CN100521230C - 应变沟道鳍片场效应晶体管 - Google Patents

应变沟道鳍片场效应晶体管 Download PDF

Info

Publication number
CN100521230C
CN100521230C CNB200480002593XA CN200480002593A CN100521230C CN 100521230 C CN100521230 C CN 100521230C CN B200480002593X A CNB200480002593X A CN B200480002593XA CN 200480002593 A CN200480002593 A CN 200480002593A CN 100521230 C CN100521230 C CN 100521230C
Authority
CN
China
Prior art keywords
crystalline material
fin
lattice constant
ground floor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB200480002593XA
Other languages
English (en)
Other versions
CN1742375A (zh
Inventor
S·达克什纳摩西
J·X·安
Z·克瑞沃卡皮奇
汪海宏
俞斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innovation Core Making Co ltd
Original Assignee
Advanced Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Devices Inc filed Critical Advanced Micro Devices Inc
Publication of CN1742375A publication Critical patent/CN1742375A/zh
Application granted granted Critical
Publication of CN100521230C publication Critical patent/CN100521230C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/78654Monocrystalline silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
    • H01L29/78687Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys with a multilayer structure or superlattice structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种半导体结构,包括鳍片(205)和形成于该鳍片上的层(305)。该鳍片(205)包括具有矩形横剖面和许多表面的第一结晶材料。该层(305)形成于该等表面上并包括第二结晶材料。该第一结晶材料较的该第二结晶材料具有不同的晶格常数,以令该层(305)内产生张力应变。

