CN100541135C - 基于多普勒的光纤陀螺捷联惯导系统初始姿态确定方法 - Google Patents

基于多普勒的光纤陀螺捷联惯导系统初始姿态确定方法 Download PDF

Info

Publication number
CN100541135C
CN100541135C CNB2007101448477A CN200710144847A CN100541135C CN 100541135 C CN100541135 C CN 100541135C CN B2007101448477 A CNB2007101448477 A CN B2007101448477A CN 200710144847 A CN200710144847 A CN 200710144847A CN 100541135 C CN100541135 C CN 100541135C
Authority
CN
China
Prior art keywords
hull
error
state
estimation
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2007101448477A
Other languages
English (en)
Other versions
CN101187567A (zh
Inventor
郝燕玲
周广涛
陈明辉
高伟
徐博
高洪涛
于强
陈世同
吴磊
程建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CNB2007101448477A priority Critical patent/CN100541135C/zh
Publication of CN101187567A publication Critical patent/CN101187567A/zh
Application granted granted Critical
Publication of CN100541135C publication Critical patent/CN100541135C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Navigation (AREA)

Abstract

本发明提供的是一种基于多普勒的光纤陀螺捷联惯导系统初始姿态确定方法。预热后连续采集光纤陀螺仪和石英挠性加速度计输出的数据;对采集到的陀螺仪和加速度计的数据进行处理;完成捷联惯导系统的粗对准;粗对准完毕后进入精对准阶段;建立船用捷联惯性导航系统的动基座误差方程;应用最优控制滤波理论设计滤波器,并进行滤波估计;提取船体姿态失准角信息,在组合精对准结束时用它来修正船体姿态,完成精确初始对准;同时,获得陀螺漂移的估计值,实现初始对准阶段的测漂过程,并对陀螺漂移进行补偿,进一步抑制器件误差对船体导航信息的影响。采用本发明的方法可以在保证对准精度和快速性的要求下,实现对光纤陀螺零位漂移的准确估计。

