括SAPO-5,SAPO-8,SAPO-11,SAPO-16,SAPO-17,SAPO-18,SAPO-20,SAPO-31,SAPO-34,SAPO-35,SAPO-36,SAPO-37,SAPO-40,SAPO-41,SAPO-42,SAPO-44(US专利No.6,162,415),SAPO-47,SAPO-56,ALPO-5,ALPO-11,ALPO-18,ALPO-31,ALPO-34,ALPO-36,ALPO-37,ALPO-46,它们的含金属的分子筛中的一种或结合物。优选地,分子筛选自SAPO-5,SAPO-8,SAPO-11,SAPO-16,SAPO-17,SAPO-18,SAPO-20,SAPO-31,SAPO-34,SAPO-35,SAPO-36,SAPO-37,SAPO-40,SAPO-41,SAPO-42,SAPO-44,SAPO-47,SAPO-56,它们的含金属的形式和它们的混合物。更优选的沸石类型分子筛包括SAPO-18,SAPO-34,SAPO-35,SAPO-44,SAPO-56,ALPO-18和ALPO-34中的一种或结合物,还更优选,SAPO-18,SAPO-34,ALPO-34和ALPO-18以及它们的含金属的分子筛中的一种或结合物,最优选SAPO-34和ALPO-18以及它们的含金属的分子筛中的一种或结合物。任选地,该分子筛选自SAPO-34,它的含金属的形式,和它们的混合物。
引入到根据本发明的尺寸选择性分离装置中的催化剂颗粒任选含有选自SAPO-5,SAPO-8,SAPO-11,SAPO-16,SAPO-17,SAPO-18,SAPO-20,SAPO-31,SAPO-34,SAPO-35,SAPO-36,SAPO-37,SAPO-40,SAPO-41,SAPO-42,SAPO-44,SAPO-47,SAPO-56,AEI/CHA共生物,它们的含金属的形式,它们的共生形式,和它们的混合物中的分子筛。
在一个实施方案中,该分子筛是在一种分子筛组合物内具有两个或多个不同结晶结构相的共生材料。尤其,共生分子筛描述US专利No.6,812,372和1998年4月16日出版的PCT WO 98/15496中。例如,SAPO-18,ALPO-18和RUW-18具有AEI骨架类型,而SAPO-34具有CHA骨架类型。在另一个实施方案中,该分子筛可以包括AEI和CHA骨架类型的至少一种共生相,优选地,该分子筛具有更大量的CHA骨架类型(与AEI骨架类型相比),更优选CHA与AEI的摩尔比大于1∶1。
在一个实施方案中,分子筛催化剂组合物的耐磨性使用磨耗率指数(ARI)来衡量,该磨耗率指数按每小时磨耗的wt%催化剂组合物计。ARI通过将具有53-125微米的粒度的6.0g的催化剂加入到硬化钢磨损杯中来测定。通过含水鼓泡器通入大约23,700scc/min的氮气,以湿化该氮气。将湿氮气通入磨损杯,再通过多孔纤维套管从磨损装置中排出。流动的氮气除去了较细的颗粒,其中较大颗粒保留在杯内。多孔纤维套管从通过套管排出的氮气中分离出细催化剂颗粒。保留在套管中的细颗粒表示由于磨耗而破碎的催化剂组合物。将通入磨损杯的氮气流保持1小时。从该装置中除去在套管中收集的细粒。然后安装新的套管。在磨损装置中留下的催化剂在相同的气流和湿度水平下磨耗另外3小时。回收在套管中收集的细粒。称重在第一个小时后通过套管分离的细催化剂颗粒的收集物。按每小时基准表示的细颗粒的量(g)除以加入到磨损杯内的催化剂的初始量是ARI,按重量百分率/小时(wt%/hr)计。ARI用下式来表示:ARI=[C/(B+C)/D]×100%,其中B=在磨损试验之后在杯中留下的催化剂组合物的重量;C=在磨损处理的第一个小时后收集的细催化剂颗粒的重量;和D=在磨损处理的第一个小时之后的处理持续时间(小时)。
在一个实施方案中,分子筛催化剂组合物或配制的分子筛催化剂组合物具有小于15wt%/hr,优选小于10wt%/hr,更优选小于5wt%/hr,还更优选小于2wt%/hr,最优选小于1wt%/hr的ARI。在一个实施方案中,该分子筛催化剂组合物或配制的分子筛催化剂组合物具有0wt%/hr到小于5wt%/hr,更优选大约0.05wt%/hr到小于3wt%/hr,最优选大约0.01wt%/hr到小于2wt%/hr的ARI。
本领域的普通技术人员会认识到,在不偏离本发明的精神和范围的情况下可以对本发明做出许多修改。本文所述的实施方案仅仅是举例说明,不应被认为限制由以下权利要求书所限定的本发明。

Claims (26)

1、一种通过从反应系统中选择性除去大催化剂颗粒以在反应系统中保持期望的粒度分布的方法,其中该反应系统包括反应区、分离区、任选的催化剂再生器、任选的催化剂冷却器和任选的催化剂汽提器,该方法包括下列步骤:
(a)将众多催化剂颗粒进给到反应区;
(b)让该众多催化剂颗粒与原料在反应区中在有效将至少一部分的原料转化为产物的条件下接触;
(c)将该众多催化剂颗粒的一部分从反应系统引入到离析装置,其中众多催化剂颗粒的该部分具有第一中值粒径;
(d)在离析装置中,将众多催化剂颗粒的该部分分离为小催化剂料流和大催化剂料流,其中小催化剂料流具有小于第一中值粒径的第二中值粒径,和其中大催化剂料流具有大于第一中值粒径的第三中值粒径;以及
(e)将小催化剂料流的至少一部分引入到反应系统中,以在反应系统中保持粒度分布。
2、如权利要求1所述的方法,其中离析装置选自:旋流分离器,沉降器,筛和空气分级器。
3、如权利要求1或2所述的方法,其中离析装置包括逆流旋流分离器。
4、如权利要求3所述的方法,其中逆流旋流分离器是可调的。
5、如权利要求1所述的方法,其中步骤(d)包括让众多催化剂颗粒的该部分与湍流化料流在有效形成小催化剂料流和大催化剂料流的条件下接触。
6、如权利要求1所述的方法,其中步骤(b)形成了至少部分钝化的催化剂,该方法进一步包括下列步骤:
在催化剂再生器中将该至少部分钝化的催化剂再生,从而形成该众多催化剂颗粒的一部分,其中步骤(c)包括将众多催化剂颗粒的该部分从催化剂再生器引入到离析装置中。
7、如权利要求1所述的方法,其中步骤(b)形成了至少部分钝化的催化剂,该方法进一步包括下列步骤:
在催化剂汽提器中汽提该至少部分钝化的催化剂,从而形成该众多催化剂颗粒的一部分,其中步骤(c)包括将众多催化剂颗粒的该部分从催化剂汽提器引入到离析装置中。
8、如权利要求1所述的方法,其中该方法进一步包括下列步骤:
在催化剂冷却器中冷却来自反应系统的加热催化剂颗粒,其中步骤(c)包括将该众多催化剂颗粒的一部分从催化剂冷却器引入到离析装置中。
9、如权利要求1所述的方法,其中从分离区中获得流出料流,且其中该流出料流包括催化剂细粒和至少大多数的产物。
10、如权利要求9所述的方法,其中步骤(e)包括将至少一部分的小催化剂料流引入到分离区中。
11、如权利要求9所述的方法,其中步骤(e)包括将至少一部分的小催化剂料流引入到反应区中。
12、如权利要求1所述的方法,其中第三中值粒径为至少100微米。
13、如权利要求1所述的方法,其中第二中值粒径小于100微米。
14、如权利要求1所述的方法,其中第一中值粒径为60到120微米。
15、如权利要求1所述的方法,其中该方法进一步包括以下步骤:
将该多数的催化剂颗粒从反应区引入到分离区中;以及
在有效形成第二多数的催化剂颗粒的条件下从分离区中除去催化剂细粒。
16、如权利要求15所述的方法,其中该方法进一步包括下列步骤:监控第二多数的催化剂颗粒的中值粒径,其中该监控任选地通过激光散射粒度分析仪、库尔特计数器、用于测定沉降速率的设备或机械筛分设备来进行。
17、如权利要求16所述的方法,其中步骤(c)响应于第二多数的催化剂颗粒的中值粒径超过预定极限的在监控步骤中的测定。
18、如权利要求17所述的方法,其中该预定极限是100微米到120微米。
19、如权利要求1所述的方法,其中该众多催化剂颗粒包括选自SAPO-5,SAPO-8,SAPO-11,SAPO-16,SAPO-17,SAPO-18,SAPO-20,SAPO-31,SAPO-34,SAPO-35,SAPO-36,SAPO-37,SAPO-40,SAPO-41,SAPO-42,SAPO-44,SAPO-47,SAPO-56,AEI/CHA共生物,它们的含金属的形式,它们的共生形式,和它们的混合物中的分子筛。
20、一种通过从反应系统中选择性除去小催化剂颗粒以在反应系统中保持期望的粒度分布的方法,其中该反应系统包括反应区,分离区,任选的催化剂再生器,任选的催化剂冷却器和任选的催化剂汽提器,该方法包括下列步骤:
(a)将众多催化剂颗粒进给到反应区;
(b)让该众多催化剂颗粒与原料在反应区中在有效将至少一部分的原料转化为产物的条件下接触;