Description

应变沟道鳍片场效应晶体管
技术领域
本发明大体上关于晶体管,而且尤其关于鳍片场效晶体管(finfieldeffect transistor,FinFET)。
背景技术
缩小装置尺寸已经是驱使改进集成电路性能和减少集成电路成本的主要因素。由于相关于现有的栅极氧化物厚度和源极/漏极(S/D)接面深度的限制,要缩小现有的块状(bulk)金属氧化物半导体场效晶体管(MOSFET)装置尺寸低于0.1微米(μm)的制造过程代即使不是不可能,那也是很困难的。因此,需要有新的装置结构和新的材料以改进FET的性能。
双栅极MOSFET表现为可选择用来成功地替代现用平面MOSFET的新装置。于双栅极MOSFET中,使用双栅极以控制沟道系有效地抑制了短沟道效应。FinFET为最新的双栅极结构并且包括形成于垂直鳍片中的沟道。FinFET于布线和制造上相似于现用的平面MOSFET。FinFET相较于其它的双栅极结构,也提供了沟道长度的范围、CMOS兼容性和大封装密度。
发明内容
根据本发明,提供一种使用垂直形成的自行对准于鳍片沟道的应变沟道层(strained channel layer)的FinFET晶体管。应变沟道层可包括结晶体材料,该结晶体材料为晶格常数不匹配FinFET的鳍片的结晶体材料者。晶格常数不匹配(lattice constant mismatch)使得应变沟道层内产生张力应变(tensile strain),该张力应变增加载流子(carrier)的迁移率。增加载流子迁移率会转而增加FinFET晶体管的驱动电流,因此而改进了FinFET的性能。
于下列的说明中将部分地提出本发明的额外的优点和其它的特征,而提出说明的部分,对于熟悉此项技术的一般技术人员而言于检视下列的说明后,对本发明将变得很清楚,或者他们可从实作本发明中而习得本发明。如详细指出于所附权利要求书中,可实现和获得本发明的优点和特征。
依照本发明,藉由包含有鳍片的半导体结构,可部分地达成上述和其它的优点。该鳍片包括第一结晶体材料和多个表面。该结构进一步包括形成于该多个表面的至少一部分的层,该层包括第二结晶体材料。该第一结晶体材料较的该第二结晶体材料具有不同的晶格常数而引起该层内的张力应变。
依照本发明的另一态样,提供一种晶体管。该晶体管包括鳍片,该鳍片尚包括第一结晶体材料以及第一和第二端部。该第一结晶体材料具有第一晶格常数。该晶体管尚包括形成邻近于该鳍片的第一和第二端部的源极和漏极区域。该晶体管也包括形成于该鳍片的至少一部分的第二结晶体材料的第一层。该第二结晶体材料具有第二晶格常数,其中该第一晶格常数要大于该第二晶格常数。该晶体管额外地包括形成于该第一层的至少一部分的电介质层,和形成于该电介质层的至少一部分的栅极电极。
依照本发明的又一态样,提供一种形成半导体装置的方法。该方法包括形成鳍片,该鳍片包括第一结晶体材料和多个表面。该方法进一步包括于该多个表面的至少一部分上形成第一层。该第一层包括第二结晶体材料,其中该第一结晶体材料的晶格常数与第二结晶体材料不匹配,以于该第一层内产生张力应变。
由下列的详细说明,本发明的其它的优点和特征,对于熟悉此项技术的一般技术人员而言,将变得很容易了解。所示和说明的实施例,提供考量用来施行本发明的最佳模式的说明。本发明于各种不同的态样可作修饰,而全然不会偏离本发明的范围。因此,各附图将作为说明的性质,而不是要用来限制本发明。
附图说明
可参考下列所附附图,其中于各图中具有相同组件符号指示的各组件系表示相同的组件。
图1显示根据本发明可用来形成FinFET的鳍片的基板的范例层;
图2A显示根据本发明的范例鳍片;
图2B显示根据本发明的图2A的范例鳍片的横剖面图;
图2C和图2D显示根据本发明的形成邻接于第2A和图2B的鳍片的范例源极和漏极区域;
图3A显示根据本发明的形成于鳍片上的应变层的横剖面图;
图3B显示根据本发明的形成于鳍片和源极和漏极区域上的图3A的应变层的上视图;
图4A显示根据本发明的形成于鳍片上的栅极电介质和栅极电极的横剖面图;
图4B显示根据本发明的形成于鳍片上的图4A的栅极电介质和栅极电极的上视图;
图5显示根据本发明另一实施例的于第2A和图2B的鳍片下方的应变绝缘体的示意图;以及
图6显示根据本发明另一实施例的镶嵌源极/漏极再生长。
具体实施方式
本发明的下列详细说明将参照所附各附图。于不同附图中相同的组件符号可视为相同或相似的组件。而且,下列的详细说明并不限制本发明。反之,本发明的范围系由所附权利要求书所界定。
根据本发明,提供了一种增加沟道迁移率的FinFET。根据本发明,垂直形成的应变沟道层系自行对准于FinFET的鳍片沟道。应变沟道层可包括与FinFET的鳍片的结晶体材料晶格不匹配的结晶体材料,而使得张力应变于应变沟道层内产生。
所引起的张力应变增加应变沟道层的载流子迁移率,因此,增加FinFET的驱动电流。
图1显示依照本发明的实施范例所形成的基板100的横剖面图。根据本发明,基板100可以是绝缘层上覆硅(silicon on insulator,SOI)结构,该结构例如包括形成于埋藏氧化物层110上的鳍片沟道层105。埋藏氧化物层110可形成于硅层上(图中未显示)。鳍片沟道层105的厚度例如可以是从大约500埃( )至大约2000埃的厚度,且埋藏氧化物层110的厚度例如可以是从大约1000埃至大约3000埃的厚度。