Description

基于多普勒的光纤陀螺捷联惯导系统初始姿态确定方法
(一)技术领域
本发明涉及一种捷联惯性导航系统的初始对准技术,尤其涉及一种以船用光纤陀螺捷联惯导系统和另外一种能独立准确提供船体速度信息的导航系统为基础的组合初始精对准方法。
(二)背景技术
初始对准误差是惯性导航系统主要的误差源之一,初始对准的误差对系统误差的影响不仅表现在姿态指标上,而且表现在速度和位置信息的获取上。对准的精度直接影响着导航的精度。因此,在正常导航之前,必须首先完成初始对准过程。
捷联惯导是现在导航技术中比较热门的技术,由于它的低成本受到了越来越多的导航界人士的青睐,而且通过捷联惯导系统与其它导航系统的组合,可以提高导航系统初始对准的精度。常用的组合有捷联惯导SINS/多普勒DVL、捷联惯导SINS/GPS、捷联惯导SINS/天文导航CNS等。针对船用光纤陀螺捷联惯性导航系统,以速度为外观测量的初始对准多采用捷联惯导/多普勒的组合方式。
对于捷联惯性导航系统(Strapdown Navigation System)来说,初始对准的目的是精确的估计姿态失准角并予以补偿,这个目的由于在实际中不可能理想的补偿仪表误差(尤其是陀螺误差)而不可能完全精确地实现。实际中已广泛应用的经典控制理论对准方法常用于实现静态下的初始对准,并能获得较高的精度,但由于其固有缺陷不适用于动态对准;在动基座条件下应采用最优控制方法,通常采用卡尔曼滤波方法。采用这种方法有很多优点:可以克服经典控制理论中船体加速度对对准性能的不利影响,适合于多种运动情况下的初始对准;在估计船体姿态信息的同时可以估计惯性器件(光纤陀螺和加速度计)的误差,实现初始对准过程中的测漂;初始对准过程中可以实现惯性器件误差的测量和补偿,进而实现对准精度的提高。但是,这种普通卡尔曼滤波方法也存在着缺陷:当系统状态变量较多的情况下,滤波估计算法的计算量很大,尤其是在增广向量的情况下,每增加一个状态变量都会使计算量大幅度增加,这种情况不利于初始对准快速性的要求;在估计惯性器件误差(主要是光纤陀螺测漂)过程中,由于方位陀螺漂移的估计时间较长,要想准确测得必须大幅增加估计时间,此时的卡尔曼滤波器变得不稳定甚至开始发散,导致水平测漂失败,姿态角也开始发散。如何解决初始对准的快速性和如何准确估计陀螺漂移以提高对准精度的问题成为当前的首要任务。
(三)发明内容
本发明的目的在于提供一种能够有效提高船用光纤陀螺捷联惯导/多普勒组合初始对准快速性和精度的基于多普勒的光纤陀螺捷联惯导系统初始姿态确定方法。
本发明的目的是这样实现的:
(1)首先对光纤陀螺捷联惯性导航系统进行预热,然后连续采集光纤陀螺仪和石英挠性加速度计输出的数据;
(2)对采集到的陀螺仪和加速度计的数据进行处理,采用二阶调平和方位估计法完成捷联惯导系统的粗对准,确定此时的纵摇角θ、横摇角γ和航向角ψ姿态信息;
(3)粗对准完毕后进入精对准阶段,首先,继续采集光纤陀螺和加速度计输出的数据,并通过标准的四元数法进行导航解算,获得船体的计算速度、姿态、位置等相关信息;同时,通过多普勒计程仪或者GPS测得船体的速度信息,并把这个速度近似看作船体的真实速度;
(4)建立船用捷联惯性导航系统的动基座误差方程;
(5)应用最优控制滤波理论设计滤波器,并进行滤波估计;
(6)从状态估值
Figure C20071014484700081
中提取船体姿态失准角信息α、β、γ,在组合精对准结束时用它来修正船体姿态,即纵摇角θ、横摇角γ和航向角ψ,完成精确初始对准;同时,从偏差估计值
Figure C20071014484700082
中获得陀螺漂移的估计值,实现初始对准阶段的测漂过程,并对陀螺漂移进行补偿,进一步抑制器件误差对船体导航信息的影响。
本发明还可以包括如下特征:
1、所述的建立船用捷联惯性导航系统的动基座误差方程的误差方程为:
Figure C20071014484700091
α、β、γ——计算地理坐标系与真实水平坐标系之间的姿态误差角;
Figure C20071014484700092
——计算地理坐标系与真实地理坐标系之间的纬度误差;
δλ——计算地理坐标系与真实地理坐标系之间的经度误差;
δVx、δVy——当地地理坐标系的轴向速度计算值与真实值之间的误差;
Vx、Vy——船体的东北向速度;
wie——地球自转角速率;
RE,RN——船体所在位置的地球曲率半径;
Figure C20071014484700093
——船体所在位置的纬度;
g——当地重力加速度;
εx、εy、εz——陀螺误差在载体坐标系的投影,这里简记为陀螺零位漂移;
Figure C20071014484700094
——加速度计在载体坐标系的投影,这里简记为加速度计偏差。
2、所述的滤波器的设计与滤波估计过程包括:
1)离散滤波器模型的建立;
系统的状态方程和量测方程描述如下:
xk=Ak-1xk-1+Bk-1bk-1k-1    (2)
bk+1=bk             (3)
yk=Hkxk+Ckbkk    (4)
其中,
xk——第k个观测时刻的n维状态变量
yk——量测向量
bk——偏差向量
ξk——过程噪声向量,且满足 E [ ξ k ξ l T ] = Q k δ kl
ηk——观测噪声向量,且满足 E [ η k η l T ] = R k δ kl
Ak-1、Bk-1、Hk、Ck——时变的系数矩阵,Bk-1表明偏差向量bk进入动态方程的方式;
