CN100486410C - 流体横掠针肋阵列式微型换热器 - Google Patents

流体横掠针肋阵列式微型换热器 Download PDF

Info

Publication number
CN100486410C
CN100486410C CNB2006100020570A CN200610002057A CN100486410C CN 100486410 C CN100486410 C CN 100486410C CN B2006100020570 A CNB2006100020570 A CN B2006100020570A CN 200610002057 A CN200610002057 A CN 200610002057A CN 100486410 C CN100486410 C CN 100486410C
Authority
CN
China
Prior art keywords
flow
fluid
mandarin
pin
transfer sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100020570A
Other languages
English (en)
Other versions
CN1805678A (zh
Inventor
夏国栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CNB2006100020570A priority Critical patent/CN100486410C/zh
Publication of CN1805678A publication Critical patent/CN1805678A/zh
Application granted granted Critical
Publication of CN100486410C publication Critical patent/CN100486410C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

流体横掠针肋阵列式微型换热器,属于微电子技术领域,涉及一种冷却装置。本装置包括有依次重叠封装在一起的过流片(1),出流导流片(2),入流导流片(3),传热片(4);过流片上开有与外部管路连接的流体入口(5)和流体出口(6);出流导流片上设有出流通道(7),流体入口(8)和流体出口(9),入流导流片(3)上在与过流片上的流体入口(5)相对应的位置也设有流体入口(10),其上还设有导流桥(11)、入流缝(12)和出流缝(13),传热片上设有入流通道(14)和针肋阵列(15)。本发明的微型换热器基于流体横掠针肋阵列对流换热理论,是强化发热器件表面散热、提高被冷却表面温度分布的均匀性的有效装置。

Description

流体横掠针肋阵列式微型换热器
技术领域:
本发明属于微电子技术领域,涉及一种冷却装置。
背景技术:
随着工业技术的不断发展,各种电子产品无不朝着体积小、重量轻、高热流通量的方向发展。因此,对新一代的电子设备而言,传统的冷却器的设计极限与制作技术已无法合乎要求。微冷却器的发展源于解决高速集成电路的散热问题,目前已向各种有重量限制与体积限制的高热流通量领域发展,如航天工业、电子元器件冷却、大功率半导体激光器冷却、化工流程传热等。其主要目的是为了要降低电子设备因过热而发生故障损坏的机率,并同时提高电子设备的性能及可靠性。
目前国内外正在积极着手研究和已经应用的微冷却器包括:微热交换器、微冷冻机、微通道热沉、微热管均热片及整合式微冷却器等。其中微通道热沉因其加工制作技术比较成熟,得到了人们较多的关注。但是微通道热沉存在两个设计上的局限。其一,是由于小尺寸所产生的较大流动阻力;其二,由于冷却介质在入口、出口间温度变化较大,因而导致换热表面温度分布不均。随着微加工技术的迅速发展,一些基于不同传热机理、性能优越的微型换热器将不断涌现。
发明内容:
本发明的目的在于提供一种微型换热器,用于解决具有狭长型发热区域电子元器件冷却问题。其传热机理是流体横掠针肋阵列的对流换热,通过合理的结构设计,可以在保持优越传热性能的基础上,提高传热表面温度分布的均匀性。
本发明的一种流体横掠针肋阵列式微型换热器,其具体结构为:包括有依次重叠封装在一起的过流片1,出流导流片2,入流导流片3,传热片4;过流片1上开有与外部管路连接的流体入口5和流体出口6;出流导流片2上设有出流通道7,在与过流片1上的流体入口5和流体出口6相对应的位置分别开有流体入口8和流体出口9;入流导流片3上在与过流片1上的流体入口5相对应的位置也设有流体入口10,其上还设有导流桥11、间隔布置的入流缝12和出流缝13;传热片4上设有入流通道14和针肋阵列15;其中,过流片1,出流导流片2,入流导流片3,传热片4上各自的流体通道之间互不连通;封装后,过流片1上流体入口5、出流导流片2上流体入口8、入流导流片3上流体入口10与传热片4上入流通道14连通;传热片4上的针肋阵列15设置在传热片4上的凹槽内;入流导流片3上的入流缝12和出流缝13设置在与传热片4上针肋阵列15相对应的位置,入流通道14与入流缝12导通,出流缝13与出流通道7导通,入流导流片3上的导流桥11将出流导流片2上的出流通道7和流体出口9导通。
其中,针肋阵列15中针肋的截面形状为圆形、方形或三角形,阵列中针肋的排列方式采用顺排或叉排。
其中,针肋阵列15的组数大于等于1,针肋高度小于传热片4的厚度。
本发明提出的微型换热器基于流体横掠针肋阵列对流换热理论。针肋形状(圆形、方形、三角形等),针肋尺寸(高度、当量直径等),阵列中针肋的排列方式(顺排、叉排等),阵列中针肋的疏密程度,传热面上针肋阵列的组数等均可根据实际情况优化设计。针肋阵列一方面有效地拓展了传热面,提高了传热效率;另一方面采用优化合理的针肋阵列分组布置方式,可以极大地提高被冷却表面温度分布的均匀性。因此,流体横掠针肋阵列式微型换热器是减小发热器件传热表面最高温度、降低温度变化的有效方法之一。
换热工质可分别选用空气、水、制冷剂等。根据所用工质以及器件最佳工作温度范围,在传热表面上将形成流体横掠针肋阵列的单相流体对流换热、流体横掠针肋阵列的相变换热来实现冷却技术要求。
微型换热器片可选用无氧铜、硅等材料,总体几何形状尺寸可根据被冷却器件尺寸及总体封装要求确定。适用于条形、圆形、方形等发热表面的冷却。
附图说明:
图1:本发明的具有顺排圆形针肋阵列的结构示意图;
图中:1、过流片,2、出流导流片2,3、入流导流片2,4、传热片,5、流体入口,6、流体出口,7、出流通道,8、流体入口,9、流体出口,10、流体入口,11、导流桥,12、入流缝,13、出流缝,14、入流通道;15、针肋阵列(顺排圆形)。
图1(e):本发明具有顺排圆形针肋阵列的传热片主视图;
图1(f):本发明具有顺排圆形针肋阵列的传热片A-A剖面图;
图1(g):本发明具有顺排圆形针肋阵列的传热片B-B剖面图;
图2:具有图1所示结构的本发明示意图;
图中:16、微型换热器;
图3:本发明冷却半导体激光条的示意图;
图中:17、半导体激光条;
图4:本发明的具有叉排圆形针肋阵列的结构示意图;
图中:15、针肋阵列(叉排圆形);
图5:本发明的具有顺排方形针肋阵列的结构示意图;
图中:15、针肋阵列(顺排方形);
图6:本发明的具有叉排方形针肋阵列的结构示意图;
图中:15、针肋阵列(叉排方形);
图7:本发明冷却大功率半导体激光器阵列的示意图;
图中:18、电源正极,19、绝缘层,20、光线,21、入口管,22、出口管,23、密封圈;
图8:传热片上具有流体入口、出口的换热器结构示意图。
图中:24、流体入口,25、流体出口。
具体实施方式:
下面结合附图具体说明本发明的具体实施方式:
一种流体横掠针肋阵列式微型换热器,如图1所示,包括有依次重叠封装在一起的过流片1,出流导流片2,入流导流片3,传热片4;过流片1上开有与外部管路连接的流体入口5和流体出口6;出流导流片2上设有出流通道7,在与过流片1上的流体入口5和流体出口6相对应的位置分别开有流体入口8和流体出口9;入流导流片3上在与过流片1上的流体入口5相对应的位置也设有流体入口10,其上还设有导流桥11、入流缝12和出流缝13,微型换热器封装后导流桥11可将出流通道7和流体出口9连通;封装后,过流片1上流体入口5、出流导流片2上流体入口8、入流导流片3上流体入口10与传热片4上入流通道14连通;传热片4上的针肋阵列15设置在传热片4上的凹槽内,用蚀刻方法加工入流通道14和针肋阵列15。
本发明提出的针肋阵列15的组数根据被冷却器件对温度分布的要求设计,增加组数可以提高换热面温度分布的均匀性,但是需要相应增加入流缝12和出流缝13的数量。为更清楚地描述传热片4的结构,图1(e)、图1(f)和图1(g)分别给出了传热片4的主视图、传热片A-A剖面图和传热片B-B剖面图。
如图2所示,将换热器各片组合封装后形成流体横掠针肋阵列式微型换热器16。在换热器内部可形成封闭的流体循环,流体流经顺序为:流体入口5、流体入口8、流体入口10、入流通道14、入流缝12、针肋阵列15、出流缝13、出流通道7、导流桥11、流体出口9和流体出口6。冷却流体经入流缝12进入后,将分为两路沿着与传热面平行的方向流动,横向掠过针肋阵列15,从传热面和针肋表面吸收热量,最后经出流缝13流出换热面。
下面具体说明本发明的5种实施例:
实施例1:
如图3所示,用流体横掠针肋阵列式微型换热器冷却半导体激光条17,一种典型半导体激光条17的长度、宽度、厚度的尺寸为10000×1000×115微米3,其中有数个均匀排列的激光发射器,流体横掠针肋阵列式微型换热器16由图1所示的过流片1,出流导流片2,入流导流片3,传热片4依次焊接而成,每片均为长方形,宽度与半导体激光条17的长度相同,半导体激光条17固定在传热片4上,顺排圆形针肋阵列15由三组共72个直径为300微米的圆形针肋组成,针肋的高度为传热片4厚度的一半,为300微米,针肋顺排布置。入流缝12有三条和出流缝13有四条。过流片1、出流导流片2、入流导流片3的厚度均为300微米,传热片4的厚度为600微米。在流体横掠针肋阵列式微型换热器内部可形成封闭的流体循环,流体流经顺序为:流体入口5、流体入口8、流体入口10、入流通道14、入流缝12、顺排圆形针肋阵列15、出流缝13、出流通道7、导流桥11、流体出口9和流体出口6。冷却流体经入流缝12进入后,将分为两路沿着与传热面平行的方向流动,横向掠过顺排圆形针肋阵列15,从传热面和针肋表面吸收热量,最后经出流缝13流出换热面,将激光发射器产生并传到传热片4上的热量带走,实现了高热流通量传热。
实施例2:
如图4所示,在传热片4上的针肋阵列15采用叉排布置,整个针肋阵列18由三组共66个直径为300微米的圆形针肋组成,针肋的高度为传热片4厚度的一半,为300微米。过流片1、出流导流片2、入流导流片3的厚度均为300微米,传热片4的厚度为600微米。在流体横掠针肋阵列式微型换热器内部可形成封闭的流体循环,流体流经顺序为:流体入口5、流体入口8、流体入口10、入流通道14、入流缝12、叉排圆形针肋阵列15、出流缝13、出流通道7、导流桥11、流体出口9和流体出口6。冷却流体经入流缝12进入后,将分为两路沿着与传热面平行的方向流动,横向掠过叉排圆形针肋阵列15,从传热面和针肋表面吸收热量,最后经出流缝13流出换热面,将激光发射器产生并传到传热片4上的热量带走,实现了高热流通量传热。
实施例3:
如图5所示,在传热片4上的针肋阵列15采用顺排布置,整个针肋阵列15由三组共72个截面为正方形(300×300微米2)的针肋组成,针肋的高度为传热片4厚度的一半,为300微米。过流片1、出流导流片2、入流导流片3的厚度均为300微米,传热片4的厚度为600微米。在流体横掠针肋阵列式微型换热器内部可形成封闭的流体循环,流体流经顺序为:流体入口5、流体入口8、流体入口10、入流通道14、入流缝12、顺排方形针肋阵列15、出流缝13、出流通道7、导流桥11、流体出口9和流体出口6。冷却流体经入流缝12进入后,将分为两路沿着与传热面平行的方向流动,横向掠过顺排方形针肋阵列15,从传热面和针肋表面吸收热量,最后经出流缝13流出换热面,将激光发射器产生并传到传热片4上的热量带走,实现了高热流通量传热。
实施例4:
如图6所示,在传热片4上的针肋阵列15采用叉排布置,整个针肋阵列15由三组共66个截面为正方形(300×300微米2)的针肋组成,针肋的高度为传热片4厚度的一半,为300微米。过流片1、出流导流片2、入流导流片3的厚度均为300微米,传热片4的厚度为600微米。在流体横掠针肋阵列式微型换热器内部可形成封闭的流体循环,流体流经顺序为:流体入口5、流体入口8、流体入口10、入流通道14、入流缝12、叉排方形针肋阵列15、出流缝13、出流通道7、导流桥11、流体出口9和流体出口6。冷却流体经入流缝12进入后,将分为两路沿着与传热面平行的方向流动,横向掠过叉排方形针肋阵列15,从传热面和针肋表面吸收热量,最后经出流缝13流出换热面,将激光发射器产生并传到传热片4上的热量带走,实现了高热流通量传热。
实施例5:
如图7所示,采用本发明冷却大功率半导体激光器阵列,该阵列由M个发光单元组成,在本实施例中M=4,每个发光单元间涂有绝缘层19;每个发光单元包括:电源正极18、微型换热器16、及置于它们之间的半导体激光条17和绝缘层19,微型换热器16同时作为电源负极,半导体激光条17在电场的作用下发出光线20。流体经入口管21分别进入每个微型换热器16,经出口管22流出;入口管21、出口管22与微型换热器16之间有橡胶密封圈23密封。
在本实施例中,最上方的微型换热器16与图1所示结构相同,即传热片4上无流体入口和流体出口,下方的微型换热器16的传热片4上在与过流片1上的流体入口5和流体出口6相对应的位置分别加工有流体入口24和流体出口25,如图8所示,这样,冷却流体可以经过同一根入口管分别进入每个微型换热器,并经同一出口管流出,实现了对大功率半导体激光器叠阵的冷却。

Claims (3)

1、一种流体横掠针肋阵列式微型换热器,其特征在于:包括有依次重叠封装在一起的过流片(1),出流导流片(2),入流导流片(3),传热片(4);过流片(1)上开有与外部管路连接的流体入口(5)和流体出口(6);出流导流片(2)上设有出流通道(7),在与过流片(1)上的流体入口(5)和流体出口(6)相对应的位置分别开有流体入口(8)和流体出口(9);入流导流片(3)上在与过流片(1)上的流体入口(5)相对应的位置也设有流体入口(10),其上还设有导流桥(11)、间隔布置的入流缝(12)和出流缝(13);传热片(4)上设有入流通道(14)和针肋阵列(15);其中,过流片(1),出流导流片(2),入流导流片(3),传热片(4)上各自的流体通道之间互不连通;封装后,过流片(1)上流体入口(5)、出流导流片(2)上流体入口(8)、入流导流片(3)上流体入口(10)与传热片(4)上入流通道(14)连通;传热片(4)上的针肋阵列(15)设置在传热片(4)上的凹槽内;入流导流片(3)上的入流缝(12)和出流缝(13)设置在与传热片(4)上针肋阵列(15)相对应的位置,入流通道(14)与入流缝(12)导通,出流缝(13)与出流通道(7)导通,入流导流片(3)上的导流桥(11)将出流导流片(2)上的出流通道(7)和流体出口(9)导通。
2、根据权利要求1所述的一种流体横掠针肋阵列式微型换热器,其特征在于:所述的针肋阵列(15)中针肋的截面形状为圆形、方形或三角形,阵列中针肋的排列方式采用顺排或叉排。
3、根据权利要求1或2所述的一种流体横掠针肋阵列式微型换热器,其特征在于:所述的针肋阵列(15)的组数大于等于1,针肋高度小于传热片(4)的厚度。
CNB2006100020570A 2006-01-24 2006-01-24 流体横掠针肋阵列式微型换热器 Expired - Fee Related CN100486410C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100020570A CN100486410C (zh) 2006-01-24 2006-01-24 流体横掠针肋阵列式微型换热器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100020570A CN100486410C (zh) 2006-01-24 2006-01-24 流体横掠针肋阵列式微型换热器

Publications (2)

Publication Number Publication Date
CN1805678A CN1805678A (zh) 2006-07-19
CN100486410C true CN100486410C (zh) 2009-05-06

Family

ID=36867434

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100020570A Expired - Fee Related CN100486410C (zh) 2006-01-24 2006-01-24 流体横掠针肋阵列式微型换热器

Country Status (1)

Country Link
CN (1) CN100486410C (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102538506A (zh) * 2012-02-02 2012-07-04 魏辉 一种微通道换热器
CN102798308B (zh) * 2012-08-23 2014-01-15 南京工业大学 一种微通道散热器与微通道的加工方法
CN110534436B (zh) * 2019-08-22 2021-01-12 中国电子科技集团公司第五十五研究所 一种硅基自适应喷涌式微流体散热基板及其制备方法

Also Published As

Publication number Publication date
CN1805678A (zh) 2006-07-19

Similar Documents

Publication Publication Date Title
CN104167399B (zh) 错位复杂微通道微型换热器
CN105140194A (zh) 热超导散热器及其制造方法
CN103167780A (zh) 功率模块用复合式散热器及复合式散热器组件
CN105004206B (zh) 相变抑制传热板式热交换器
CN103307917B (zh) 一种微通道散热器
CN207098866U (zh) 一种直线电机冷却系统及直线电机
CN107359146A (zh) 表面设有鳍片的热超导板翅片式散热器
CN1233038C (zh) 微射流阵列冷却热沉
CN103175430A (zh) 环形微通道换热板
CN105526813A (zh) 一种微通道散热器
CN105698563A (zh) 一种具有分流-汇流结构的微通道换热器及其制造方法
CN106486433A (zh) Igbt散热器
CN100486410C (zh) 流体横掠针肋阵列式微型换热器
CN109974136A (zh) 一种散热器、空调室外机和空调器
CN203983257U (zh) 错位复杂微通道微型换热器
CN2859806Y (zh) 流体横掠针肋阵列式微型换热器
CN206149693U (zh) 一种散热机构及具有热源的设备
CN103528417A (zh) 一种管翅式翅片管换热器
CN105810805A (zh) 一种液冷散热器
CN214891554U (zh) 散热器和空调室外机
CN112736046B (zh) 一种集成芯片散热装置及其散热方法
CN2632857Y (zh) 微射流阵列冷却热沉
TWM561776U (zh) 水冷式散熱模組
CN203534315U (zh) 一种管翅式翅片管换热器
CN107809879A (zh) 一种散热机构及具有热源的设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090506

Termination date: 20130124

CF01 Termination of patent right due to non-payment of annual fee