(c)将该众多催化剂颗粒的一部分从反应系统引入到离析装置中,其中众多催化剂颗粒的该部分具有第一中值粒径;
(d)将众多催化剂颗粒的该部分在离析装置中分离为小催化剂料流和大催化剂料流,其中小催化剂料流具有小于第一中值粒径的第二中值粒径,而大催化剂料流具有大于第一中值粒径的第三中值粒径;以及
(e)将大催化剂料流的至少一部分引入到反应系统中,以在反应系统中保持粒度分布。
21、如权利要求20所述的方法,其中该原料包括含氧化合物和产物包括轻烯烃。
22、如权利要求20所述的方法,其中该众多催化剂颗粒包括选自SAPO-5,SAPO-8,SAPO-11,SAPO-16,SAPO-17,SAPO-18,SAPO-20,SAPO-31,SAPO-34,SAPO-35,SAPO-36,SAPO-37,SAPO-40,SAPO-41,SAPO-42,SAPO-44,SAPO-47,SAPO-56,AEI/CHA共生物,它们的含金属的形式,它们的共生形式,和它们的混合物中的分子筛。
23、用于在反应系统中保持催化剂粒度分布的方法,其中该方法包括下列步骤:
(a)将具有第一中值粒径的第一多数的催化剂颗粒从反应系统引入到第一离析区中;
(b)将该第一多数的催化剂颗粒分离为第一小催化剂料流和第一大催化剂料流,其中第一小催化剂料流具有小于第一中值粒径的第二中值粒径,和其中第一大催化剂料流具有大于第一中值粒径的第三中值粒径;
(c)将至少一部分的第一小催化剂料流分离为第二小催化剂料流和第二大催化剂料流,其中第二小催化剂料流具有小于第二中值粒径的第四中值粒径,和其中第二大催化剂料流具有大于第二中值粒径的第五中值粒径;以及
(d)将至少一部分的第二大催化剂料流引入到反应系统中。
24、如权利要求23所述的方法,其中该众多催化剂颗粒包括选自SAPO-5,SAPO-8,SAPO-11,SAPO-16,SAPO-17,SAPO-18,SAPO-20,SAPO-31,SAPO-34,SAPO-35,SAPO-36,SAPO-37,SAPO-40,SAPO-41,SAPO-42,SAPO-44,SAPO-47,SAPO-56,AE I/CHA共生物,它们的含金属的形式,它们的共生形式,和它们的混合物中的分子筛。
25、用于在反应系统中保持催化剂粒度分布的方法,其中该方法包括以下步骤:
(a)将具有第一中值粒径的第一多数的催化剂颗粒从反应系统引入到第一离析区中;
(b)将该第一多数的催化剂颗粒分离为第一小催化剂料流和第一大催化剂料流,其中第一小催化剂料流具有小于第一中值粒径的第二中值粒径,和其中第一大催化剂料流具有大于第一中值粒径的第三中值粒径;
(c)将至少一部分的第一大催化剂料流分离为第二小催化剂料流和第二大催化剂料流,和其中第二小催化剂料流具有小于第三中值粒径的第四中值粒径,和其中第二大催化剂料流具有大于第三中值粒径的第五中值粒径;以及
(d)将至少一部分的第二小催化剂料流引入到反应系统中。
26、如权利要求25所述的方法,其中该众多催化剂颗粒包括选自SAPO-5,SAPO-8,SAPO-11,SAPO-16,SAPO-17,SAPO-18,SAPO-20,SAPO-31,SAPO-34,SAPO-35,SAPO-36,SAPO-37,SAPO-40,SAPO-41,SAPO-42,SAPO-44,SAPO-47,SAPO-56,AEI/CHA共生物,它们的含金属的形式,它们的共生形式,和它们的混合物中的分子筛。
CNB2004800253226A 2003-09-05 2004-08-31 从反应系统中选择性除去不合乎需要的粒度的催化剂颗粒的方法 Active CN100545238C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/656,673 US7090081B2 (en) 2003-09-05 2003-09-05 Selectively removing undesirably sized catalyst particles from a reaction system
US10/656,673 2003-09-05