2)系统状态的选择,对于船用捷联系统来说,当把偏差分离出来以后,状态向量可以写成以下形式:
Figure C20071014484700103
偏差状态写成以下形式:
b = ϵ x ϵ y ϵ z ▿ x ▿ y T - - - ( 6 )
观测状态变量选择如下:
y=[δVx δVy]T    (7)
δVx、δVy——当地地理坐标系的轴向速度计算值与真实值之间的误差,在组合对准中可看成捷联惯性导航系统解算速度与外测真实速度之差;
根据式(1)捷联惯导系统误差状态方程,滤波模型参数设置如下:
A = A 11 A 12 A 13 A 21 A 22 A 23 A 31 A 32 A 33 - - - ( 8 )
Figure C20071014484700106
Figure C20071014484700107
A21=02×3   (12)
Figure C20071014484700112
Figure C20071014484700113
Figure C20071014484700114
Figure C20071014484700115
Figure C20071014484700116
Figure C20071014484700117
B = - T bn 0 3 × 2 0 2 × 3 0 2 × 2 0 2 × 3 B 32 - - - ( 18 )
T bn = T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 - - - ( 19 )
B 32 = T 11 T 12 T 21 T 22 - - - ( 20 )
H = 0 0 0 0 0 1 0 0 0 0 0 0 0 1 - - - ( 21 )
C=02×5     (22)
Tbn——从载体坐标系到导航坐标系的转换矩阵;
3)滤波器的估计;
状态估计值
Figure C200710144847001112
由无偏状态
Figure C200710144847001113
和偏差b组成,即
x ^ k = x ~ k + V k b ^ k - - - ( 23 )
整个滤波器的算法可以用以下方程表示:
x ~ k = A k - 1 x ~ k - 1 + K ~ x ( k ) [ y k - H k A k - 1 x ~ k - 1 ] - - - ( 24 )
P ~ x ( k / k - 1 ) = A k - 1 P ~ x ( k ) A k - 1 T + Q k - - - ( 25 )
K ~ x ( k ) = P ~ x ( k / k - 1 ) H k T [ H k P ~ x ( k / k - 1 ) H k T + R k ] - 1 - - - ( 26 )
P ~ x ( k ) = [ I - K ~ x ( k ) H k ] P ~ x ( k / k - 1 ) - - - ( 27 )
其中,
——x的增益矩阵;
Figure C20071014484700127
——估计值的协方差阵;
Figure C20071014484700129
的预测值;
偏差估计表示如下:
b ^ k = b ^ k - 1 + K b ( k ) [ y k - H k A k - 1 x ~ k - 1 - S ( k ) b ^ k - 1 ] - - - ( 28 )
K b ( k ) = M ( k + 1 ) [ V T ( k ) H k T + C k T ] R k - 1 - - - ( 29 )
M ( k + 1 ) = M ( k ) - M ( k ) S T ( k ) [ H k P ~ x ( k / k - 1 ) H k T + R k + S ( k ) M ( k ) S T ( k ) ] - 1 S ( k ) M ( k ) - - - ( 30 )
U(k)=Ak-1V(k-1)+Bk    (31)
V ( k ) = U ( k ) - K ~ x ( k ) S ( k ) - - - ( 32 )
S(k)=HkU(k)+Ck        (33)
其中,
Kb(k)——偏差的增益矩阵;
M(k),U(k),V(k),S(k)——为计算需要而引入的变量;
初始状态设置为:
x ~ 0 = E [ x ~ ( 0 ) ] , P ~ ( 0 ) = E [ ( x ~ ( 0 ) - x ~ 0 ) ( x ~ ( 0 ) - x ~ 0 ) T ] , b ^ 0 = 0 , U(0)=0,M(0)=Pb(0);
解算时,首先根据式(23)~式(27)计算无偏状态估计值
Figure C200710144847001217
根据式(28)~式(33)计算偏差
Figure C200710144847001218
的估计值,然后通过
Figure C200710144847001219
来修正状态估值得到
Figure C200710144847001220
本发明的方法具有以下优点:(1)当系统状态变量较多的情况下,由于偏差状态从系统状态向量中分离出来,降低了系统维数,从而大大减小了计算量,算短了估计时间,提高了初始对准的速度;(2)在估计惯性器件误差(主要是光纤陀螺测漂)过程中,估计时间的增长不会导致滤波估计值的发散和滤波性能的下降,从而使得方位陀螺漂移也能通过这种方法进行估计,同时保证了初始对准的精度。
对本发明的有益效果说明如下:
