CN100537835C - Magnetron sputtering-LASER HEATING CEM depositing process and equipment - Google Patents

Magnetron sputtering-LASER HEATING CEM depositing process and equipment Download PDF

Info

Publication number
CN100537835C
CN100537835C CNB2007100483863A CN200710048386A CN100537835C CN 100537835 C CN100537835 C CN 100537835C CN B2007100483863 A CNB2007100483863 A CN B2007100483863A CN 200710048386 A CN200710048386 A CN 200710048386A CN 100537835 C CN100537835 C CN 100537835C
Authority
CN
China
Prior art keywords
magnetron sputtering
oozed
workpiece
power supply
laser heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2007100483863A
Other languages
Chinese (zh)
Other versions
CN101195905A (en
Inventor
高原
徐晋勇
高清
郑英
唐光辉
程东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CNB2007100483863A priority Critical patent/CN100537835C/en
Publication of CN101195905A publication Critical patent/CN101195905A/en
Application granted granted Critical
Publication of CN100537835C publication Critical patent/CN100537835C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

The invention discloses magnetron sputtering-LASER HEATING CEM depositing process and equipment, utilize magnetron sputtering and laser heating device to form the single or composite cementation coating of the diffusion layer, settled layer or the diffusion layer+settled layer that comprise metallic element and non-metallic element on the electrically conductive workpiece surface.The invention has the advantages that: utilize magnetron sputtering target, competent desire co-diffusioning alloy element can be provided; Utilize LASER HEATING, can will be oozed material in very short time and be heated to high temperature permeating speed is improved greatly; The vacuum tightness of metallic cementation improves at least 1 order of magnitude than general alloyage process, can improve the surface quality of being oozed workpiece greatly; Plating can be carried out continuously, can realize the big area production in enormous quantities.

