WO2012019340A1 - 检测Cr(VI)的原子荧光光谱法及光谱仪 - Google Patents

检测Cr(VI)的原子荧光光谱法及光谱仪 Download PDF

Info

Publication number
WO2012019340A1
WO2012019340A1 PCT/CN2010/075877 CN2010075877W WO2012019340A1 WO 2012019340 A1 WO2012019340 A1 WO 2012019340A1 CN 2010075877 W CN2010075877 W CN 2010075877W WO 2012019340 A1 WO2012019340 A1 WO 2012019340A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic fluorescence
heating boat
evaporator
spectrometer
detecting
Prior art date
Application number
PCT/CN2010/075877
Other languages
English (en)
French (fr)
Inventor
刘霁欣
肖融
冯礼
王晓芳
Original Assignee
北京吉天仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京吉天仪器有限公司 filed Critical 北京吉天仪器有限公司
Priority to PCT/CN2010/075877 priority Critical patent/WO2012019340A1/zh
Publication of WO2012019340A1 publication Critical patent/WO2012019340A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • G01N21/6404Atomic fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/72Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flame burners

Definitions

  • This invention relates to atomic fluorescence spectrometry and spectrometers for the detection of Cr (VI). Background technique
  • Cr (I I I) is an essential trace element in the human body and is indispensable for normal glycolipid metabolism. Chromium deficiency can cause various diseases such as arteriosclerosis. For humans, Cr (VI) is generally considered to be 100 times more toxic than Cr (I I I). Cr (VI) has strong toxicity and is one of the confirmed carcinogens. Therefore, it is not enough to detect only the total amount of Cr. It is also necessary to analyze the specific form.
  • the methods for detecting Cr (VI) are atomic absorption, molecular spectroscopy, atomic fluorescence, electrochemistry, ICP emission spectroscopy, etc., but often because of low sensitivity, serious matrix interference, too complicated equipment, and difficult operation and maintenance. Analysis of actual samples.
  • atomic fluorescence spectrometers have appeared in two types of instruments, one is a dispersive atomic fluorescence spectrometer, and the other is a non-dispersive atomic fluorescence spectrometer, which is a hydride generation-free dispersive atomic fluorescence spectrometer that has been widely used in China.
  • the spectrometer uses a pulse-powered hollow cathode lamp as an excitation source, and a flame atomizer uses a common day-blind photomultiplier tube as a detector for use with a hydride generation system to detect only arsenic (As) and antimony (Sb).
  • Sensitive lines such as bismuth (Bi), selenium (Se), germanium (Ge), lead (Pb), tin (Sn), tellurium (Te), mercury (Hg), cadmium (Cd) and zinc (Zn) are in the blind
  • the band 190nnT320 n m
  • the element that easily forms a gaseous hydride can be measured simultaneously in multiple channels.
  • Hexavalent chromium (Cr) cannot be detected by the existing hydride generation-dispersive atomic fluorescence spectrometer because its sensitive line (357.87 nm) is not in the above-mentioned day blind zone.
  • the object of the present invention is to provide an atomic fluorescence spectrum for detecting Cr (VI) with high sensitivity, simple spectral line and low interference. Method and spectrometer.
  • the atomic fluorescence spectrometer for detecting Cr (VI) comprises an evaporator, an excitation light source, an atomizer, a photodetector and a computer, wherein: the evaporator comprises a sealed casing, a heating boat and a power source, The heating boat is placed in the sealed casing, and the sealed casing is provided with an air inlet and an exhaust port, the heating boat is connected to the power source, and the exhaust port of the evaporator passes through the duct Connected to the atomizer.
  • the atomic fluorescence spectrometer for detecting Cr (VI) of the present invention wherein: the heating boat is a wire or foil made of molybdenum, carbon, tungsten, rhenium or an alloy.
  • the atomic fluorescence spectrometer for detecting Cr (VI) of the present invention wherein: the sealed casing is composed of a quartz or a glass cover and a base, and the glass cover is fastened on the base.
  • the atomic fluorescence spectrometry for detecting Cr (VI) comprises the following steps:
  • the sample to be tested is heated, the temperature is 1000 ° C to 140 (TC, the sample to be tested is dried and ashed; in the mixed gas of hydrogen and argon, the residue after ashing is made The temperature was raised to 2000 ° C -260 (TC, the obtained vapor was subjected to secondary atomization, and then the content of Cr (VI) was detected by atomic fluorescence.
  • FIG. 1 is a schematic view showing the structure of an atomic fluorescence spectrometer for detecting Cr (VI) according to the present invention
  • FIG. 2 is a graph showing the stability results of an atomic fluorescence spectrometer for detecting Cr (VI) according to the present invention
  • Fig. 3 is a spectrum diagram of the atomic fluorescence spectrometer for detecting Cr(VI) by the multiple enrichment method of the present invention
  • Fig. 4 is a standard curve prepared by using the enriched concentration.
  • the structure of the atomic fluorescence spectrometer for detecting Cr (VI) of the present invention is shown in Fig. 1, and includes an evaporator, an excitation light source 6, an atomizer 10, a photodetector 7, and a computer 8. Both the excitation source 6 and the photodetector 7 are distributed around the atomizer 10, and the exhaust port 2 of the evaporator is connected to the atomizer 10 through a conduit, and the photodetector 7 is connected to the computer 8.
  • the evaporator comprises a sealed casing 5, a heating boat 3 and a power source 4, and the heating boat 3 is placed in the sealed casing 5, and the airtight port 1 and the exhaust port 2 are provided on the sealed casing 5, and the boat 3 is heated
  • the power source 4 is connected, and the exhaust port 2 of the evaporator is connected to the atomizer 10 through a conduit.
  • the heating boat 3 is a wire or foil made of molybdenum, carbon, tungsten, tantalum or alloy, and the sealed casing 5 is covered by a quartz cover. Or the glass cover 11 and the base 9 are formed, and the quartz cover or the glass cover 11 is fastened to the base 9.
  • the temperature of the boat 3 can reach a high temperature in an instant.
  • the temperature of the boat is raised to 1000 °C ⁇ 1400 °C, the sample is dried and ashed, and then the temperature of the heating boat 3 is instantaneously reached 2000 ° C - 260 (TC, evaporation of chromium atoms from the exhaust port of the evaporator 2
  • the atomizer 10 enters the atomizer 10, forms a flame under the action of the atomizer 10, forms an argon hydrogen flame, further atomizes the aerosol, and the free atom is excited by the chromium high-performance hollow cathode lamp to generate atomic fluorescence, which is detected by a photomultiplier tube.
  • the signal is input to the computer.
  • the hydrogen and argon mixed gas from the air inlet 1 ensures that the heating boat will not be oxidized, and can provide sufficient combustion support and take-out efficiency for the subsequent secondary atomization.
  • the atomic fluorescence spectrometry and spectrometer for detecting Cr (VI) of the present invention first evaporate a sample containing chromium element at a lower temperature, and a part of the matrix interference is excluded at this stage, and then the chromium is directly used at a high temperature instantaneously. It is directly evaporated and then subjected to secondary atomization for fluorescence detection. It has high sensitivity and can achieve good detection results, and has the advantages of simple spectral line and small interference, and reduces interference as much as possible.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