鳍片沟道层105可包括具有晶格常数大于选用于应变沟道层的结晶体材料的晶格常数的结晶体材料(相关于下列第3A和图3B的说明)。举例而言,若选择硅用于应变沟道层,则鳍片沟道层105可包括具有晶格常数大于硅的晶格常数的结晶体材料。例如,鳍片沟道层105可包括SixGe(1-x),而x约等于0.7。可适当地选择使用其它的x值。熟悉此项技术者将了解到,可以使用除了SixGe(1-x)以外的其它的结晶体材料,而使得材料的晶格常数要大于选择用于应变沟道层的结晶体材料的晶格常数。于一些实施例中,基板100可藉由晶圆结合磊晶SixGe(1-x)至氧化物/硅基板晶圆而形成。然而,熟悉此项技术者将了解到,可以使用其它现用的技术来形成基板100。
如第2A和图2B中所示,于形成基板100之后,可由鳍片沟道层105形成垂直鳍片205。例如,可形成鳍片205具有10纳米(nm)至15纳米范围的宽度(w)。可使用任何现用的技术,包括但不限于现用的光学微影术和蚀刻制造过程,而由鳍片沟道层105形成鳍片205。
接着形成鳍片205后,可形成源极210和漏极215邻接于个别的鳍片205的端部,如图2C和图2D中所示。例如,可藉由沉积结晶体材料层于鳍片205上而形成源极210和漏极215区域。例如,可使用现用的光学微影术和蚀刻制造过程,而由结晶体材料层形成源极210和漏极215区域。然而,熟悉此项技术者将了解到,可使用任何现用的其它技术来形成源极2i0和漏极215区域。源极210和漏极215区域可包括譬如像是SixGe(1-x),x约等于0.7的结晶体材料。
于形成源极210和漏极215区域后,可在鳍片205、源极210和漏极215上形成应变层305,如第3A和图3B中所示。可使用任何适当的现用制造过程而于鳍片205、源极210和漏极215上形成应变层305。于一些实施范例中,例如,可使用选择的磊晶沉积制造过程而于鳍片205、源极210和漏极215上形成应变层305。应变层305可包括结晶体材料,该结晶体材料的晶格常数要小于用于鳍片205的结晶体材料的晶格常数。以晶格不匹配于鳍片205和应变层305之间,则会在应变层305上产生张力应变。例如,应变层305可形成具有厚度t大约为鳍片205的宽度w的1/2至1/3。例如,应变层305的厚度t可以是5纳米(nm)。应变层305可包括硅,但是不限于硅。熟悉此项技术者将了解到,可替代使用其它的具有晶格常数小于用于形成鳍片205的结晶体材料者的结晶体材料。
于形成应变层305后,可于鳍片205上未由源极210和漏极215所覆盖的部分形成栅极电介质405和栅极电极410,如第4A和图4B中所示。栅极电介质405可包括薄层的电介质材料,譬如SiO、SiO2、SiN、SiON、HFO2、ZrO2、Al2O3、HFSiO(x)、ZnS、MgF2、或其它的电介质材料。栅极电极410可形成于栅极电介质405上,并包括例如多晶硅层。可使用任何现用的制造过程,譬如例如现用的沉积和图案化制造过程,而将栅极电介质405和栅极电极410形成于鳍片205上。形成栅极电介质405和栅极电极410于鳍片205上,因而产生FET侧壁垂直沟道,该沟道包括于鳍片205的二个垂直表面的薄应变层305。应变层305透过由应变层305与鳍片205间的晶格不匹配所引起的于应变层305中的张力应变,而提供改良的载流子迁移率。此载流子迁移率的增强能增加使用第4A和图4B中所示半导体结构所建立的FinFET晶体管的驱动电流。
范例的应变绝缘体
图5显示范例的应变绝缘体505,根据本发明,应变绝缘体505可形成于FinFET的鳍片下,譬如第2A和图2B中所示的鳍片205的下方。鳍片205可形成于应变绝缘体505的绝缘材料上,而使得鳍片205和应变绝缘体505的结晶体材料为晶格不匹配。鳍片205和应变绝缘体505间的晶格不匹配产生鳍片205中的张力应变,该鳍片205因而改良FinFET的载流子迁移率。熟悉此项技术者将了解到,可以使用任何适当的具有晶格常数不匹配鳍片205的结晶体材料的绝缘材料作为应变绝缘体505。
范例的源极/漏极再生长制造过程
图6显示根据本发明另一实施例的范例的镶嵌源极/漏极再生长。在基板上形成作用区600与鳍片605之后,可沉积四乙基正硅酸盐(TEOS)于鳍片605和作用区600上,然后予以研磨。然后可使用屏蔽(屏蔽1)610以打开栅极区域615。可削薄鳍片605,并且可藉由沉积和研磨多晶硅于栅极区域615而形成栅极620。可使用第二屏蔽(屏蔽2)625以打开源极和漏极区域630。可蚀刻于经打开的源极和漏极区域630内的作用区600的氮化物层,以曝露源极和漏极区域630。由该曝露的区域,可选择地再生长硅以产生源极635和漏极640。
于前述的说明中,为了提供对本发明的完全了解,而提出了许多特定的详细说明,譬如特定的材料、结构、化学物、制造过程、等等。然而,可不须凭借此处所特别提出的详细说明而施行本发明。于其它的例子中,为了不致模糊了本发明的目标,已知的制造过程结构未予详细说明。在施行本发明中,可使用现有的光学微影术和蚀刻技术,而因此于此处不再详细提出此等技术的细部说明。
于此说明书中仅显示和说明了本发明的较佳实施例和其各种变化的少数例子。应了解到本发明能够使用于各种其它的组合和环境中,并在此处所表现的发明概念范围内能够作修改。