Publications (2)

Publication Number Publication Date
CN1845981A CN1845981A (zh) 2006-10-11
CN100545238C true CN100545238C (zh) 2009-09-30

Family

ID=34312663

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800253226A Active CN100545238C (zh) 2003-09-05 2004-08-31 从反应系统中选择性除去不合乎需要的粒度的催化剂颗粒的方法

Country Status (5)

Country Link
US (1) US7090081B2 (zh)
EP (1) EP1664243B1 (zh)
CN (1) CN100545238C (zh)
EA (1) EA010716B1 (zh)
WO (1) WO2005026294A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050054516A1 (en) * 2003-09-05 2005-03-10 Vaughn Stephen Neil Processes for formulating catalyst compositions having desirable particle size characteristics
US8695903B2 (en) * 2006-12-21 2014-04-15 Westwood Lands, Inc. Processing of steel making slag
US20080300417A1 (en) * 2007-05-31 2008-12-04 Te Chang Slurry reaction system
US7811447B2 (en) * 2007-08-01 2010-10-12 Uop Llc Method of transferring particles from one pressure zone to another pressure zone
US7803326B2 (en) * 2007-08-01 2010-09-28 Uop Llc Hydrocarbon conversion unit including a reaction zone receiving transferred catalyst
US8206654B2 (en) 2008-01-07 2012-06-26 Univation Technologies, Llc Catalyst feed systems and methods for using the same
WO2010055049A2 (en) * 2008-11-13 2010-05-20 Shell Internationale Research Maatschappij B.V. Gas-solids separator
US20100155307A1 (en) * 2008-12-18 2010-06-24 Soto Jorge L Method and system for fines management in slurry processes
WO2010135273A2 (en) * 2009-05-18 2010-11-25 Integrated & Proven Catalyst Technologies Corporation Separation of fluid catalytic cracking equilibrium catalysts to improve value and reduce waste
BR112013024064B1 (pt) * 2011-03-19 2020-03-03 Quanta Technologies, Llc Processo para produzir um catalisador fluido seco por pulverização, catalisador fluido seco por pulverização e processo de uso do dito catalisador
US9512052B2 (en) 2012-10-29 2016-12-06 China Petroleum & Chemical Corporation Adsorption desulfurization process for hydrocarbons and a reaction apparatus therefor
US20160264490A1 (en) * 2013-10-31 2016-09-15 Shell Oil Company Process for converting oxygenates to olefins