Description

Magnetron sputtering-LASER HEATING CEM depositing process and equipment
Technical field:
The present invention relates to plasma surface metallurgic, specifically is a kind of magnetron sputtering-LASER HEATING CEM depositing process and equipment that can form alloy layer on the electro-conductive material surface.
Background technology:
At present, various device and the processing method of utilizing geseous discharge to carry out the plasma surface modification mainly contains: double-layer metallic glow ion cementation equipment and technology, multi sphere ionic diffusion coating apparatus and technology, magnetic controlled sputtering ion plating equipment and technology, direct current diode sputtering, direct current three utmost points or four utmost point sputter coating apparatus and technology etc.And in the above equipment and technology method, except that double-layer metallic glow ion cementation equipment and technology, all the other equipment and Technology all are to form deposition coating at material surface, do not have diffusion layer.Therefore film substrate bond strength is relatively poor, very easily produces and peels off.Double-layer metallic glow ion cementation equipment and technology adopt the glow-discharge sputtering of diarch that desire co-diffusioning alloy element is provided, because ionization level is lower, the unit time provides the limited amount of desire co-diffusioning alloy element, and the metallic cementation process is affected.In addition, during double-layer metallic glow ion cementation, oozed the heating of workpiece, by ion bombardment, rate of heating is slow, and the time is long, and grain growth is serious.Desire the diffusion of alloying atom, mainly be diffused as the master with intracrystalline, velocity of diffusion is very low.
Summary of the invention:
The objective of the invention is to provide a kind of magnetron sputtering and LASER HEATING utilized, form the technology of the single or composite cementation coating of the diffusion layer, settled layer or the diffusion layer+settled layer that comprise metallic element and non-metallic element on the electro-conductive material surface.
Another object of the present invention provides the equipment of realizing this CEM depositing process.
Magnetron sputtering of the present invention-LASER HEATING CEM depositing process comprises the following steps: successively by compliance
Will by ooze workpiece place in the vacuum vessel vertically back and forth travel mechanism and laterally in the reciprocator, oozed workpiece, back and forth travel mechanism, vacuum vessel are anode, ooze and quilt ooze workpiece material, be electro-conductive material;
2. magnetron sputtering target being placed the top of being oozed workpiece, the source electrode material of desiring the sputter alloying element is provided, is conduction or electrically nonconducting material;
3. vacuumize and reach final vacuum 3 * 10 -3More than the Pa;
4. the fill gas body medium is to the working vacuum degree, and gaseous media is ammonia or methane or argon gas;
5. add high-voltage DC power supply or high-voltage pulse power source or radio-frequency power supply to magnetron sputtering target, the variable range 0~2000V of voltage, the radio-frequency power supply in the magnetron sputtering power supply, its range of frequency is 13.56MHz or 27.12MHz;
6. workpiece surface is oozed in the laser scanning heating, and related laser heating device can be Nd:YAG laser apparatus or CO 2Laser apparatus, output laser power scope is 100~10000W, optical maser wavelength: 10.6 μ m, beam diameter: φ 1mm~30mm, LASER HEATING is oozed and is expanded after technology finishes, and can form the single or composite cementation coating of diffusion layer, settled layer or the diffusion layer+settled layer that comprise metallic element and non-metallic element on the electro-conductive material surface.
During work, magnetron sputtering target provides sufficient a large amount of active metallic ion, atom or particle cluster, these active substances absorption or be deposited on and oozed workpiece surface.Laser heating device, periodic superpower high-density heat energy is provided, can several seconds at zero point within several seconds, repeatedly will be oozed the workpiece local heating to the high temperature more than the transformation temperature, adsorb and be deposited on the active substance rapid diffusion of being oozed workpiece surface and enter workpiece inside, formation infiltration layer or settled layer.As this moment working medium contain ammonia, methane isoreactivity gas, then can make workpiece surface form nitrogen, carburizing or carbo-nitridization layer.
Be used to realize that the equipment of technology of the present invention comprises:
Quilt on reciprocal travel mechanism in vacuum vessel, the vacuum vessel and the reciprocal travel mechanism oozes workpiece, air-bleed system, airing system, magnetron sputtering target, magnetron sputtering power supply, laser heating device.
The invention has the advantages that:
1. utilize magnetron sputtering target, competent desire co-diffusioning alloy element is provided.At short notice, provide a large amount of active ion combination gold elements, the needs that fully satisfy the substrate material surface deposition and infiltrate.
2. utilize laser heating device, superpower high-density heat energy is provided, will be oozed material in several seconds at zero point within several seconds and be heated to high temperature repeatedly, implement quick infiltration process;
3. the quilt that is under rapid heating, the short time high temperature condition oozes workpiece material, has possessed the energy condition of rapid diffusion, and permeating speed improves greatly, and the film-substrate cohesion of diffusion layer and settled layer strengthens.
4. the working vacuum degree during metallic cementation will improve at least 1 order of magnitude than general alloyage process, improve the surface quality of being oozed workpiece greatly.
5. can move continuously, can realize the big area production in enormous quantities.
Description of drawings:
Fig. 1 is magnetron sputtering of the present invention-LASER HEATING composite impregnation-plating equipment block diagram.
Label in the accompanying drawing is: magnetron sputtering target 1, magnetron sputtering power supply 2 is oozed workpiece 3, vacuum vessel 4, laser heating device 5, vertically reciprocal travel mechanism 6, laterally reciprocal travel mechanism 7, pumped vacuum systems 8, airing system 9 compositions such as grade.
Embodiment:
Below in conjunction with accompanying drawing the present invention is described in further detail.
To be of a size of 100mm * 100mm * 5mm, material is that the quilt of 20 steel oozes workpiece 3, be placed on the carriage of vertically reciprocal travel mechanism 6 and laterally reciprocal travel mechanism 7, selection is of a size of the magnetron sputtering target 1 of φ 100mm * 5mm (diameter * height), be arranged in the top of being oozed workpiece, magnetic control spattering target is the pure Mo of metal, vacuumizes to reach final vacuum 3 * 10 -3More than the Pa, fill gas body medium argon gas adds high-voltage dc voltage-500V, ion sputtering target 20 minutes for earlier magnetron sputtering target 1 to working vacuum degree 10Pa, stop sputter, open horizontal reciprocator 7, laser heating device 5 scans heating and is oozed workpiece 3 surfaces simultaneously, horizontal reciprocating speed 100mm/min, treat that shape journey of transverse scan finishes, start vertically back and forth travel mechanism 6,1mm advances.Carry out the scanning of next shape journey.LASER HEATING ooze expand technology complete after, take out sample.Can obtain the Mo diffusion layer of 20 μ m and the Mo settled layer of 1 μ m.

Claims (7)