Claims (10)

1.一种半导体装置,包括:
鳍片(205),包括第一结晶体材料和多个表面,其中该鳍片(205)具有宽度从10纳米至15纳米,且其中该第一结晶体材料包括硅锗;以及
第一层(305),形成于该多个表面的至少一部分上,该第一层(305)包括第二结晶体材料,其中该第二结晶体材料包含硅,且其中该第一结晶体材料具有与该第二结晶体材料不同的晶格常数,以于该第一层内产生张力应变。
2.如权利要求1所述的半导体装置,其中该鳍片(205)具有矩形的横剖面,且其中该第一结晶体材料包括晶格常数大于该第二结晶体材料的晶格常数的结晶体材料。
3.如权利要求1所述的半导体装置,其中该第一结晶体材料包括具有晶格常数大于硅的结晶体材料。
4.如权利要求3所述的半导体装置,其中该第一结晶体材料包括SixGe(1-x)形式的硅锗,其中x约等于0.7。
5.如权利要求1所述的半导体装置,还包括:
第二层(405),形成于该第一层(305)的至少一部分上,该第二层(405)包括电介质;以及
栅极电极(410),形成于该第二层(405)的至少一部分上,该栅极电极(410)包括多晶硅。
6.一种晶体管,包括:
鳍片(205),包括具有第一晶格常数的第一结晶体材料,该鳍片(205)还包括第一和第二端部及宽度,其中该第一结晶体材料包括SixGe(1-x),而其中x约等于0.7;
源极(210)和漏极(215)区域,形成邻近于该鳍片(205)的该第一和第二端部,其中该鳍片(205)包括载流子用于从该源极(210)至漏极(215)流动的沟道;
形成于该鳍片(205)的至少一部分的第二结晶体材料的第一层(305),该第二结晶体材料具有第二晶格常数,其中该第一晶格常数大于该第二晶格常数,该第一层具有为该鳍部宽度的1/2至1/3的厚度t,且其中该第二结晶体材料包括硅;
形成于该第一层(305)的至少一部分上的电介质层(405);以及
形成于该电介质层(405)的至少一部分上的栅极电极(410),其中该栅极电极(410)包括第三结晶体材料且其中该第三结晶体材料包括多晶硅,
其中该第一晶格常数要大于该第二晶格常数,以于该第一层内产生张力应变,且其中该张力应变增加该第一层中的载流子迁移率。
7.一种形成半导体装置的方法,包括:
形成鳍片(205),该鳍片(205)包括第一结晶体材料和多个表面,及宽度,其中该第一结晶体材料包括硅锗;以及
于该多个表面的至少一部分上形成第一层(305),该第一层(305)包括第二结晶体材料,其中该第二结晶体材料包含硅,且其中该第一结晶体材料的晶格常数不匹配于该第二结晶体材料的晶格常数,以于该第一层内产生张力应变,且其中该第一层具有厚度为该鳍部宽度的1/2至1/3。
8.如权利要求7所述的方法,还包括:
选择该第一结晶体材料而使得该第一结晶体材料的晶格常数大于该第二结晶体材料的晶格常数。
9.如权利要求7所述的方法,还包括:
选择该第一结晶体材料而使得该第一结晶体材料具有大于硅的晶格常数。
10.如权利要求7所述的方法,其中该第一结晶体材料包括SixGe(1-x)形式的硅锗且x约等于0.7,还包括:
于该第一层(305)上形成第二层(405),该第二层(405)包括电介质;以及
于该第二层(405)上形成栅极电极(410),该栅极电极(410)包括多晶硅。
CNB200480002593XA 2003-01-23 2004-01-15 应变沟道鳍片场效应晶体管 Expired - Fee Related CN100521230C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/349,042 2003-01-23
US10/349,042 US6803631B2 (en) 2003-01-23 2003-01-23 Strained channel finfet

Publications (2)

Publication Number Publication Date
CN1742375A CN1742375A (zh) 2006-03-01
CN100521230C true CN100521230C (zh) 2009-07-29

Family

ID=32735412

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200480002593XA Expired - Fee Related CN100521230C (zh) 2003-01-23 2004-01-15 应变沟道鳍片场效应晶体管

Country Status (7)

Country Link
US (2) US6803631B2 (zh)
EP (1) EP1593161B1 (zh)
JP (1) JP2006516821A (zh)
KR (1) KR20050096155A (zh)
CN (1) CN100521230C (zh)
TW (1) TWI326489B (zh)
WO (1) WO2004068585A1 (zh)