US8999248B1 (en) 2013-11-04 2015-04-07 Uop Llc Reactor with clustered separation devices
AR111737A1 (es) * 2017-05-05 2019-08-14 Dow Global Technologies Llc Sistema de extracción de catalizador a granel y métodos para el uso del mismo
US11072749B2 (en) 2019-03-25 2021-07-27 Exxonmobil Chemical Patents Inc. Process and system for processing petroleum feed
CN110026135B (zh) * 2019-04-26 2022-04-19 河南百优福生物能源有限公司 一种生物质热解液沸腾床反应器中颗粒移出方法和装置
CN110013803B (zh) * 2019-04-26 2022-06-10 河南百优福生物能源有限公司 一种生物质热解液沸腾床反应器中颗粒移出方法和系统
WO2021025930A1 (en) 2019-08-02 2021-02-11 Exxonmobil Chemical Patents Inc. Processes and systems for upgrading a hydrocarbon-containing feed
WO2021024119A1 (en) * 2019-08-05 2021-02-11 Sabic Global Technologies B.V. Turbulent/fast fluidized bed reactor with baffles to maximize light olefin yields
CN112694909B (zh) * 2019-10-23 2023-02-17 中国石油化工股份有限公司 加工重质石油烃的方法
US20230016743A1 (en) 2019-12-11 2023-01-19 Exxonmobil Chemical Patents Inc. Processes and Systems for Converting a Hydrocarbon-Containing Feed
CN111921459B (zh) * 2020-07-31 2022-04-08 宁波巨化化工科技有限公司 一种能同时生产三氯乙烯与四氯乙烯的反应器
WO2022132369A1 (en) 2020-12-16 2022-06-23 Exxonmobil Chemical Patents Inc. Processes and systems for upgrading a hydrocarbon-containing feed
WO2022132366A1 (en) 2020-12-16 2022-06-23 Exxonmobil Chemical Patents Inc. Processes and systems for upgrading a hydrocarbon-containing feed
US20230416622A1 (en) 2020-12-16 2023-12-28 Exxonmobil Chemical Patents Inc. Processes and Systems for Upgrading a Hydrocarbon-Containing Feed
CN115161060B (zh) * 2021-04-02 2024-02-27 上海河图工程股份有限公司 一种多产低碳烯烃的催化裂化方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2573559A (en) * 1948-06-21 1951-10-30 Phillips Petroleum Co Method for replacing deactivated hydrocarbon synthesis catalyst with fresh catalyst
US5177279A (en) * 1990-10-23 1993-01-05 Mobil Oil Corporation Integrated process for converting methanol to gasoline and distillates
CN1261294A (zh) * 1997-07-03 2000-07-26 埃克森化学专利公司 用含要求碳质沉积的分子筛催化剂使含氧物转化成烯烃的方法
CN1455701A (zh) * 2000-07-17 2003-11-12 埃克森美孚化学专利公司 分子筛催化剂的合成