对载体在多种运动状态进行了Matlab仿真,其中包括:三轴摇摆状态;匀速加摇摆运动;加速运动。
仿真条件如下:
(1)设船体处于三轴摇摆运动状态。模型为
Figure C20071014484700131
其中:
yaw,pitch,roll分别表示航向角、纵摇角和横摇角的摇摆角度变量;三轴运动幅度为yawm=10°,pitchm=8°,rollm=6°;角频率为wi=2π/Ti,(i=h,p,r),周期Th=6s,Tp=10s,Tr=5s。初始相位
Figure C20071014484700132
都是30°,初始航向K设为90°。
初始真实姿态位0°、0°、90°;
初始失准角α=1°,β=1°,γ=3°;
初始纬度
Figure C20071014484700133
初始经度λ=126.6705°;
陀螺零位漂移εx=εy=εz=0.1°/h;
陀螺刻度因数误差10-4
陀螺仪白噪声误差:0.005度/小时;
加速度计零位误差 ▿ x = ▿ y = 1 × 10 - 4 g ;
加速度计刻度因数误差为10-4
加速度计白噪声误差:5×10-5g:
地球自转角速率wie=7.27220417rad/s;
载体初始位置:北纬45.7796°,东经126.6705°;
赤道半径:Re=6378393.0m;
椭球度:e=3.367e-3;
由万有引力可得的地球表面重力加速度:g=9.78049m/s2
地球自转角速度(弧度/秒):7.2921158e-5;
常数:π=3.1415926;
仿真分为两个阶段进行,先进行200秒的粗对准,然后进入精对准阶段。此时应用本发明方法分别进行3分钟和15分钟的仿真分析,并在精对准进行600秒以后对船体姿态进行修正。3分钟和15分钟滤波估计的陀螺漂移曲线分别如图1、图2所示。整个对准阶段船体姿态误差输出信息如图3所示。
(2)设船体处于匀速加三轴摇摆运动状态。船体的速度为10m/s,其余仿真条件与(1)相同。仿真3分钟得到陀螺漂移的估计值曲线如图4所示。
(3)设船体处于加速运动状态。船体东向运动加速度1m/s,加速10s,其余仿真条件与(1)相同。精对准估计10分钟所得陀螺漂移估计曲线如图5所示,整个对准阶段船体姿态误差输出信息如图6所示。
仿真结果表明舰船在动基座下进行组合精对准时,采用本发明的方法可以在保证对准精度和快速性的要求下,实现对光纤陀螺零位漂移的准确估计。
(四)附图说明
图1为三轴摇摆状态下利用Matlab进行3分钟精对准仿真得到的陀螺漂移的估计曲线图;
图2为三轴摇摆状态下利用Matlab进行15分钟精对准仿真得到的陀螺漂移的估计曲线图;
图3为三轴摇摆状态下利用Matlab仿真得到整个初始对准中船体姿态误差角的曲线图;
图4为匀速加三轴摇摆状态下利用Matlab进行3分钟精对准仿真得到的陀螺漂移的估计曲线图;
图5为加速状态下利用Matlab进行10分钟精对准仿真得到的陀螺漂移的估计曲线图;
图6为加速状态下利用Matlab仿真得到的整个初始对准中船体姿态误差角的曲线图。
(五)具体实施方式
下面结合附图举例对本发明做更详细地描述:
实施实例一
(1)光纤陀螺捷联惯性导航系统预热后连续采集光纤陀螺仪和石英挠性加速度计输出的数据,并对采集到的陀螺仪和加速度计的数据进行处理,采用二阶调平和方位估计法完成捷联惯导系统的粗对准,确定此时船体的姿态信息(纵摇角θ,横摇角γ和航向角ψ)。
(2)粗对准完毕,进入精对准阶段。首先,继续采集光纤陀螺和加速度计输出的数据,并通过标准的四元数法进行导航解算,获得船体的计算速度、姿态、位置等相关信息;同时,通过多普勒计程仪或者GPS测得船体的速度信息,并把这个速度近似看作船体的真实速度。
(3)建立船用捷联惯性导航系统的动基座误差方程。不考虑垂直通道,通常的增广状态为7维误差向量。误差方程如下:
Figure C20071014484700151
α、β、γ——计算地理坐标系与真实水平坐标系之间的姿态误差角;
Figure C20071014484700152
——计算地理坐标系与真实地理坐标系之间的纬度误差;
δλ——计算地理坐标系与真实地理坐标系之间的经度误差;
δVx、δVy——当地地理坐标系的轴向速度计算值与真实值之间的误差;
Vx、Vy——船体的东北向速度;
wie——地球自转角速率;
RE,RN——船体所在位置的地球曲率半径;
Figure C20071014484700161
——船体所在位置的纬度;
g——当地重力加速度;
εx、εy、εz——陀螺误差在载体坐标系的投影,这里简记为陀螺零位漂移;
Figure C20071014484700162
——加速度计在载体坐标系的投影,这里简记为加速度计偏差;
(4)应用最优控制滤波理论设计滤波器,并进行滤波估计。这里采用把偏差从系统状态向量中分离出来的滤波方法,通过降低系统维数来提高计算的速度和精度。
1)离散滤波器模型的建立。
系统的状态方程和量测方程描述如下:
xk=Ak-1xk-1+Bk-1bk-1k-1    (2)
bk+1=bk                       (3)
yk=Hkxk+Ckbkk              (4)
其中,
xk——n维状态变量(第k个观测时刻).
yk——量测向量
bk——偏差向量
ξk——过程噪声向量,且满足 E [ ξ k ξ l T ] = Q k δ kl
ηk——观测噪声向量,且满足 E [ η k η l T ] = R k δ kl