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635909B2 (en) * 2002-03-19 2003-10-21 International Business Machines Corporation Strained fin FETs structure and method
US7358121B2 (en) 2002-08-23 2008-04-15 Intel Corporation Tri-gate devices and methods of fabrication
US7091068B1 (en) * 2002-12-06 2006-08-15 Advanced Micro Devices, Inc. Planarizing sacrificial oxide to improve gate critical dimension in semiconductor devices
US7304336B2 (en) * 2003-02-13 2007-12-04 Massachusetts Institute Of Technology FinFET structure and method to make the same
US6870179B2 (en) * 2003-03-31 2005-03-22 Intel Corporation Increasing stress-enhanced drive current in a MOS transistor
TWI231994B (en) * 2003-04-04 2005-05-01 Univ Nat Taiwan Strained Si FinFET
EP1643560A4 (en) * 2003-05-30 2007-04-11 Matsushita Electric Ind Co Ltd SEMICONDUCTOR COMPONENT AND METHOD FOR THE PRODUCTION THEREOF
US7045401B2 (en) * 2003-06-23 2006-05-16 Sharp Laboratories Of America, Inc. Strained silicon finFET device
US6909151B2 (en) * 2003-06-27 2005-06-21 Intel Corporation Nonplanar device with stress incorporation layer and method of fabrication
US7456476B2 (en) * 2003-06-27 2008-11-25 Intel Corporation Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication
US6921982B2 (en) * 2003-07-21 2005-07-26 International Business Machines Corporation FET channel having a strained lattice structure along multiple surfaces
EP1519420A2 (en) * 2003-09-25 2005-03-30 Interuniversitaire Microelectronica Centrum vzw ( IMEC) Multiple gate semiconductor device and method for forming same
US6855989B1 (en) * 2003-10-01 2005-02-15 Advanced Micro Devices, Inc. Damascene finfet gate with selective metal interdiffusion
US6970373B2 (en) * 2003-10-02 2005-11-29 Intel Corporation Method and apparatus for improving stability of a 6T CMOS SRAM cell
US7144818B2 (en) * 2003-12-05 2006-12-05 Advanced Micro Devices, Inc. Semiconductor substrate and processes therefor
US6924178B2 (en) * 2003-12-08 2005-08-02 International Business Machines Corporation Oxide/nitride stacked in FinFET spacer process
US7198995B2 (en) * 2003-12-12 2007-04-03 International Business Machines Corporation Strained finFETs and method of manufacture
US6936516B1 (en) * 2004-01-12 2005-08-30 Advanced Micro Devices, Inc. Replacement gate strained silicon finFET process
US7268058B2 (en) * 2004-01-16 2007-09-11 Intel Corporation Tri-gate transistors and methods to fabricate same
KR100781538B1 (ko) * 2004-02-07 2007-12-03 삼성전자주식회사 성능이 향상된 멀티 게이트 트랜지스터용 액티브 구조의제조 방법, 이에 의해 제조된 액티브 구조 및 멀티 게이트트랜지스터
US7154118B2 (en) 2004-03-31 2006-12-26 Intel Corporation Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
US7005302B2 (en) * 2004-04-07 2006-02-28 Advanced Micro Devices, Inc. Semiconductor on insulator substrate and devices formed therefrom
US7176092B2 (en) * 2004-04-16 2007-02-13 Taiwan Semiconductor Manufacturing Company Gate electrode for a semiconductor fin device
US7084018B1 (en) * 2004-05-05 2006-08-01 Advanced Micro Devices, Inc. Sacrificial oxide for minimizing box undercut in damascene FinFET
US7579280B2 (en) * 2004-06-01 2009-08-25 Intel Corporation Method of patterning a film
US7262104B1 (en) 2004-06-02 2007-08-28 Advanced Micro Devices, Inc. Selective channel implantation for forming semiconductor devices with different threshold voltages
DE102004027691B4 (de) * 2004-06-07 2008-04-30 Infineon Technologies Ag Verfahren zum Herstellen eines Steges aus einem Halbleitermaterial
US7042009B2 (en) 2004-06-30 2006-05-09 Intel Corporation High mobility tri-gate devices and methods of fabrication
US7348284B2 (en) 2004-08-10 2008-03-25 Intel Corporation Non-planar pMOS structure with a strained channel region and an integrated strained CMOS flow
DE102005045078B4 (de) * 2004-09-25 2009-01-22 Samsung Electronics Co., Ltd., Suwon Feldeffekttransistor mit einer verspannten Kanalschicht an Seitenwänden einer Struktur an einem Halbleitersubstrat
KR100674914B1 (ko) * 2004-09-25 2007-01-26 삼성전자주식회사 변형된 채널층을 갖는 모스 트랜지스터 및 그 제조방법