检测 Cr (VI)的原子荧光光谱法及光谱仪 技术领域
本发明涉及检测 Cr (VI)的原子荧光光谱法及光谱仪。 背景技术
当前已有大量的文献报道了铬的形态分析, 人们之所以关注铬的形态是因为不同形态 的铬其毒性毒理及生态效应不同。 研究表明, 铬表现为必需元素还是有害元素, 其价态起 决定性作用。 Cr (I I I)是人体必需的微量元素, 是正常糖脂代谢所不可缺少的, 缺铬会引 起动脉硬化等多种疾病。 对人体, 通常认为 Cr (VI)的毒性比 Cr (I I I)强 100 倍。 Cr (VI) 具有强烈的毒性, 是已确认的致癌物之一, 所以只检测 Cr 的总量是不够的, 还必须分析 具体的形态。 因此, 近年来不同价态铬的测定已受到越来越广泛的关注。 目前检测 Cr (VI) 的方式有原子吸收, 分子光谱, 原子荧光, 电化学, ICP 发射光谱法等进行测量, 但往往 因为灵敏度不高, 基体干扰严重, 设备过于复杂不易操作维护等问题不易进行实际样品的 分析工作。
近年来以原子吸收光谱法测 Cr 较为普遍, 由于石墨炉原子吸收光谱法较火焰原子吸 收光谱法灵敏度高许多, 所以目前用石墨炉原子吸收光谱仪测定 Cr 已成为主要的研究方 向。 但利用石墨炉原子吸收光谱仪测定 Cr, 基体干扰十分严重, 主要有化学干扰、 物理干 扰和背景吸收。 原子荧光光谱仪器的结构由四部分组成, 即激发光源、 光学系统、 原子化系统和测光 系统。 历史上原子荧光光谱仪曾出现过两类仪器, 一类是有色散原子荧光光谱仪, 另一类 是无色散原子荧光光谱仪, 就是目前在我国已被广泛应用的氢化物发生一无色散原子荧光 光谱仪。 该光谱仪采用脉冲供电空心阴极灯作激发光源, 火焰原子化器, 用一个共用的日 盲光电倍增管作检测器, 与氢化物发生系统连用, 只能检测砷 (As ) 、 锑 (Sb ) 、 铋 ( Bi ) 、 硒 (Se ) 、 锗 (Ge ) 、 铅 (Pb ) 、 锡 (Sn ) 、 碲 (Te ) 、 汞 (Hg ) 、 镉 (Cd ) 和 锌 (Zn ) 等灵敏线在日盲波段 (190nnT320nm) 且容易形成气态氢化物的元素, 可多道同 时测量。 六价铬(Cr)由于其灵敏线 (357. 87nm) 不在上述的日盲区内, 因此无法用现有的 氢化物发生一无色散原子荧光光谱仪检测。
发明公开
本发明的目的是提供一种灵敏度高、 谱线简单、 干扰小的检测 Cr (VI)的原子荧光光谱 法及光谱仪。
本发明所提供的检测 Cr (VI)的原子荧光光谱仪, 包括蒸发器、 激发光源、 原子化 器、 光电检测器和计算机, 其中: 所述蒸发器包括密闭的壳体、 加热舟和电源, 所述加热 舟置于所述密闭的壳体中, 所述密闭的壳体上设有进气口和排气口, 所述加热舟与所述电 源连接, 所述蒸发器的排气口通过导管与原子化器相连。
本发明的检测 Cr (VI)的原子荧光光谱仪, 其中: 所述加热舟为钼、 碳、 钨、 钽或者 合金制成的金属丝或者箔。
本发明的检测 Cr (VI)的原子荧光光谱仪, 其中: 所述密闭的壳体由石英或者玻璃罩和 底座组成, 所述玻璃罩扣在所述底座上。
本发明所提供的检测 Cr (VI)的原子荧光光谱法, 包括如下步骤:
在氢气和氩气的混合气体中, 将待测样品升温, 温度 1000 °C〜140(TC, 使待测样品干 燥、 灰化; 在氢气和氩气的混合气体中, 使灰化后的残渣升温到 2000 °C -260(TC, 得到的 蒸汽进行二次原子化, 然后通过原子荧光检测 Cr (VI)的含量。