Ak-1、Bk-1、Hk、Ck——时变的系数矩阵,Bk-1表明偏差向量bk进入动态方程的方式。
2)系统状态的选择。对于船用捷联系统来说,当把偏差(这里为惯性器件误差)分离出来以后,状态向量可以写成以下形式:
Figure C20071014484700171
偏差状态写成以下形式:
b = ϵ x ϵ y ϵ z ▿ x ▿ y T - - - ( 6 )
观测状态变量选择如下:
y=[δVx δVy]T    (7)
δVx、δVy——当地地理坐标系的轴向速度计算值与真实值之间的误差,在组合对准中可看成捷联惯性导航系统解算速度与外测真实速度之差;
根据式(1)捷联惯导系统误差状态方程,滤波模型参数设置如下:
A = A 11 A 12 A 13 A 21 A 22 A 23 A 31 A 32 A 33 - - - ( 8 )
Figure C20071014484700174
Figure C20071014484700175
Figure C20071014484700176
A21=02×3         (12)
Figure C20071014484700178
Figure C20071014484700181
Figure C20071014484700182
Figure C20071014484700183
Figure C20071014484700184
B = - T bn 0 3 × 2 0 2 × 3 0 2 × 2 0 2 × 3 B 32 - - - ( 18 )
T bn = T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 - - - ( 19 )
B 32 = T 11 T 12 T 21 T 22 - - - ( 20 )
H = 0 0 0 0 0 1 0 0 0 0 0 0 0 1 - - - ( 21 )
C=02×5    (22)
Tbn——从载体坐标系到导航坐标系的转换矩阵;
3)滤波器的估计算法。
状态估计值
Figure C20071014484700189
由无偏状态和偏差b组成,即
x ^ k = x ~ k + V k b ^ k - - - ( 23 )
整个滤波器的算法可以用以下方程表示:
x ~ k = A k - 1 x ~ k - 1 + K ~ x ( k ) [ y k - H k A k - 1 x ~ k - 1 ] - - - ( 24 )
P ~ x ( k / k - 1 ) = A k - 1 P ~ x ( k ) A k - 1 T + Q k - - - ( 25 )
K ~ x ( k ) = P ~ x ( k / k - 1 ) H k T [ H k P ~ x ( k / k - 1 ) H k T + R k ] - 1 - - - ( 26 )
P ~ x ( k ) = [ I - K ~ x ( k ) H k ] P ~ x ( k / k - 1 ) - - - ( 27 )
其中,
——x的增益矩阵;
Figure C20071014484700192
——估计值的协方差阵;
Figure C20071014484700194
的预测值;.
偏差估计表示如下:
b ^ k = b ^ k - 1 + K b ( k ) [ y k - H k A k - 1 x ~ k - 1 - S ( k ) b ^ k - 1 ] - - - ( 28 )
K b ( k ) = M ( k + 1 ) [ V T ( k ) H k T + C k T ] R k - 1 - - - ( 29 )
M ( k + 1 ) = M ( k ) - M ( k ) S T ( k ) [ H k P ~ x ( k / k - 1 ) H k T + R k + S ( k ) M ( k ) S T ( k ) ] - 1 S ( k ) M ( k ) - - - ( 30 )
U(k)=Ak-1V(k-1)+Bk    (31)
V ( k ) = U ( k ) - K ~ x ( k ) S ( k ) - - - ( 32 )
S(k)=HkU(k)+Ck        (33)
其中,
Kb(k)——偏差的增益矩阵;
M(k),U(k),V(k),S(k)——为计算需要而引入的变量;
初始状态设置为:
x ~ 0 = E [ x ~ ( 0 ) ] , P ~ ( 0 ) = E [ ( x ~ ( 0 ) - x ~ 0 ) ( x ~ ( 0 ) - x ~ 0 ) T ] , b ^ 0 = 0 , U(0)=0,M(0)=Pb(0).
具体解算时,首先根据式(23)~式(27)计算无偏状态估计值
Figure C200710144847001912
根据式(28)~式(33)计算偏差
Figure C200710144847001913
的估计值,然后通过
Figure C200710144847001914
来修正状态估值得到
Figure C200710144847001915
(5)从状态估值中提取船体姿态失准角信息α、β、γ,在组合精对准结束时用它来修正船体姿态(纵摇角θ,横摇角γ和航向角ψ),实现精确初始对准。同时,从偏差估计值
Figure C200710144847001917
中获得陀螺漂移的估计值,实现初始对准阶段的测漂过程,并对陀螺漂移进行补偿,进一步抑制了器件误差对船体导航信息的影响。

