CN100510052C - 用于制备d-氨基酸的突变株 - Google Patents

用于制备d-氨基酸的突变株 Download PDF

Info

Publication number
CN100510052C
CN100510052C CNB2003801024249A CN200380102424A CN100510052C CN 100510052 C CN100510052 C CN 100510052C CN B2003801024249 A CNB2003801024249 A CN B2003801024249A CN 200380102424 A CN200380102424 A CN 200380102424A CN 100510052 C CN100510052 C CN 100510052C
Authority
CN
China
Prior art keywords
amino acid
glycolylurea
microorganism
carbamyl
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2003801024249A
Other languages
English (en)
Other versions
CN1708583A (zh
Inventor
奥利弗·迈
斯特凡·布赫霍尔茨
米夏埃尔·施瓦姆
卡尔海因茨·德罗兹
罗伯特·J.·特纳
伊恩·福瑟林海姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Publication of CN1708583A publication Critical patent/CN1708583A/zh
Application granted granted Critical
Publication of CN100510052C publication Critical patent/CN100510052C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0022Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • C12N9/0024D-Amino acid oxidase (1.4.3.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/86Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in cyclic amides, e.g. penicillinase (3.5.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/006Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures
    • C12P41/009Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures by reactions involving hydantoins or carbamoylamino compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及可用于合成D-氨基酸的特异大肠杆菌突变株以及这种方法。所述突变株特征在于缺乏分解D-氨基酸的特定酶。