附图说明
图 1为本发明的检测 Cr (VI)的原子荧光光谱仪的结构示意图;
图 2为本发明的检测 Cr (VI)的原子荧光光谱仪的稳定性结果;
图 3为本发明的检测 Cr (VI)的原子荧光光谱仪采用多次富集方法进样的谱图; 图 4为用富集浓度制作的标准曲线。
实施发明的最佳方式
本发明的检测 Cr (VI)的原子荧光光谱仪的结构如图 1 所示, 包括蒸发器、 激发光源 6、 原子化器 10、 光电检测器 7和计算机 8。 激发光源 6和光电检测器 7均围绕原子化器 10分布, 蒸发器的排气口 2通过导管与原子化器 10相连, 光电检测器 7 与计算机 8相 连。
蒸发器包括密闭的壳体 5、 加热舟 3和电源 4, 加热舟 3置于密闭的壳体 5中, 密闭 的壳体 5上设有进气口 1和排气口 2, 加热舟 3与电源 4连接, 蒸发器的排气口 2通过导 管与原子化器 10 相连, 加热舟 3 是由钼、 碳、 钨、 钽或者合金制成的金属丝或者箔, 密 闭的壳体 5由石英罩或玻璃罩 11和底座 9组成, 石英罩或玻璃罩 11扣在底座 9上。 加热 舟 3的温度能在瞬间达到高温。
检测样品中 Cr (VI)时, 取下石英罩或玻璃罩 11, 将样品放入到加热舟 3 中, 然后将 石英罩或玻璃罩 11扣在底座 9上, 形成密闭的壳体 5, 从进气口 1通入氢气和氩气混合气 体 (20% ¾ ) , 流速为 1000mL/min, 打开电源 4, 使加热舟的温度升高至 1000 °C〜1400 °C, 使样品干燥、 灰化, 然后使加热舟 3 的温度瞬间达到 2000°C-260(TC, 蒸发出铬原子 由蒸发器的排气口 2通过导管进入原子化器 10, 在原子化器 10作用下形成火焰, 形成氩 氢火焰, 将气溶胶进一步原子化, 自由原子经铬高性能空心阴极灯激发后产生原子荧光, 由光电倍增管检测, 信号输入计算机。 从进气口 1 通入氢气和氩气混合气体保证了加热舟 不会被氧化, 还能给后面的二级原子化提供足够的燃烧支持和带出效率。
实验表明当样品溶液为 10 进样时, 本方法对 Cr (VI)的测定检出限为 0. 17 g L— 1 ( n=7 ) , 线性范围为 0. 5-10 μ g L- R2=0. 9995, 相对标准偏差为 3. 5% ( η=7, 5 μ g L— 参见图 2。 另外, 可通过多次进样、 干燥、 灰化, 一次蒸发 (类似富集) 的方式来降低 检出限, 铬溶液分别被 1次进样、 2次进样、 4次进样、 8次进样, 由图可见荧光峰高度与 进样次数呈现良好的线性关系, 多次进样能够降低检出限, 参见图 3和 4。
以上的实施例仅仅是对本发明的优选实施方式进行描述, 并非对本发明的范围进行限 定, 在不脱离本发明设计精神的前提下, 本领域普通工程技术人员对本发明的技术方案作 出的各种变形和改进, 均应落入本发明的权利要求书确定的保护范围内。 工业实用性
本发明的检测 Cr (VI)的原子荧光光谱法及光谱仪先在较低的温度下将含有铬元素的样 品蒸干, 并且使一部分基体干扰物在这个阶段排除, 后直接使用瞬间的高温将铬直接蒸发 出去, 再经过二级原子化后进行荧光检测, 具有很高的灵敏度, 可以达到很好的检测效 果, 并且具有谱线简单、 干扰小等优点, 尽可能的减少了干扰。