Claims (2)

1、一种基于多普勒的光纤陀螺捷联惯导系统初始姿态确定方法,其特征是:
(1)首先对光纤陀螺捷联惯性导航系统进行预热,然后连续采集光纤陀螺仪和石英挠性加速度计输出的数据;
(2)对采集到的陀螺仪和加速度计的数据进行处理,采用二阶调平和方位估计法完成捷联惯导系统的粗对准,确定此时的纵摇角θ、横摇角γ和航向角ψ姿态信息;
(3)粗对准完毕后进入精对准阶段,首先,继续采集光纤陀螺和加速度计输出的数据,并通过标准的四元数法进行导航解算,获得船体的计算速度、姿态、位置等相关信息;同时,通过多普勒计程仪或者GPS测得船体的速度信息,并把这个速度近似看作船体的真实速度;
(4)建立船用捷联惯性导航系统的动基座误差方程,误差方程为:
Figure C2007101448470002C1
α、β、γ——计算地理坐标系与真实水平坐标系之间的姿态误差角;
Figure C2007101448470002C2
——计算地理坐标系与真实地理坐标系之间的纬度误差;
δλ——计算地理坐标系与真实地理坐标系之间的经度误差;
δVx、δVy——当地地理坐标系的轴向速度计算值与真实值之间的误差;
Vx、Vy——船体的东北向速度;
wie——地球自转角速率;
RE,RN——船体所在位置的地球曲率半径;
Figure C2007101448470003C1
——船体所在位置的纬度;
g——当地重力加速度;
εx、εy、εz——陀螺误差在载体坐标系的投影,这里简记为陀螺零位漂移;
Figure C2007101448470003C2
——加速度计在载体坐标系的投影,这里简记为加速度计偏差;
(5)应用最优控制滤波理论设计滤波器,并进行滤波估计;
(6)从状态估值
Figure C2007101448470003C3
中提取船体姿态失准角信息α、β、γ,在组合精对准结束时用它来修正船体姿态,即纵摇角θ、横摇角γ和航向角ψ,完成精确初始对准;同时,从偏差估计值
Figure C2007101448470003C4
中获得陀螺漂移的估计值,实现初始对准阶段的测漂过程,并对陀螺漂移进行补偿,进一步抑制器件误差对船体导航信息的影响。
2、根据权利要求1所述的基于多普勒的光纤陀螺捷联惯导系统初始姿态确定方法,其特征是:所述的滤波器的设计与滤波估计过程包括:
1)离散滤波器模型的建立;
系统的状态方程和量测方程描述如下:
xk=Ak-1xk-1+Bk-1bk-1k-1          (2)
bk+1=bk                            (3)
yk=Hkxk+Ckbkk                   (4)
其中,
xk——第k个观测时刻的n维状态变量
yk——量测向量
bk——偏差向量
ξk——过程噪声向量,且满足 E [ ξ k ξ l T ] = Q k δ kl
ηk——观测噪声向量,且满足 E [ η k η l T ] = R k δ kl
Ak-1、Bk-1、Hk、Ck——时变的系数矩阵,Bk-1表明偏差向量bk进入动态方程的方式;
2)系统状态的选择,对于船用捷联系统来说,当把偏差分离出来以后,状态向量可以写成以下形式:
Figure C2007101448470004C2
偏差状态写成以下形式:
b = ϵ x ϵ y ϵ z ▿ x ▿ y T - - - ( 6 )
观测状态变量选择如下:
y=[δVx δVy]T                      (7)
δVx、δVy——当地地理坐标系的轴向速度计算值与真实值之间的误差,在组合对准中可看成捷联惯性导航系统解算速度与外测真实速度之差;
根据式(1)捷联惯导系统误差状态方程,滤波模型参数设置如下:
A = A 11 A 12 A 13 A 21 A 22 A 23 A 31 A 32 A 33 - - - ( 8 )
Figure C2007101448470004C5
Figure C2007101448470004C6
Figure C2007101448470004C7
A21=02×3                            (12)
Figure C2007101448470004C8
Figure C2007101448470005C2
Figure C2007101448470005C3
Figure C2007101448470005C4
B = - T bn 0 3 × 2 0 2 × 3 0 2 × 2 0 2 × 3 B 32 - - - ( 18 )
T bn = T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 - - - ( 19 )
B 32 = T 11 T 12 T 21 T 22 - - - ( 20 )
H = 0 0 0 0 0 1 0 0 0 0 0 0 0 1 - - - ( 21 )
C=02×5                 (22)
Tbn——从载体坐标系到导航坐标系的转换矩阵;
3)滤波器的估计;
状态估计值
Figure C2007101448470005C9
由无偏状态
Figure C2007101448470005C10
和偏差b组成,即
x ^ k = x ~ k + V k b ^ k - - - ( 23 )
整个滤波器的算法可以用以下方程表示:
x ~ k = A k - 1 x ~ k - 1 + K ~ x ( k ) [ y k - H k A k - 1 x ~ k - 1 ] - - - ( 24 )
P ~ x ( k / k - 1 ) = A k - 1 P ~ x ( k ) A k - 1 T + Q k - - - ( 25 )
K ~ x ( k ) = P ~ x ( k / k - 1 ) H k T [ H k P ~ x ( k / k - 1 ) H k T + R k ] - 1 - - - ( 26 )
P ~ x ( k ) = [ I - K ~ x ( k ) H k ] P ~ x ( k / k - 1 ) - - - ( 27 )
其中,
Figure C2007101448470006C1
——x的增益矩阵;
——估计值
Figure C2007101448470006C3
的协方差阵;
Figure C2007101448470006C4
——
Figure C2007101448470006C5
的预测值;
偏差估计表示如下:
b ^ k = b ^ k - 1 + K b ( k ) [ y k - H k A k - 1 x ~ k - 1 - S ( k ) b ^ k - 1 ] - - - ( 28 )
K b ( k ) = M ( k + 1 ) [ V T ( k ) H k T + C k T ] R k - 1 - - - ( 29 )
M ( k + 1 ) = M ( k ) - M ( k ) S T ( k ) [ H k P ~ x ( k / k - 1 ) H k T + R k + S ( k ) M ( k ) S T ( k ) ] - 1 S ( k ) M ( k ) - - - ( 30 )
U(k)=Ak-1V(k-1)+Bk                   (31)
V ( k ) = U ( k ) - K ~ x ( k ) S ( k ) - - - ( 32 )
S(k)=HkU(k)+Ck                       (33)
其中,
Kb(k)——偏差的增益矩阵;
M(k),U(k),V(k),S(k)——为计算需要而引入的变量;
初始状态设置为:
x ~ 0 = E [ x ~ ( 0 ) ] , P ~ ( 0 ) = E [ ( x ~ ( 0 ) - x ~ 0 ) ( x ~ ( 0 ) - x ~ 0 ) T ] , b ^ 0 = 0 , U(0)=0,M(0)=Pb(0);
解算时,首先根据式(23)~式(27)计算无偏状态估计值
Figure C2007101448470006C13
根据式(28)~式(33)计算偏差
Figure C2007101448470006C14
的估计值,然后通过
Figure C2007101448470006C15
来修正状态估值得到
Figure C2007101448470006C16
CNB2007101448477A 2007-12-18 2007-12-18 基于多普勒的光纤陀螺捷联惯导系统初始姿态确定方法 Expired - Fee Related CN100541135C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007101448477A CN100541135C (zh) 2007-12-18 2007-12-18 基于多普勒的光纤陀螺捷联惯导系统初始姿态确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007101448477A CN100541135C (zh) 2007-12-18 2007-12-18 基于多普勒的光纤陀螺捷联惯导系统初始姿态确定方法

Publications (2)

Publication Number Publication Date
CN101187567A CN101187567A (zh) 2008-05-28
CN100541135C true CN100541135C (zh) 2009-09-16

Family

ID=39480056

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007101448477A Expired - Fee Related CN100541135C (zh) 2007-12-18 2007-12-18 基于多普勒的光纤陀螺捷联惯导系统初始姿态确定方法

Country Status (1)

Country Link
CN (1) CN100541135C (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564459B (zh) * 2012-01-17 2015-03-11 北京理工大学 一种单轴旋转调制捷联式惯性导航系统海上校准方法
CN102759364B (zh) * 2012-04-26 2015-01-07 北京航空航天大学 一种应用gps/sins组合的挠性陀螺比力敏感误差飞行校准方法
CN102706366B (zh) * 2012-06-19 2015-02-25 北京航空航天大学 一种基于地球自转角速率约束的sins初始对准方法
CN103076026B (zh) * 2012-11-02 2016-07-06 哈尔滨工程大学 一种捷联惯导系统中确定多普勒计程仪测速误差的方法
CN103017764A (zh) * 2012-12-07 2013-04-03 河北汉光重工有限责任公司 高速列车自主导航及姿态测量装置
CN103090884B (zh) * 2013-02-19 2015-05-20 哈尔滨工程大学 基于捷联惯导系统的多普勒计程仪测速误差抑制方法
CN103148868B (zh) * 2013-02-22 2015-12-09 哈尔滨工程大学 匀速直航下基于多普勒计程仪地理系测速误差估计的组合对准方法
CN103196447A (zh) * 2013-03-20 2013-07-10 哈尔滨工业大学 基于批量mems敏感器的惯性测量单元及姿态位置信息获取方法
CN103245357A (zh) * 2013-04-03 2013-08-14 哈尔滨工程大学 一种船用捷联惯导系统二次快速对准方法
CN104061930B (zh) * 2013-12-05 2017-06-16 东南大学 一种基于捷联惯性制导和多普勒计程仪的导航方法
CN103674064B (zh) * 2013-12-06 2017-02-08 广东电网公司电力科学研究院 捷联惯性导航系统的初始标定方法
CN104197939A (zh) * 2014-09-11 2014-12-10 东南大学 基于水下信息网络的多参考节点水下航行器组合导航方法
CN104776847B (zh) * 2015-04-09 2017-10-03 哈尔滨工程大学 一种适用于水下导航系统单点估计陀螺漂移的方法
JP6371397B2 (ja) * 2015-05-23 2018-08-08 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 無人航空機に関する状態情報を決定する方法、システム、及びプログラム
FR3043469B1 (fr) * 2015-11-10 2019-10-18 Safran Electronics & Defense Procede de detection de mouvements parasites lors d'un alignement statique d'une centrale inertielle, et dispositif de detection associe
CN106052686B (zh) * 2016-07-10 2019-07-26 北京工业大学 基于dsptms320f28335的全自主捷联惯性导航系统
CN106123921B (zh) * 2016-07-10 2019-05-24 北京工业大学 动态干扰条件下捷联惯导系统的纬度未知自对准方法
CN108061549A (zh) * 2016-11-07 2018-05-22 北京自动化控制设备研究所 一种高速角速率输出及校准方法
CN106979780B (zh) * 2017-05-22 2019-06-14 江苏亘德科技有限公司 一种无人车实时姿态测量方法
CN108225375A (zh) * 2018-01-08 2018-06-29 哈尔滨工程大学 一种基于中值滤波的抗外速度野值的优化粗对准方法
CN108387205B (zh) * 2018-01-20 2021-01-01 西安石油大学 基于多传感器数据融合的钻具姿态测量系统的测量方法
CN108759873A (zh) * 2018-07-30 2018-11-06 武汉华之源网络科技有限公司 船用探测设备的俯仰零位误差角的测量方法
CN111912427B (zh) * 2019-05-10 2022-03-01 中国人民解放军火箭军工程大学 一种多普勒雷达辅助捷联惯导运动基座对准方法及系统
CN112665610B (zh) * 2019-10-15 2023-01-03 哈尔滨工程大学 一种惯性平台误差参数标定方法
CN110702143B (zh) * 2019-10-19 2021-07-30 北京工业大学 基于李群描述的sins捷联惯性导航系统动基座快速初始对准方法
CN111359194A (zh) * 2020-03-18 2020-07-03 华科智谷(上海)科技发展有限公司 一种人形智能体三维行为空间的步行特征降维方法
CN111397603B (zh) * 2020-04-24 2022-07-12 东南大学 载体姿态动态情况下的惯性/多普勒动基座粗对准方法
CN112629538B (zh) * 2020-12-11 2023-02-14 哈尔滨工程大学 基于融合互补滤波和卡尔曼滤波的舰船水平姿态测量方法
CN115855038B (zh) * 2022-11-22 2024-01-09 哈尔滨工程大学 一种短时高精度姿态保持方法
CN116222560B (zh) * 2023-05-09 2023-06-30 北京航空航天大学 基于偏振时间差分的陀螺漂移与姿态失准角解耦估计方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3736791A (en) * 1967-08-18 1973-06-05 Us Navy Gyro axis perturbation technique for calibrating inertial navigation systems
US4295372A (en) * 1968-12-05 1981-10-20 The United States Of America As Represented By The Secretary Of The Navy Gravity measurement apparatus for ships

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3736791A (en) * 1967-08-18 1973-06-05 Us Navy Gyro axis perturbation technique for calibrating inertial navigation systems
US4295372A (en) * 1968-12-05 1981-10-20 The United States Of America As Represented By The Secretary Of The Navy Gravity measurement apparatus for ships

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AUV中SINS/DVL组合导航技术研究. 曹洁,刘繁明,陈勤,高伟.中国航海,第2期. 2004 *
多普勒测速仪/捷联惯导组合导航技术研究. 秦瑞,王顺伟,袁晓峰,季德成.战术导弹技术,第6期. 2006 *
摇摆状态下捷联惯导系统初始对准技术的研究. 高伟,郝燕玲,蔡同英.中国惯性技术学报,第12卷第3期. 2004 *

Also Published As

Publication number Publication date
CN101187567A (zh) 2008-05-28

Similar Documents

Publication Publication Date Title
CN100541135C (zh) 基于多普勒的光纤陀螺捷联惯导系统初始姿态确定方法
CN100541132C (zh) 大失准角下船用光纤陀螺捷联航姿系统系泊精对准方法
CN101793523B (zh) 一种组合导航和光电探测一体化系统
CN101514900B (zh) 一种单轴旋转的捷联惯导系统初始对准方法
CN101881619B (zh) 基于姿态测量的船用捷联惯导与天文定位方法
CN101571394A (zh) 基于旋转机构的光纤捷联惯性导航系统初始姿态确定方法
CN110031882A (zh) 一种基于sins/dvl组合导航系统的外量测信息补偿方法
CN105698822B (zh) 基于反向姿态跟踪的自主式惯性导航行进间初始对准方法
CN102589546B (zh) 一种抑制器件斜坡误差影响的光纤捷联惯组往复式两位置寻北方法
CN102879011B (zh) 一种基于星敏感器辅助的月面惯导对准方法
CN106441357B (zh) 一种基于阻尼网络的单轴旋转sins轴向陀螺漂移校正方法
CN103076026B (zh) 一种捷联惯导系统中确定多普勒计程仪测速误差的方法
CN101713666B (zh) 一种基于单轴转停方案的系泊估漂方法
CN103471616A (zh) 一种动基座sins大方位失准角条件下初始对准方法
CN103697878B (zh) 一种单陀螺单加速度计旋转调制寻北方法
CN101915579A (zh) 一种基于ckf的sins大失准角初始对准新方法
CN112595350B (zh) 一种惯导系统自动标定方法及终端
CN103792561B (zh) 一种基于gnss通道差分的紧组合降维滤波方法
CN101963512A (zh) 船用旋转式光纤陀螺捷联惯导系统初始对准方法
CN103245357A (zh) 一种船用捷联惯导系统二次快速对准方法
CN102829781A (zh) 一种旋转式捷联光纤罗经实现的方法
CN102538821A (zh) 一种快速、参数分段式捷联惯性导航系统自对准方法
CN102768043B (zh) 一种无外观测量的调制型捷联系统组合姿态确定方法
CN106940193A (zh) 一种基于Kalman滤波的船舶自适应摇摆标定方法
CN113503892B (zh) 一种基于里程计和回溯导航的惯导系统动基座初始对准方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090916

Termination date: 20111218