Description

用于制备D-氨基酸的突变株
本发明涉及制备D-氨基酸的方法。更具体地,这些氨基酸通过用重组微生物经所谓的海因酶(hydantoinase)途径而酶学获得。本发明还涉及以此方式修饰的微生物。
D-氨基酸是在有机合成中经常用作制备药物活性化合物的中间体的化合物。
5-取代的乙内酰脲的酶法水解生成N-氨甲酰基氨基酸及其进一步反应生成相应的富含对映异构体的氨基酸(enantiomerically enrichedamino acids)是有机化学中的标准方法("Enzyme Catalysis in OrganicSynthesis",eds.:Drauz,Waldmann,VCH,lst and 2nd ed.)。此处对映异构体拆分(enantiodifferentiation)可以发生在经海因酶进行的乙内酰脲水解步骤,或者任选地发生在通过对映异构体选择性氨甲酰基水解酶(carbamoylase)进行的N-氨甲酰基氨基酸裂解过程中。由于每种情况下酶均只能转化相应化合物的一种光学对映体,因此已经尝试外消旋化混合物中的另一种光学对映体(原位)以保证易于制备的外消旋化乙内酰脲完全转化成相应的富含对映异构体的氨基酸。此处外消旋化可以发生在乙内酰脲阶段,通过化学(碱、酸、升高温度)或酶学过程进行,或者可以发生在N-氨甲酰基氨基酸阶段,通过例如乙酰氨基酸外消旋酶处理(DE10050124)。后一种变化方法仅在采用对映异构体选择性氨甲酰基水解酶时才成功。下列反应式示出了这一状态。
反应式1:
Figure C200380102424D00041
已经发现使用具有海因酶、氨甲酰基水解酶和外消旋酶活性的重组微生物制备多种D-氨基酸时存在问题。图1示出用经来自成晶节杆菌(Arthrobacter crystallopoietes)DSM 20117的D-氨甲酰基水解酶和D-海因酶转化的大肠杆菌(E.coli)JM109转化羟甲基乙内酰脲和乙基乙内酰脲(参见专利申请DE10114999.9和DE10130169.3)。根据实施例1选择反应条件。
如图1举例所示,在转化多种5-单取代的乙内酰脲时,所形成的D-氨基酸发生了显著分解。导致可以获得的收率降低并使得产物加工变得困难。
技术人员已知多种酶,如D-氨基酸氧化酶[EC 1.4.3.3]、D-氨基酸脱氢酶[EC 1.4.99.1]、D-氨基酸转氨酶[EC 2.6.1.21]、D-氨基酸N-乙酰基转移酶[EC 2.3.1.36]、D-羟氨基酸脱水酶[EC 4.2.1.14]和D-氨基酸外消旋酶[EC 5.1.1.10]会参与D-氨基酸的分解。定向或非定向方式失活这些基因的多种方法也是技术人员已知的(The pKNOCKseries of broad-host-range mobilizable suicide vectors for gene knockoutand targeted DNA insertion into the chromosome of Gram-negativebacteria,Alexeyev,Mikhail F.BioTechniques(1999),26(5),824-828;One-step inactivation of chromosomal genes in Escherichia coli K-12using PCR products,Datsenko,Kirill A.and Wanner,Barry L.PNAS(2000),97(12),6640-6645;D-amino acid dehydrogenase of Escherichiacoli K12:positive selection of mutants defective in enzyme activity andlocalization of the structural gene,Wild,Jadwiga and Klopotowski,T.Mol.Gen.Genet.(1981),181(3),373-378)。
然而不幸的是,当多种酶失活时预期对细胞生长产生的作用不清楚且不可预见。也不能预测何种酶或者是否是多种酶的组合需被失活从而将特定D-氨基酸的分解降低至希望的程度。
因此本发明的目的是提供一种微生物,其能够经氨甲酰基水解酶/海因酶途径产生D-氨基酸,并且能使产生的D-氨基酸收率更高。还可以有利地在经济和生态学方面以工业规模采用这一微生物。特别是在通常经济合适条件下该微生物具备非常好的生长性质,以及足够的遗传和物理稳定性,以及足够快的乙内酰脲转化速率。
本发明目的经权利要求书实现。权利要求1—5涉及以此方式修饰的特定微生物,而权利要求6和7保护一种制备D-氨基酸的方法。
通过提供一种用于从N-氨甲酰基氨基酸或5-单取代的乙内酰脲出发制备D-氨基酸的重组微生物,上述目的得以令人惊奇地但很有利地实现,所述微生物中编码D-氨基酸氧化酶的基因和/或编码D-丝氨酸脱水酶的基因通过诱变而失活。特别令人惊奇的是根据重组方法产生的具有本发明基因谱(gene profile)的微生物事实上是稳定的,并且能产生足够工业规模程度的D-氨基酸。
可以使用的用于重组方案的微生物原则上是技术人员已知用于此目的的所有微生物,如真菌,例如曲霉属(Aspergillus sp.)、链霉菌属(Streptomyces sp.)、多形汉逊氏酵母(Hansenulapolymorpha)、巴斯德毕赤氏酵母(Pichia pastoris)和啤酒糖酵母(Saccharomyces cerevisiae),或原核生物,如大肠杆菌和芽孢杆菌属(Bacillus sp.)。大肠杆菌(Escherichia coli)属微生物可被认为是本发明优选的微生物。下述是特别优选的:大肠杆菌XL1 Blue,NM 522,JM101,JM109,JM105,BL21,W3110,RR1,DH5α,TOP 10-或HB101。以此方式修饰的生物可以通过技术人员熟知的方法产生。这可以倍增和产生足够量的重组酶。此类方法是技术人员熟知的(Sambrook,J.;Fritsch,E.F.and Maniatis,T.(1989),Molecular cloning:alaboratory manual,2nd ed.,Cold Spring Harbor Laboratory Press,NewYork)。