Claims

权利要求
1、 检测 Cr(VI)的原子荧光光谱仪, 包括蒸发器、 激发光源 (6) 、 原子化器 (10) 、 光电检测器 (7) 和计算机 (8) , 其特征在于: 所述蒸发器包括密闭的壳体 (5) 、 加热舟 (3) 和电源 (4) , 所述加热舟 (3) 置于所述密闭的壳体 (5) 中, 所述 密闭的壳体 (5) 上设有进气口 (1) 和排气口 (2) , 所述加热舟 (3) 与所述电源 (4) 连接, 所述蒸发器的排气口 (2) 通过导管与原子化器 (10) 相连。
2、 根据权利要求 1 所述的原子荧光光谱仪, 其特征在于: 所述加热舟 (3) 为钼、 碳、 钨、 钽或者合金制成的金属丝或者箔。
3、 根据权利要求 1或 2所述的原子荧光光谱仪, 其特征在于: 所述密闭的壳体 (5) 由石英罩或者玻璃罩 (11) 和底座 (9) 组成, 所述石英罩或者玻璃罩 (11) 扣在所述底 座 (9) 上。
4、 检测 Cr (VI)的原子荧光光谱法, 包括如下步骤:
在氢气和氩气的混合气体中, 将待测样品升温, 温度 1000°C〜140(TC, 使待测样品干 燥、 灰化; 在氢气和氩气的混合气体中, 使灰化后的残渣升温到 2000°C-260(TC, 得到的 蒸汽进行二次原子化, 然后通过原子荧光检测 Cr (VI)的含量。
PCT/CN2010/075877 2010-08-11 2010-08-11 检测Cr(VI)的原子荧光光谱法及光谱仪 WO2012019340A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/075877 WO2012019340A1 (zh) 2010-08-11 2010-08-11 检测Cr(VI)的原子荧光光谱法及光谱仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/075877 WO2012019340A1 (zh) 2010-08-11 2010-08-11 检测Cr(VI)的原子荧光光谱法及光谱仪

Publications (1)

Publication Number Publication Date
WO2012019340A1 true WO2012019340A1 (zh) 2012-02-16

Family

ID=45567268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075877 WO2012019340A1 (zh) 2010-08-11 2010-08-11 检测Cr(VI)的原子荧光光谱法及光谱仪

Country Status (1)

Country Link
WO (1) WO2012019340A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136698A (zh) * 2015-08-24 2015-12-09 天津师范大学 一种可挥发化合物的测定方法及装置
CN105136765A (zh) * 2015-09-24 2015-12-09 神华集团有限责任公司 含煤样品中砷元素含量的测定方法
WO2020087894A1 (zh) * 2018-10-29 2020-05-07 重庆民泰新农业科技发展集团有限公司 外管进样的原子荧光分析方法及原子荧光仪

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111384A (en) * 1975-03-26 1976-10-01 Hitachi Ltd Heat evaporator for atomic absorption spectroscopy
JPH0153413B2 (zh) * 1981-12-18 1989-11-14 Seiko Denshi Kogyo Kk
CN1769872A (zh) * 2005-10-21 2006-05-10 北京吉天仪器有限公司 铬的化学气相发生原子荧光光谱测量方法及其设备
US7148068B1 (en) * 2003-04-01 2006-12-12 Reheulishvili Aleksandre N Method of trivalent chromium concentration determination by atomic spectrometry
CN2856989Y (zh) * 2005-08-11 2007-01-10 北京吉天仪器有限公司 检测汞、铅、镉和六价铬的原子荧光光谱仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111384A (en) * 1975-03-26 1976-10-01 Hitachi Ltd Heat evaporator for atomic absorption spectroscopy
JPH0153413B2 (zh) * 1981-12-18 1989-11-14 Seiko Denshi Kogyo Kk
US7148068B1 (en) * 2003-04-01 2006-12-12 Reheulishvili Aleksandre N Method of trivalent chromium concentration determination by atomic spectrometry
CN2856989Y (zh) * 2005-08-11 2007-01-10 北京吉天仪器有限公司 检测汞、铅、镉和六价铬的原子荧光光谱仪
CN1769872A (zh) * 2005-10-21 2006-05-10 北京吉天仪器有限公司 铬的化学气相发生原子荧光光谱测量方法及其设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136698A (zh) * 2015-08-24 2015-12-09 天津师范大学 一种可挥发化合物的测定方法及装置
CN105136765A (zh) * 2015-09-24 2015-12-09 神华集团有限责任公司 含煤样品中砷元素含量的测定方法
WO2020087894A1 (zh) * 2018-10-29 2020-05-07 重庆民泰新农业科技发展集团有限公司 外管进样的原子荧光分析方法及原子荧光仪