US7332439B2 (en) 2004-09-29 2008-02-19 Intel Corporation Metal gate transistors with epitaxial source and drain regions
US7422946B2 (en) 2004-09-29 2008-09-09 Intel Corporation Independently accessed double-gate and tri-gate transistors in same process flow
JP4064955B2 (ja) * 2004-09-30 2008-03-19 株式会社東芝 半導体装置及びその製造方法
US7361958B2 (en) 2004-09-30 2008-04-22 Intel Corporation Nonplanar transistors with metal gate electrodes
US20060086977A1 (en) 2004-10-25 2006-04-27 Uday Shah Nonplanar device with thinned lower body portion and method of fabrication
JP2006135067A (ja) * 2004-11-05 2006-05-25 Toshiba Corp 半導体装置およびその製造方法
WO2006069340A2 (en) * 2004-12-21 2006-06-29 Carnegie Mellon University Lithography and associated methods, devices, and systems
US7193279B2 (en) * 2005-01-18 2007-03-20 Intel Corporation Non-planar MOS structure with a strained channel region
US7518196B2 (en) 2005-02-23 2009-04-14 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
US20060202266A1 (en) 2005-03-14 2006-09-14 Marko Radosavljevic Field effect transistor with metal source/drain regions
US7858481B2 (en) 2005-06-15 2010-12-28 Intel Corporation Method for fabricating transistor with thinned channel
US7547637B2 (en) 2005-06-21 2009-06-16 Intel Corporation Methods for patterning a semiconductor film
US7279375B2 (en) 2005-06-30 2007-10-09 Intel Corporation Block contact architectures for nanoscale channel transistors
US7402875B2 (en) 2005-08-17 2008-07-22 Intel Corporation Lateral undercut of metal gate in SOI device
US7400031B2 (en) * 2005-09-19 2008-07-15 International Business Machines Corporation Asymmetrically stressed CMOS FinFET
US20070090416A1 (en) 2005-09-28 2007-04-26 Doyle Brian S CMOS devices with a single work function gate electrode and method of fabrication
US7479421B2 (en) 2005-09-28 2009-01-20 Intel Corporation Process for integrating planar and non-planar CMOS transistors on a bulk substrate and article made thereby
US7309626B2 (en) * 2005-11-15 2007-12-18 International Business Machines Corporation Quasi self-aligned source/drain FinFET process
US7485503B2 (en) 2005-11-30 2009-02-03 Intel Corporation Dielectric interface for group III-V semiconductor device
US7402856B2 (en) * 2005-12-09 2008-07-22 Intel Corporation Non-planar microelectronic device having isolation element to mitigate fringe effects and method to fabricate same
DE102005059231B4 (de) * 2005-12-12 2011-01-13 Infineon Technologies Ag Verfahren zum Herstellen eines Verbindungshalbleiter-Feldeffekttransistors mit einer Fin-Struktur und Verbindungshalbleiter-Feldeffekttransistor mit einer Fin-Struktur
US7439588B2 (en) * 2005-12-13 2008-10-21 Intel Corporation Tri-gate integration with embedded floating body memory cell using a high-K dual metal gate
US7512017B2 (en) * 2005-12-21 2009-03-31 Intel Corporation Integration of planar and tri-gate devices on the same substrate
US7396711B2 (en) 2005-12-27 2008-07-08 Intel Corporation Method of fabricating a multi-cornered film
US7525160B2 (en) 2005-12-27 2009-04-28 Intel Corporation Multigate device with recessed strain regions
US20070148926A1 (en) * 2005-12-28 2007-06-28 Intel Corporation Dual halo implant for improving short channel effect in three-dimensional tri-gate transistors
US20070235763A1 (en) * 2006-03-29 2007-10-11 Doyle Brian S Substrate band gap engineered multi-gate pMOS devices
US7425500B2 (en) 2006-03-31 2008-09-16 Intel Corporation Uniform silicide metal on epitaxially grown source and drain regions of three-dimensional transistors
US7449373B2 (en) 2006-03-31 2008-11-11 Intel Corporation Method of ion implanting for tri-gate devices
US7407847B2 (en) * 2006-03-31 2008-08-05 Intel Corporation Stacked multi-gate transistor design and method of fabrication
US7442590B2 (en) * 2006-04-27 2008-10-28 Freescale Semiconductor, Inc Method for forming a semiconductor device having a fin and structure thereof
JP2007299951A (ja) * 2006-04-28 2007-11-15 Toshiba Corp 半導体装置およびその製造方法
US20090321830A1 (en) * 2006-05-15 2009-12-31 Carnegie Mellon University Integrated circuit device, system, and method of fabrication