所述核酸序列由此利用已知方法通过质粒或载体克隆进宿主生物,以此方式表达的多肽可以用合适的筛选方法检测。对所形成分子的所有可能的检测反应原则上均适用于所述检测。特别地,原则上适用的检测反应是所有可能的用于检测氨和铵离子的检测反应,如奈斯勒试剂(Nessler reagent)(Vogel,A.,I.,(1989)Vogel′s textbookof quantitative chemical analysis,John Wiley & Sons,Inc.,5th ed.,679-698,New York),靛酚反应,也称为Berthelot′s反应(Wagner,R.,(1969)Neue Aspekte zur Stickstoffanalytik in der Wasserchemie,Vom Wasser,VCH-Verlag,vol.36,263-318,Weinheim),特别是通过谷氨酸脱氢酶进行的酶学测定(Bergmeyer,H.,U.,and Beutler,H.-O.(1985)Ammonia,in:Methods of Enzymatic Analysis,VCH-Verlag,3rd edition,vol.8:454-461,Weinheim)以及用铵敏感电极进行的检测。另外,HPLC方法用于检测氨基酸,如基于邻苯二醛和N-异丁酰半胱氨酸的用于氨基酸的对映异构体分离的衍生方法(Brückner,H,Wittner R.,and Godel H.,(1991),Fully automated high-performance liquid chromatographicseparation of DL-amino acids derivatized with o-Phthaldialdehydetogether with N-isopropyl-cysteine.Application to food samples,Anal.Biochem.144,204-206)。
原则上质粒或载体是技术人员可以为此目的使用的所有可能质粒或载体。这类质粒和载体可以例如参见Studier and colleagues(Studier,W.F.;Rosenberg A.H.;Dunn J.J.;Dubendroff J.W.;(1990),Use of the T7 RNA polymerase to direct expression of cloned genes,Methods Enzymol.185,61-89)或者Novagen,Promega,New EnglandBiolabs,Clontech或Gibco BRL的目录手册。进一步优选的质粒和载体可以参见:Glover,D.M.(1985),DNA cloning:A Practical Approach,vol.I-III,IRL Press Ltd.,Oxford;Rodriguez,R.L.and Denhardt,D.T(eds)(1988),Vectors:a survey ofmolecular cloning vectors and their uses,179-204,Butterworth,Stoneham;Goeddel,D.V.(1990),Systems forheterologous gene expression,Methods Enzymol.185,3-7;Sambrook,J.;Fritsch,E.F.and Maniatis,T.(1989),Molecular cloning:a laboratorymanual,2nd ed.,Cold Spring Harbor Laboratory Press,New York。
在大肠杆菌中特别优选的D-氨甲酰基水解酶的克隆载体是例如pBR322、pACYC184、pUC18或pSC101的衍生物,它们可以携带用于表达控制的组成型和诱导型启动子。特别优选的启动子是lac,tac,trp,trc,T3,T5,T7,rhaBAD,araBAD,λpL和phoA启动子,这些都是技术人员已知的[Strategies for achieving high-level expression of genes inEscherichia coli,Makrides S.C.Microbiol.Rev.60(3),512-538]。这些生物的D-氨基酸氧化酶(dadA)或D-丝氨酸脱水酶(dsdA)的失活用本领域技术人员已知的上述方法进行。对于产生具有D-氨甲酰基水解酶活性的D-丝氨酸脱水酶或D-氨基酸氧化酶缺陷菌株的重组方案,基础分子生物学方法是技术人员已知的(Sambrook,J.;Fritsch,E.F.andManiatis,T.(1989),Molecular cloning:a laboratory manual,2nd ed.,Cold Spring Harbor Laboratory Press,New York)。优选使用的例如来自土壤杆菌属(Agrobacterium sp.)、节杆菌属(Arthrobacter sp.)或芽孢杆菌属(Bacillus sp.)和皮氏罗尔斯顿氏菌(Ralstoniapickettii)的多种D-氨甲酰基水解酶的基因序列也是已知的(尤其来自US 5858759,US 5807710,US 6083752,US 6083752,US 6083752,US6083752,US 6083752)。可以使用相同的方法生产额外含有海因酶和任选乙内酰脲或氨甲酰外消旋酶的生物。本文采用的优选的海因酶是来自栖热菌属(Thermus sp.)、芽孢杆菌属、分枝杆菌属(Mycobacterium sp.)、棒杆菌属(Corynebacterium sp.)、土壤杆菌属、大肠杆菌,伯克霍尔德氏菌属(Burkholderia sp.)、假单胞菌属(Pseudomonas sp.)或节杆菌属的海因酶。可以优选地使用来自假单胞菌属、节杆菌属或土壤杆菌属的乙内酰脲外消旋酶,任选地添加辅助物质,如金属离子、例如Mn2+离子。