1. magnetron sputtering-LASER HEATING CEM depositing process, it is characterized in that: this method comprises the following steps: successively by compliance
(a) will by ooze workpiece place in the vacuum vessel vertically back and forth travel mechanism and laterally back and forth on the travel mechanism;
(b) magnetron sputtering target is placed the top of being oozed workpiece;
(c) vacuumize and reach final vacuum 3 * 10 -3Pa;
(d) the fill gas body medium is to the working vacuum degree;
(e) add the magnetron sputtering power supply to magnetron sputtering target;
(f) workpiece surface is oozed in the laser scanning heating, is oozed workpiece surface formation at quilt and comprises the diffusion layer of metallic element and non-metallic element and the composite cementation coating of settled layer.
2. technology according to claim 1 is characterized in that: oozed workpiece, vertically reciprocal travel mechanism and laterally reciprocal travel mechanism and vacuum vessel and belong to anode together.
3. technology according to claim 1 is characterized in that: the described workpiece material that oozed is an electro-conductive material.
4. technology according to claim 1 is characterized in that: described magnetron sputtering power supply is: high-voltage DC power supply, high-voltage pulse power source or radio-frequency power supply, the variable range 0~2000V of voltage.
5. technology according to claim 1 is characterized in that: the radio-frequency power supply in the related magnetron sputtering power supply, its range of frequency are 13.56MHz or 27.12MHz.
6. technology according to claim 1 is characterized in that: described laser heating device is Nd:YAG laser apparatus or CO 2Laser apparatus, output laser power scope is 100~10000W, optical maser wavelength: 10.6 μ m, beam diameter: φ 1mm~30mm.
7. technology according to claim 1 is characterized in that: the gaseous media that charges into is ammonia or methane or argon gas.
CNB2007100483863A 2007-01-25 2007-01-25 Magnetron sputtering-LASER HEATING CEM depositing process and equipment Expired - Fee Related CN100537835C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007100483863A CN100537835C (en) 2007-01-25 2007-01-25 Magnetron sputtering-LASER HEATING CEM depositing process and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007100483863A CN100537835C (en) 2007-01-25 2007-01-25 Magnetron sputtering-LASER HEATING CEM depositing process and equipment

Publications (2)

Publication Number Publication Date
CN101195905A CN101195905A (en) 2008-06-11
CN100537835C true CN100537835C (en) 2009-09-09

Family

ID=39546530

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007100483863A Expired - Fee Related CN100537835C (en) 2007-01-25 2007-01-25 Magnetron sputtering-LASER HEATING CEM depositing process and equipment

Country Status (1)

Country Link
CN (1) CN100537835C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104674216B (en) * 2015-02-13 2017-07-18 深圳市华宇发真空离子技术有限公司 One kind is multi-functional to ooze stove and plating plated film integral method
CN104651793A (en) * 2015-03-19 2015-05-27 南通大学 Preparation device and method for metal film on surface of polycrystalline silicon

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Combined magnetron sputtering and pulsed laser depositionof carbides and diamond-like carbon films. A.A.Voevodin,etal.Appl.Phys.Lett,Vol.69 No.2. 1996
Combined magnetron sputtering and pulsed laser depositionof carbides and diamond-like carbon films. A.A.Voevodin,etal.Appl.Phys.Lett,Vol.69 No.2. 1996 *

Also Published As

Publication number Publication date
CN101195905A (en) 2008-06-11

Similar Documents

Publication Publication Date Title
Ozur et al. Production and application of low-energy, high-current electron beams
US5473165A (en) Method and apparatus for altering material
US4764394A (en) Method and apparatus for plasma source ion implantation
RU97108626A (en) METHOD OF FORMING A CARBON DIAMOND-LIKE COATING IN A VACUUM
JPH0633451B2 (en) Surface treatment method of work piece
CN102492924A (en) Autologous ion bombardment assisted electron beam evaporation device, and method for coating film by using same
US20050061251A1 (en) Apparatus and method for metal plasma immersion ion implantation and metal plasma immersion ion deposition
US3772174A (en) Deposition of alloy films
CN111636082A (en) Method for electrochemically preparing accident fault-tolerant Cr coating of nuclear fuel cladding element
CN100537835C (en) Magnetron sputtering-LASER HEATING CEM depositing process and equipment
CN109576668A (en) A kind of efficient magnetron sputtering plating dedicated unit of the long tubing of multistation
CN1030777C (en) Method and apparatus for ion implantation of metal plasma source
KR100206525B1 (en) Process and device for coating substrates
Davis et al. Ion beam and plasma technology development for surface modification at Los Alamos National Laboratory
KR101055396B1 (en) Solid element plasma ion implantation method and apparatus
CN1057073A (en) Arc-added glow ion implantation technique and equipment
CN1174114C (en) Bicathode-high frequency glow ion diffusion coating equipment and its process
Anders Deposition of niobium and other superconducting materials with high power impulse magnetron sputtering: concept and first results
EP0867036B1 (en) Method and device for pre-treatment of substrates
US6490993B2 (en) Rotating device for plasma immersion supported treatment of substrates
CN110144560B (en) Composite surface modification method and device combining pulse magnetron sputtering and ion implantation
JPS6196721A (en) Film forming method
WO2012150877A2 (en) Method for modifying the surface properties of materials and articles
DE4425626A1 (en) Method and appts. for plasma coating components with metal and polymer layers
CN88100549A (en) Cathode arc source ion implantation technique and equipment

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090909

Termination date: 20100225