US8143646B2 (en) 2006-08-02 2012-03-27 Intel Corporation Stacking fault and twin blocking barrier for integrating III-V on Si
US7999251B2 (en) * 2006-09-11 2011-08-16 International Business Machines Corporation Nanowire MOSFET with doped epitaxial contacts for source and drain
US7435683B2 (en) * 2006-09-15 2008-10-14 Intel Corporation Apparatus and method for selectively recessing spacers on multi-gate devices
US7700470B2 (en) 2006-09-22 2010-04-20 Intel Corporation Selective anisotropic wet etching of workfunction metal for semiconductor devices
US7538391B2 (en) * 2007-01-09 2009-05-26 International Business Machines Corporation Curved FINFETs
US20080173942A1 (en) * 2007-01-22 2008-07-24 International Business Machines Corporation STRUCTURE AND METHOD OF MANUFACTURING A STRAINED FinFET WITH STRESSED SILICIDE
US7709893B2 (en) * 2007-01-31 2010-05-04 Infineon Technologies Ag Circuit layout for different performance and method
CN101542743B (zh) * 2007-07-27 2012-09-05 松下电器产业株式会社 半导体装置的制造方法
US7910994B2 (en) 2007-10-15 2011-03-22 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for source/drain contact processing
US8362566B2 (en) 2008-06-23 2013-01-29 Intel Corporation Stress in trigate devices using complimentary gate fill materials
US8053838B2 (en) * 2008-06-26 2011-11-08 International Business Machines Corporation Structures, fabrication methods, design structures for strained fin field effect transistors (FinFets)
US20100155801A1 (en) * 2008-12-22 2010-06-24 Doyle Brian S Integrated circuit, 1T-1C embedded memory cell containing same, and method of manufacturing 1T-1C memory cell for embedded memory application
US7999298B2 (en) * 2008-12-30 2011-08-16 Intel Corporation Embedded memory cell and method of manufacturing same
US9768305B2 (en) * 2009-05-29 2017-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Gradient ternary or quaternary multiple-gate transistor
US20100308409A1 (en) * 2009-06-08 2010-12-09 Globalfoundries Inc. Finfet structures with fins having stress-inducing caps and methods for fabricating the same
US7977174B2 (en) * 2009-06-08 2011-07-12 Globalfoundries Inc. FinFET structures with stress-inducing source/drain-forming spacers and methods for fabricating the same
US8404592B2 (en) * 2009-07-27 2013-03-26 GlobalFoundries, Inc. Methods for fabricating FinFET semiconductor devices using L-shaped spacers
US8629478B2 (en) * 2009-07-31 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Fin structure for high mobility multiple-gate transistor
CN102315269B (zh) * 2010-07-01 2013-12-25 中国科学院微电子研究所 一种半导体器件及其形成方法
CN103137671B (zh) * 2011-12-02 2015-06-24 中芯国际集成电路制造(上海)有限公司 多栅极场效应晶体管及其制作方法
CN103187446B (zh) * 2011-12-31 2016-02-03 中芯国际集成电路制造(上海)有限公司 多栅极场效应晶体管及其制造方法
US8729634B2 (en) 2012-06-15 2014-05-20 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET with high mobility and strain channel
EP2741337B1 (en) 2012-12-07 2018-04-11 IMEC vzw Semiconductor heterostructure field effect transistor and method for making thereof
US8872225B2 (en) * 2012-12-20 2014-10-28 Intel Corporation Defect transferred and lattice mismatched epitaxial film
US9029835B2 (en) 2012-12-20 2015-05-12 Intel Corporation Epitaxial film on nanoscale structure
US9391181B2 (en) 2012-12-21 2016-07-12 Intel Corporation Lattice mismatched hetero-epitaxial film
US8823060B1 (en) * 2013-02-20 2014-09-02 Taiwan Semiconductor Manufacturing Co., Ltd. Method for inducing strain in FinFET channels
US9214555B2 (en) 2013-03-12 2015-12-15 Taiwan Semiconductor Manufacturing Co., Ltd. Barrier layer for FinFET channels
US10403626B2 (en) 2014-03-24 2019-09-03 Intel Corporation Fin sculpting and cladding during replacement gate process for transistor channel applications
US9589811B2 (en) * 2015-06-24 2017-03-07 Varian Semiconductor Equipment Associates, Inc. FinFET spacer etch with no fin recess and no gate-spacer pull-down
US9755073B1 (en) 2016-05-11 2017-09-05 International Business Machines Corporation Fabrication of vertical field effect transistor structure with strained channels

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7163864B1 (en) * 2000-10-18 2007-01-16 International Business Machines Corporation Method of fabricating semiconductor side wall fin
US6300182B1 (en) * 2000-12-11 2001-10-09 Advanced Micro Devices, Inc. Field effect transistor having dual gates with asymmetrical doping for reduced threshold voltage
US6475869B1 (en) * 2001-02-26 2002-11-05 Advanced Micro Devices, Inc. Method of forming a double gate transistor having an epitaxial silicon/germanium channel region
JP3782021B2 (ja) * 2002-02-22 2006-06-07 株式会社東芝 半導体装置、半導体装置の製造方法、半導体基板の製造方法
US6635909B2 (en) * 2002-03-19 2003-10-21 International Business Machines Corporation Strained fin FETs structure and method
US6800910B2 (en) * 2002-09-30 2004-10-05 Advanced Micro Devices, Inc. FinFET device incorporating strained silicon in the channel region
US6611029B1 (en) * 2002-11-08 2003-08-26 Advanced Micro Devices, Inc. Double gate semiconductor device having separate gates

Also Published As

Publication number Publication date
KR20050096155A (ko) 2005-10-05
TWI326489B (en) 2010-06-21
JP2006516821A (ja) 2006-07-06
US6897527B2 (en) 2005-05-24
US20040145019A1 (en) 2004-07-29
US6803631B2 (en) 2004-10-12
WO2004068585A1 (en) 2004-08-12
TW200423405A (en) 2004-11-01
CN1742375A (zh) 2006-03-01
US20040195627A1 (en) 2004-10-07
EP1593161A1 (en) 2005-11-09
EP1593161B1 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
CN100521230C (zh) 应变沟道鳍片场效应晶体管
US7304336B2 (en) FinFET structure and method to make the same
US6924178B2 (en) Oxide/nitride stacked in FinFET spacer process
CN100533758C (zh) 集成有鳍式fet的平面型衬底器件及其制造方法
US6955969B2 (en) Method of growing as a channel region to reduce source/drain junction capacitance
US7679134B1 (en) FinFET device with multiple fin structures
KR101070845B1 (ko) FinFET 디바이스 구조의 형성 방법
EP1723668B1 (en) Method of fabricating a strained finfet channel
US6645797B1 (en) Method for forming fins in a FinFET device using sacrificial carbon layer
US6475890B1 (en) Fabrication of a field effect transistor with an upside down T-shaped semiconductor pillar in SOI technology
US6815738B2 (en) Multiple gate MOSFET structure with strained Si Fin body
CN102054705B (zh) 形成集成电路结构的方法
US6762483B1 (en) Narrow fin FinFET
US7084018B1 (en) Sacrificial oxide for minimizing box undercut in damascene FinFET
US7785944B2 (en) Method of making double-gated self-aligned finFET having gates of different lengths
US20220320318A1 (en) Methods for gaa i/o formation by selective epi regrowth
US20050124099A1 (en) Selfaligned source/drain finfet process flow
US8815658B2 (en) Hetero-structured inverted-T field effect transistor
US6936516B1 (en) Replacement gate strained silicon finFET process
US20160247883A1 (en) Epitaxial silicon germanium fin formation using sacrificial silicon fin templates
US6423599B1 (en) Method for fabricating a field effect transistor having dual gates in SOI (semiconductor on insulator) technology
US6429056B1 (en) Dynamic threshold voltage devices with low gate to substrate resistance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20181120

Address after: New Hampshire

Patentee after: Innovation Core Making Co.,Ltd.

Address before: California, USA

Patentee before: ADVANCED MICRO DEVICES, Inc.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090729

CF01 Termination of patent right due to non-payment of annual fee