因此可以产生成功的大肠杆菌DSM 15181和大肠杆菌DSM 15182突变体。这些突变株与从其衍生的进一步的突变株构成了本发明的另一个主题。
在本发明的方法中,例如,乙内酰脲用在合适溶剂如水中的所述细胞或细胞组分进行转化,溶剂中还可以加入另外的水溶性或水不溶性有机溶剂,pH值在6.0—11之间,优选地在7—10之间,温度在10℃—100℃之间,优选地在30℃—70℃之间,特别优选地在37℃—60℃之间。所述的酶也可以以游离形式使用。酶也可以作为完整客体生物体(guest organism)的一个组分应用,或者与已经纯化至期望程度的宿主生物的分解细胞量组合应用。
还可以使用絮凝、交联或固定化形式的重组细胞,例如使用琼脂、琼脂糖、角叉藻聚糖、藻酸盐、果胶、脱乙酰壳多糖、聚丙烯酰胺或其它合成载体(Chemical aspects of immobilized systems inbiotechnologies.Navratil,Marian;Sturdik,Ernest.Chemicke Listy(2000),94(6),380-388;Industrial applications of immobilizedbiocatalysts and biomaterials.Chibata.Ichiro.Advances in Molecular andCellBiology(1996),15A(Biochemical Technology),15l-160;Immobilization of genetically engineered cells:a new strategy for higherstability.Kumar,P.K.R.;Schuegerl,K.Journal of Biotechnology(1990),14(3-4),255-72)。
因此,用本发明微生物制备D-氨基酸的方法构成了本发明另一个主题。优选制备D-氨基丁酸、D-丝氨酸、D-甲硫氨酸、D-色氨酸和D-苯丙氨酸。
具有D-氨甲酰基水解酶活性和海因酶活性以及dadA失活和/或dsdA失活细胞的生物优选用于这一制备D-氨基酸的方法中。此处应提及的是,L-,D-或DL-氨甲酰基氨基酸和能够经已知海因酶可以转化成相应的氨甲酰基氨基酸的5-单取代的乙内酰脲可以作为离析物("Enzyme Catalysis in Organic Synthesis",eds.:Drauz,Waldmann,VCH,1st and 2nd ed.)。此处所用的dadA-和/或dsdA-缺陷菌株可以共表达氨甲酰基水解酶和海因酶,任选地还共表达乙内酰脲外消旋酶或氨甲酰基氨基酸外消旋酶,并可以以游离或固定化形式采用(见上述)。
正如现在所发现的,多种酶的失活对于降低多种D-氨基酸的分解至足够程度(在>10小时内分解<10%)是必需的(见图2)。对于D-丝氨酸的分解,令人惊奇地发现D-氨基酸氧化酶基因(dadA)的失活不足以有效降低其分解。为了有效降低这一氨基酸的分解,不得不额外失活D-丝氨酸水合酶。与此相反,文献中报道通过失活dadA可使D-丝氨酸分解降低3倍以上[D-Amino acid dehydrogenase ofEscherichia coli K12:positive selection of mutants defective in enzymeactivity and localization of the structural gene.Wild,J.;Klopotowski,T.Mol.Gen.Genet.(1981),18l(3),373-378]。类似地,与其描述的结果相反,令人惊奇地发现D-丝氨酸分解比例如D-甲硫氨酸迅速得多。
与D-丝氨酸相反,芳香和脂族D-氨基酸如D-苯丙氨酸、D-甲硫氨酸或D-氨基丁酸的分解通过失活D-氨基酸氧化酶即足以实现。但是,令人惊奇地,对于D-苯丙氨酸,两个缺失(ΔdsdA & ΔdadA)显示出正作用,而对于D-甲硫氨酸,dsdA的缺失没有附加效果。这些结果总结在图2中(用大肠杆菌BW25113多种突变株进行多种氨基酸的分解。大肠杆菌ET3缺失了D-氨基酸氧化酶(ΔdadA);大肠杆菌ET4额外还缺失了D-丝氨酸脱水酶(ΔdsdA)。反应条件见实施例3)。
本说明书引用的参考文献包括在本文公开中。
微生物DSM15181(ET3)和DSM15182(ET4)由德古萨股份公司于2002年9月4日保藏在德国微生物保藏中心(German Collection ofMicroorganisms and Cell Cultures),保藏中心地址为MascheroderWeg 1b,D-38124 Braunschweig。
实施例
实施例1:经重组大肠杆菌细胞生产D-氨基酸
用pJAVI16(见图3)转化化学感受态大肠杆菌JM109(Promega)。这一质粒携带来自成晶节杆菌DSM20117的D-氨甲酰基水解酶和D-海因酶。D-海因酶和D-氨甲酰基水解酶的序列见序列号l和3(也参见DE10114999.9和DE10130169.3)。
将用pJAVIER16转化的大肠杆菌细胞逐个接种在LBamp平板上(氨苄青霉素浓度:100μg/ml)。用单个菌落接种含1mM ZnCl2的2.5mlLBamp培养基,在37℃和250rpm保温30小时。这一培养物在含1mMZnCl2和2g/l鼠李糖的100ml LBamp培养基中1:50稀释,并在30℃保温18小时。在10,000g离心培养物10分钟,弃去上清,称重生物量。向生物量中加入多种乙内酰脲衍生物,例如100mM DL-羟基甲基乙内酰脲或DL-乙基乙内酰脲,pH 7.5,从而产生40g湿生物量/L的生物量浓度。反应溶液在37℃保温。在不同时间取样并离心,经HPLC定量所形成的氨基酸。
实施例2:产生DsdA-和DadA-缺陷的大肠杆菌菌株
通过Datsenko & Wanner描述的方法(One-step inactivation ofchromosomal genes in Escherichia coli K-12using PCR products,Datsenko,Kirill A.and Wanner,Barry L.PNAS(2000),97(12),6640-6645)在大肠杆菌BW25113(保藏在CGSC,保藏号CGSC7636)中缺失DadA。为此使用下述引物从pKD13(保藏在CGSC,保藏号CGSC7633)中扩增氯霉素抗性:
5′_AACCAGTGCCGCGAATGCCGGGCAAATCTCCCCCGGATATGCTGCACCGTATTCCGGGGATCCGTCGACC_3′:Seq.5
5′_AGGGGTACCGGTAGGCGCGTGGCGCGGATAACCGTCGGCGATTCCGGGGATCCGTCGACC-3′:Seq.6
通过将扩增产物转化进大肠杆菌BW25113(pKD46)(保藏在CGSC中,保藏号CGSC7630)并选择卡那霉素抗性克隆可以分离大肠杆菌ET2。根据Datsenko & Wanner的方法除去氯霉素抗性后,可以分离菌株大肠杆菌ET3。为了缺失大肠杆菌ET3中的dsdA,用下列引物从pKD13中扩增氯霉素抗性:
5′_GCGGGCACATTCCTGCTGTCATTTATCATCTAAGCGCAAAGAGACGTACTGTGTAGGCTGGAGCTGCTTC_3′:Seq.7
5′_GCAGCATCGCTCACCCAGGGAAAGGATTGCGATGCTGCGTTGAAACGTTAATGGGAATTAGCCATGGTCC_3′:Seq.8
用扩增产物转化大肠杆菌ET3(pKD46)并选择卡那霉素抗性克隆可以分离大肠杆菌ET4,其同时携带dadA和dsdA缺失。
实施例3 D-氨基酸分解研究
用大肠杆菌BW25113、大肠杆菌ET3和大肠杆菌ET4的单个菌落分别接种2.5ml LB培养基,在37℃和250rpm保温18小时。这些培养物在100ml LB培养基中1:50稀释并于37℃保温18小时。培养物在10,000g离心10分钟,弃去上清并称重生物量。向生物量中加入不同的pH7.5的100mM D-氨基酸溶液(例如D-甲硫氨酸、D-苯丙氨酸、D-氨基丁酸、D-丝氨酸),从而产生100g湿生物量/L的生物量浓度。这些反应溶液在37℃保温,10小时后离心。经HPLC分析澄清的上清中剩余的氨基酸浓度。从起始浓度和保温10小时后终浓度之商计算所述的分解百分数(%分解)。
序列表
<110>德古萨股份公司
<120>用于制备D-氨基酸的突变株
<130>020453 AM
<140>
<141>
<160>8
<170>PatentIn Ver.2.1
<210>1
<211>948
<212>DNA
<213>Arthrobacter crysta1lopoietes
<220>
<221>CDS
<222>(1)..(948)
<400>1
Figure C200380102424D00131
Figure C200380102424D00141
<210>2
<211>316
<212>PRT
<213>Arthrobacter crystallopoietes
<400>2
Figure C200380102424D00142
Figure C200380102424D00151
<210>3
<211>1404
<212>DNA
<213>Arthrobacter crysta1lopoietes
<220>
<221>CDS
<222>(1)..(1404)
<400>3
Figure C200380102424D00161
Figure C200380102424D00171
Figure C200380102424D00181
<210>4
<211>468
<212>PRT
<213>Arthrobacter crystallopoietes
<400>4
Figure C200380102424D00182
Figure C200380102424D00191
<210>5
<211>70
<212>DNA
<213>Artificial sequence
<220>
<223>Description of the artificial sequence:Primer 1
<400>5
<210>6
<211>60
<212>DNA
<213>Artificial sequence
<220>
<223>Description of the artificial sequence:Primer 2
<400>6
<210>7
<211>70
<212>DNA
<213>Artificial sequence
<220>
<223>Description of the artificial sequence:Primer 3
<400>7
Figure C200380102424D00202
<210>8
<211>70
<212>DNA
<213>Artificial sequence
<220>
<223>Description of the artificial sequence:Primer 4
<400>8

Claims (7)

1.用于从N-氨甲酰基氨基酸或5-单取代的乙内酰脲出发制备D-氨基酸的重组微生物,其中编码D-氨基酸氧化酶的基因和/或编码D-丝氨酸脱水酶的基因通过诱变失活。
2.权利要求1的微生物,其特征在于其是大肠杆菌属的生物。
3.权利要求1或2的微生物,其特征在于其具有来自土壤杆菌属、节杆菌属或芽孢杆菌属的D-氨甲酰基水解酶基因。
4.大肠杆菌(Escherichia coli)DSM 15181。
5.大肠杆菌DSM 15182。
6.用权利要求1—5任一项的微生物制备D-氨基酸的方法。
7.权利要求6的方法,其特征在于制备D-氨基丁酸、D-丝氨酸、D-甲硫氨酸、D-色氨酸或D-苯丙氨酸。
CNB2003801024249A 2002-11-04 2003-10-15 用于制备d-氨基酸的突变株 Expired - Lifetime CN100510052C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10251184.5 2002-11-04
DE10251184A DE10251184A1 (de) 2002-11-04 2002-11-04 Mutanten zur Herstellung von D-Aminosäuren

Publications (2)

Publication Number Publication Date
CN1708583A CN1708583A (zh) 2005-12-14
CN100510052C true CN100510052C (zh) 2009-07-08

Family

ID=32103290

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003801024249A Expired - Lifetime CN100510052C (zh) 2002-11-04 2003-10-15 用于制备d-氨基酸的突变株

Country Status (9)

Country Link
US (2) US20060228787A1 (zh)
EP (1) EP1558727B1 (zh)
JP (1) JP2006504428A (zh)
CN (1) CN100510052C (zh)
AT (1) ATE439430T1 (zh)
AU (1) AU2003283269A1 (zh)
CA (1) CA2511751A1 (zh)
DE (2) DE10251184A1 (zh)
WO (1) WO2004042047A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2521448A1 (en) 2010-01-08 2012-11-14 President and Fellows of Harvard College Methods and coatings for treating biofilms
WO2012151554A1 (en) 2011-05-04 2012-11-08 President And Fellows Of Harvard College Polyamines for treating biofilms
PL2780451T3 (pl) * 2011-11-16 2018-03-30 Evonik Technochemie Gmbh Mutanty hydantoinazy
CN107937377A (zh) * 2017-11-09 2018-04-20 江南大学 一种d‑n‑氨甲酰水解酶及应用
WO2019183344A1 (en) 2018-03-21 2019-09-26 Case Western Reserve University Thermoresponsive compositions and methods for preventing and disrupting biofilms
CN110699396B (zh) * 2019-11-15 2022-03-01 江南大学 一种级联反应制备d-芳香族氨基酸的方法
EP4105335A1 (en) 2021-06-16 2022-12-21 Evonik Operations GmbH Enzymatic method for the production of l-glufosinate p-alkyl esters
WO2023174511A1 (en) 2022-03-14 2023-09-21 Evonik Operations Gmbh Enzymatic method for the production of l-glufosinate p-esters
CN116926139A (zh) * 2022-04-12 2023-10-24 元素驱动(杭州)生物科技有限公司 一种n-乙酰-d-氨基酸、d-氨基酸、d-氨基酸衍生物的制备方法
WO2023232225A1 (en) 2022-05-31 2023-12-07 Evonik Operations Gmbh Enzymatic method for the diastereoselective production of l-glufosinate p-esters

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1277125B1 (it) * 1995-12-21 1997-11-04 Eniricerche Spa Mutanti termostabili della d-n-alfa-carbamilasi
US5728555A (en) * 1996-09-30 1998-03-17 Monsanto Company Preparation of d-amino acids by direct fermentative means
WO1999051722A2 (de) * 1998-04-02 1999-10-14 Degussa-Hüls Aktiengesellschaft Rekombinante l-n-carbamoylase aus arthrobacter aurescens, verfahren zur herstellung von l-aminosäuren mittels dieser
DE10114999A1 (de) * 2001-03-26 2002-10-10 Degussa D-Carbamoylase aus Arthrobacter crystallopoietes DSM 20117

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D SERINE DEHYDRATASE .... MARCEAU M ET AL.JOURNAL OF BIOLOGICAL CHEMISTRY,Vol.263 No.32. 1988
D SERINE DEHYDRATASE .... MARCEAU M ET AL.JOURNAL OF BIOLOGICAL CHEMISTRY,Vol.263 No.32. 1988 *

Also Published As

Publication number Publication date
JP2006504428A (ja) 2006-02-09
DE10251184A1 (de) 2004-05-13
ATE439430T1 (de) 2009-08-15
EP1558727A1 (en) 2005-08-03
US20090203091A1 (en) 2009-08-13
EP1558727B1 (en) 2009-08-12
CA2511751A1 (en) 2004-05-21
AU2003283269A1 (en) 2004-06-07
US9194009B2 (en) 2015-11-24
WO2004042047A1 (en) 2004-05-21
US20060228787A1 (en) 2006-10-12
DE60328813D1 (de) 2009-09-24
CN1708583A (zh) 2005-12-14

Similar Documents

Publication Publication Date Title
US9194009B2 (en) Mutants for the preparation of D-amino acids
Gong et al. Nitrilases in nitrile biocatalysis: recent progress and forthcoming research
Syldatk et al. Production of optically pure d-and l-α-amino acids by bioconversion of d, l-5-monosubstituted hydantoin derivatives
Yamamoto et al. Production of S-(+)-ibuprofen from a nitrile compound by Acinetobacter sp. strain AK226
AU2004295409B2 (en) Strain of Rhodococcus rhodochrous NCIMB 41164 and its use as producer of nitrile hydratase
EP0610517B1 (en) Dna coding for decarbamylase improved in thermostability and use thereof
EP1818411A1 (en) Process for the preparation of optically active chiral amines
US7361490B2 (en) DNA encoding hydantoinase, DNA encoding N-carbamyl-L-amino acid hydrolase, recombinant DNA, transformed cell, method of producing protein and method of producing optically active amino acid
EP1513946B1 (en) Polypeptides having alpha-h-alpha amino acid amide racemase activity and nucleic acids encoding the same
EP0307023A1 (en) Process for preparation of organic chemicals
JP2950896B2 (ja) D―α―フェニルグリシンの製造法
US7070963B2 (en) Amidase from variovorax
Eppinger et al. Conversion of phenylglycinonitrile by recombinant Escherichia coli cells synthesizing variants of the arylacetonitrilase from Pseudomonas fluorescens EBC191
Ogawa et al. Hydrolysis and formation of hydantoins
EP1409688B1 (en) Nucleic acid sequences encoding enantioselective amidases
JP2004081107A (ja) 加水分解又は脱水縮合酵素、及び当該酵素の生産方法、並びに当該酵素を用いたアミドの合成方法
JP4650421B2 (ja) L体アミノ酸アミド不斉加水分解酵素及びそれをコードするdna
US4906572A (en) Method of culturing amino acid racemase-producing microorganism of genus pseudomonas
US7709235B2 (en) 5-Substituted hydantoin racemase, DNA encoding the same, recombinant DNA, transformed cell, and process for production of optically active N-carbamylamino acid or optically active amino acid
Sharma et al. Microbial transformations: production of D-amino acids using hydantoinase
US20030059816A1 (en) Methods for identifying racemases
RU2177034C1 (ru) Штамм бактерий alcaligenes denitrificans-продуцент нитрилазы
US20030203455A1 (en) Heat-stable D-aminoacylase
RU2337954C1 (ru) Штамм бактерий alcaligenes denitrificans - продуцент нитрилазы
EP1944366A1 (en) Novel acid-resistant mutant s-hydroxynitrile lyase

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: EVONIK DEGUSSA CO., LTD.

Free format text: FORMER NAME: DECOUCHY STOCK COMPANY

CP03 Change of name, title or address

Address after: essen

Patentee after: Evonik Degussa GmbH

Address before: Dusseldorf, Germany

Patentee before: Degussa AG

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Essen, Germany

Patentee after: Evonik Operations Ltd.

Address before: Essen, Germany

Patentee before: EVONIK DEGUSSA GmbH

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20090708