Similar Documents

Publication Publication Date Title
Flores et al. Evolution of the complex refractive index in the UV spectral region in ageing secondary organic aerosol
Fan et al. Dithizone–chloroform single drop microextraction system combined with electrothermal atomic absorption spectrometry using Ir as permanent modifier for the determination of Cd in water and biological samples
CN102338745B (zh) 测定镉的电热蒸发原子荧光光谱法及光谱仪
Duben et al. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry—Performance evaluation for selenium
Wang et al. Direct determination of trace mercury and cadmium in food by sequential electrothermal vaporization atomic fluorescence spectrometry using tungsten and gold coil traps
Průša et al. Ultratrace determination of tin by hydride generation in-atomizer trapping atomic absorption spectrometry
Takegawa et al. Performance of an Aerodyne aerosol mass spectrometer (AMS) during intensive campaigns in China in the summer of 2006
Gkatzelis et al. Comparison of three aerosol chemical characterization techniques utilizing PTR-ToF-MS: a study on freshly formed and aged biogenic SOA
Puanngam et al. A cold plasma dielectric barrier discharge atomic emission detector for atmospheric mercury
Jin et al. Determination of absolute photoionization cross‐sections of some aromatic hydrocarbons
Nilsson et al. In-situ characterization of metal nanoparticles and their organic coatings using laser-vaporization aerosol mass spectrometry
CN102374980B (zh) 检测Cr(VI)的原子荧光光谱法
Kratzer et al. Spectral interferences of oxygen and water molecules in hydride generation atomic absorption spectrometry with quartz atomizers: Comparison of preconcentration and on-line atomization modes for As and Se determination
WO2012019340A1 (zh) 检测Cr(VI)的原子荧光光谱法及光谱仪
Wu et al. Evaluation of tungsten coil electrothermal vaporization-Ar/H2 flame atomic fluorescence spectrometry for determination of eight traditional hydride-forming elements and cadmium without chemical vapor generation
EP3865856B1 (en) Device and method for simultaneously measuring mercury, cadmium, zinc and lead
Kratzer et al. Stibine and bismuthine trapping in quartz tube atomizers for atomic absorption spectrometry—method optimization and analytical applications
CN201732064U (zh) 测定镉的电热蒸发原子荧光光谱仪
US8969832B2 (en) Electrothermal vaporization atomic fluorescence spectroscopy and spectrometer for determination of cadmium
Pancras et al. Multi-element electrothermal AAS determination of 11 marker elements in fine ambient aerosol slurry samples collected with SEAS-II
Zhang et al. Chemical ionization mass spectrometry: Developments and applications for on-line characterization of atmospheric aerosols and trace gases
Zhang et al. Development of dipolar proton transfer reaction mass spectrometer for real-time monitoring of volatile organic compounds in ambient air
Novotný et al. Hydride generation–in-atomizer collection of Pb in a quartz trap-and-atomizer device for atomic absorption spectrometry–an interference study
Ertaş et al. Determination of lead by hydride generation atom trapping flame atomic absorption spectrometry
Lin et al. Development of a miniaturized hydride generation-dielectric barrier discharge atomic absorption spectrometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10855761

Country of ref document: EP

Kind code of ref document: A1