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2631981A (en) * 1948-07-10 1953-03-17 Sinclair Refining Co Rejection of inactive material from a fluidized catalyst regenerator
US3785962A (en) * 1971-12-27 1974-01-15 Universal Oil Prod Co Fluidized catalytic cracking process
US4302565A (en) * 1978-03-31 1981-11-24 Union Carbide Corporation Impregnated polymerization catalyst, process for preparing, and use for ethylene copolymerization
US4279743A (en) * 1979-11-15 1981-07-21 University Of Utah Air-sparged hydrocyclone and method
US4666586A (en) * 1983-10-11 1987-05-19 Farnsworth Carl D Method and arrangement of apparatus for cracking high boiling hydrocarbon and regeneration of solids used
US4810264A (en) * 1984-02-23 1989-03-07 Shell Oil Company Process for cleaning and splitting particle-containing fluid with an adjustable cyclone separator
US5393412A (en) * 1991-05-03 1995-02-28 Ashland Oil, Inc. Combination magnetic separation, classification and attrition process for renewing and recovering particulates
US5518695A (en) * 1994-11-10 1996-05-21 Uop Vented riser with compact multiple cyclone arrangement
US5744680A (en) * 1995-08-10 1998-04-28 Uop Process for producing light olefins
US6580010B2 (en) * 2001-01-03 2003-06-17 Exxonmobil Chemical Patents, Inc. Olefin recovery in an olefin production process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2573559A (en) * 1948-06-21 1951-10-30 Phillips Petroleum Co Method for replacing deactivated hydrocarbon synthesis catalyst with fresh catalyst
US5177279A (en) * 1990-10-23 1993-01-05 Mobil Oil Corporation Integrated process for converting methanol to gasoline and distillates
CN1261294A (zh) * 1997-07-03 2000-07-26 埃克森化学专利公司 用含要求碳质沉积的分子筛催化剂使含氧物转化成烯烃的方法
CN1455701A (zh) * 2000-07-17 2003-11-12 埃克森美孚化学专利公司 分子筛催化剂的合成

Also Published As

Publication number Publication date
CN1845981A (zh) 2006-10-11
EA200600488A1 (ru) 2006-08-25
US7090081B2 (en) 2006-08-15
US20050067326A1 (en) 2005-03-31
EP1664243A1 (en) 2006-06-07
WO2005026294A1 (en) 2005-03-24
EA010716B1 (ru) 2008-10-30
EP1664243B1 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
CN100545238C (zh) 从反应系统中选择性除去不合乎需要的粒度的催化剂颗粒的方法
CN1321953C (zh) 减低含氧化合物至烯烃转化方法的再生器内的温差的方法
US7329309B2 (en) Gas-solids separation device and method
US7309383B2 (en) Process for removing solid particles from a gas-solids flow
CN100443452C (zh) 在含控制碳原子对酸性位之比的酸性分子筛的催化剂上将含氧物转化成烯烃
CN101018606B (zh) 分子筛催化剂组合物,其制备和在转化方法中的用途
CN100548943C (zh) 生产烯烃的方法
CN1823152B (zh) 来自含氧化合物至烯烃转化过程的骤冷后流出气流与液体接触以捕获催化剂细粉末
CN100396759C (zh) 维持有效的反应器流体动力学的微细粉末共进料
CN1826178B (zh) 在水蒸气条件下保持分子筛催化活性
CN101395250B (zh) 气-固反应器中的产物回收
CN1809519B (zh) 在甲醇-到-烯烃工艺排放物处理系统中将腐蚀降至最小的方法
US7404891B2 (en) Heat recovery technique for catalyst regenerator flue gas
CN100425344C (zh) 分子筛催化剂组合物及其制备和在转化方法中的应用
CN100422294C (zh) 起动反应系统的方法
CN1325448C (zh) 由含氧物制备烯烃的方法
US7767870B2 (en) Riser termination devices for reduced catalyst attrition and losses
CN100478315C (zh) 在含氧化合物-烯烃转化工艺中将富含含氧化合物的料流再循环的方法
CN101298408B (zh) 制备耐磨分子筛催化剂的方法及其用于含氧化合物-烯烃转化的用途
CN1993305B (zh) 制备烯烃的方法
CN103769003A (zh) 关闭反应系统的方法
US7057083B2 (en) Catalyst pretreatment with C4-C7 olefins in an oxygenate to olefins reaction system
WO2005056500A1 (en) Catalyst pretreatment with dimethyl ether in an oxygenate to olefins reaction system
CN100569370C (zh) 分子筛催化剂组合物,其制备和在转化方法中的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant