CN1005430B - 屏蔽式石英炉原子化器 - Google Patents

屏蔽式石英炉原子化器

Info

Publication number
CN1005430B
CN1005430B CN87104958.9A CN87104958A CN1005430B CN 1005430 B CN1005430 B CN 1005430B CN 87104958 A CN87104958 A CN 87104958A CN 1005430 B CN1005430 B CN 1005430B
Authority
CN
China
Prior art keywords
atomization unit
quartz furnace
outer tube
quartz
protected type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CN87104958.9A
Other languages
English (en)
Other versions
CN87104958A (zh
Inventor
刘明钟
单国惠
尚浙生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Geological Instrument Factory Of Ministry Of Geology And Mineral Resources
Original Assignee
Beijing Geological Instrument Factory Of Ministry Of Geology And Mineral Resources
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Geological Instrument Factory Of Ministry Of Geology And Mineral Resources filed Critical Beijing Geological Instrument Factory Of Ministry Of Geology And Mineral Resources
Priority to CN87104958.9A priority Critical patent/CN1005430B/zh
Publication of CN87104958A publication Critical patent/CN87104958A/zh
Publication of CN1005430B publication Critical patent/CN1005430B/zh
Expired legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

屏蔽式石英炉原子化器主要由两层同心的石英管构成,本发明载气流量少,基态原子滞留时间长。由氩气作为屏蔽气使空气与火焰隔离,并在内管出口5处形成负压。提高了测试灵敏度。

Description

屏蔽式石英炉原子化器
屏蔽式石英炉原子化器是专用于采用氢化物原子荧光光谱分析技术的原子荧光光度计的关键部件。
氢化物-无色散原子荧光光谱法是近几年发展起来的痕量元素分析方法。
原子化器的作用是将氢化物发生器导入的被测元素气态氢化物解离成基态原子。我国学者郭小伟等人设计了一种原子荧光用的石英炉原子化器,单层石英炉管,电热丝加热,炉温约900℃。在氢化物发生器中注入试样,加入还原剂后,在发生器中产生激烈的氢化反应,迅速产生大量氢气和气态氢化物,在载气(Ar)作用下,石英炉口上方产生Ar-H2火焰。在火焰反应区内存在下列反应:
H+O2=OH+O
O+H2=OH+H
OH+H2=H2O+H
从而产生大量H基,氢化物(例如硒化氢)与大量存在的H基进行下列二步连续反应而原子化:
SeH2+H→SeH+H2
SeH+H→Se+H2
这种原子化器已首先在我国商品仪器中广泛使用。但它存在下列两点不足:
1.这种原子化器实验得到的最佳载气流量为0.8-1.2升/分。由于载气流量相对讲比较大,致使火焰中氩气比例增大,稀释了火焰中原子蒸气浓度,基态原子在火焰中滞留时间缩短,因此荧光灵敏度不高。
2.石英炉管出口处,空气中氧气进入火焰,使被测元素的基态原子与氧生成难以离解的氧化物,从而降低荧光灵敏度。
例为As,其氧化方程式如下:
4As+3O2→2As2O3
已检索到的专利文献和非专利文献包括US-4293220,US-3958883。JP-特许昭60-52748,JP-特许昭59-19844,EP-0151752,清华大学分析化学教研室编的《现代仪器分析》均属于ICP-AES专用的三层结构等离子炬管,这种炬管外层切向气流(Ar)是用于冷却石英管壁,而不是屏蔽气体。
屏蔽式石英炉原子化器的发明目的是提供一种改进了的石英炉原子化器,以得到更高的原子荧光灵敏度。
屏蔽式石英炉原子化器主要由两层同心石英管构成。内管与氢化物发生器联接,气态氢化物随载气进入内管,外管切向通入氩气作屏蔽气。引入屏蔽气后,有效地阻止石英炉出口处空气进入火焰,基态原子不致氧化生成难以离解的氧化物,另外,由于引入屏蔽气,在内管出口处形成负压,载气流量可以用得比较小,实验得到最佳载气流量0.3-0.4升/分,因此减少了载气稀释作用,增加了基态原子滞留时间。
下面结合附图对屏蔽式石英炉原子化器作进一步叙述。
图1屏蔽式石英炉原子化器剖面图。
图2单层石英炉相对荧光强度随观测高度变化曲线与氩屏蔽石英炉相对荧光强度随观测高度变化曲线的比较。
在图1中,内管入口1接氢化物发生器,外管入口2接屏蔽气,屏蔽气是以和双层同心炉管成切线方向进入的。内管3上粗下细,内管出口5处与外管4之间间隔1±0.2mm,外管4高出内管310±2mm,内管出口处5内径6±0.5mm。
普通电炉用加热丝6均匀缠绕在外管4管壁上。
屏蔽式石英炉原子化器使原子荧光光度计灵敏度比采用单层石英炉原子化器时提高1倍以上。
图2中横座标H是观测高度,单位是厘米,纵座标If是相对荧光强度。曲线1为单层石英炉相对荧光强度随观测高度变化情况,曲线2为双层石英炉相对荧光强度随观测高度变化情况,由于加了氩屏蔽,阻止了炉口处氧气进入火焰,因此观测高度对荧光强度影响较小。
作为最佳实施例:
单层石英炉灵敏度S1与本发明石英炉灵敏度S2比较表如下:

Claims (2)

1、一种由石英管构成的
Figure 87104958_IMG1
专用于原子荧光光度计的石英炉原子化器,其特征是由同心的外管4和内管3构成,内管3与外管4留有间隙,外管4高于内管出口处5,内管入口1通入带有载气的气态氢化物,外管入口2切向通入惰性气体(例如Ar)屏蔽火焰,使火焰与空气隔离。
2、按照权利要求1所述的石英炉原子化器,其特征是内管3上粗下细。
CN87104958.9A 1987-07-28 1987-07-28 屏蔽式石英炉原子化器 Expired CN1005430B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN87104958.9A CN1005430B (zh) 1987-07-28 1987-07-28 屏蔽式石英炉原子化器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN87104958.9A CN1005430B (zh) 1987-07-28 1987-07-28 屏蔽式石英炉原子化器

Publications (2)

Publication Number Publication Date
CN87104958A CN87104958A (zh) 1988-02-24
CN1005430B true CN1005430B (zh) 1989-10-11

Family

ID=4815084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN87104958.9A Expired CN1005430B (zh) 1987-07-28 1987-07-28 屏蔽式石英炉原子化器

Country Status (1)

Country Link
CN (1) CN1005430B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111103271B (zh) * 2018-10-29 2021-08-31 重庆民泰新农业科技发展集团有限公司 外管进样的原子荧光分析方法

Also Published As

Publication number Publication date
CN87104958A (zh) 1988-02-24

Similar Documents

Publication Publication Date Title
Goulden et al. Automated atomic absorption determination of arsenic, antimony, and selenium in natural waters
Warren Development of an atomic fluorescence spectrometer for the hydride-forming elements
Deutsch et al. Development of a microwave-induced nitrogen discharge at atmospheric pressure (MINDAP)
Jonah et al. Rate constants for the reaction of hydroxyl+ carbon monoxide, hydroxyl-d+ carbon monoxide, and hydroxyl+ methane as a function of temperature
Robin ICP-AES at the beginning of the eighties
CN1005430B (zh) 屏蔽式石英炉原子化器
D'Ulivo et al. Interferences in hydride atomization studied by atomic absorption and atomic fluorescence spectrometry
Dědina Quartz tube atomizers for hydride generation atomic absorption spectrometry: mechanism of selenium hydride atomization and fate of free atoms
JP7224359B2 (ja) 水銀、カドミウム、亜鉛、鉛を同時に測定する装置及び方法
CN202393694U (zh) 一种用于原子荧光光谱仪的原子化器
CN102374980A (zh) 检测Cr(VI)的原子荧光光谱法及光谱仪
Nakahara et al. The determination of trace amounts of selenium by hydride generation-nondispersive flame atomic fluorescence spectrometry
Kantor New approaches to the separation of evaporation and atomization-excitation in atomic spectrometry
Aubriet et al. Studies of the chromium oxygenated cluster ions produced during the laser ablation of chromium oxides by laser ablation/ionization Fourier transform ion cyclotron resonance mass spectrometry
US4803051A (en) Atomic spectrometer apparatus
GB1425188A (en) Atomic absorption apparatus
Fukushi et al. Subnanogram determination of inorganic and organic mercury by helium-microwave induced plasma-atomic emission spectrometry
WO2012019340A1 (zh) 检测Cr(VI)的原子荧光光谱法及光谱仪
Krivan et al. Hydride generation AAS performed at 1800–2300° C atomization temperature using a graphite furnace
Fox Enhancement errors in the determination of platinum group metals in alumina-based matrices by direct-current plasma emission spectrometry
Nakahara et al. Nondispersive atomic fluorescence spectrometric determination of lead by hydride generation
Vasnin et al. Pulsed discharge emission detector—Application to analytical spectroscopy of permanent gases
Connelly The band spectrum of tin oxide
Watling The analysis of volatile metals in biological material
RU2110060C1 (ru) Способ определения ртути в органических средах

Legal Events

Date Code Title Description
SE01 Entry into force of request for substantive examination
PB01 Publication
C06 Publication
C10 Entry into substantive examination
C13 Decision
GR02 Examined patent application
GR01 Patent grant
C14 Grant of patent or utility model
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee