CN100484788C - 汽车磁流变半主动悬架分姿态协调仿人智能控制方法 - Google Patents

汽车磁流变半主动悬架分姿态协调仿人智能控制方法 Download PDF

Info

Publication number
CN100484788C
CN100484788C CNB2006100540683A CN200610054068A CN100484788C CN 100484788 C CN100484788 C CN 100484788C CN B2006100540683 A CNB2006100540683 A CN B2006100540683A CN 200610054068 A CN200610054068 A CN 200610054068A CN 100484788 C CN100484788 C CN 100484788C
Authority
CN
China
Prior art keywords
control
vehicle body
graphic
dfl
athletic posture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100540683A
Other languages
English (en)
Other versions
CN1807135A (zh
Inventor
董小闵
余淼
陈伟民
李祖枢
廖昌荣
黄尚廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CNB2006100540683A priority Critical patent/CN100484788C/zh
Publication of CN1807135A publication Critical patent/CN1807135A/zh
Application granted granted Critical
Publication of CN100484788C publication Critical patent/CN100484788C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

本发明提出一种汽车磁流变半主动悬架阻尼控制的方法,它是利用加速度传感器和倾角传感器在线提取汽车行驶中车身的运动姿态信号,运用仿人智能控制的方法将汽车的运动姿态划分为八种,对汽车运动姿态的特征信息提取,并采用相应的控制模态进行控制,并根据路面至车身的传递特性在各谐振频率处具有最小的幅频特性来确定控制参数,从而使汽车获得良好的平顺性和操纵稳定性。本控制方法是通过对天棚阻尼控制和比例微分控制的综合,形成的一种多模态多控制器的仿人智能控制,算法比较简单,采用的传感器较少,能够方便地应用到现有汽车半主动悬架上,实现实时控制。

Description

汽车磁流变半主动悬架分姿态协调仿人智能控制方法
技术领域
本发明属于汽车减振控制技术领域,具体涉及一种汽车磁流变半主动悬架阻尼仿人智能控制方法。
背景技术
自1973年美国的D.A.Crosby和D.C.Karnopp提出半主动概念以来,各国学者不断致力于半主动可控装置和控制算法的研究,其中采用磁流变液的半主动装置,不断被应用于汽车,而由于半主动系统通常是强非线性的,应用受到限制。从简单的天棚阻尼控制到复杂的智能控制如模糊控制、神经网络控制不断被应用于仿真和道路试验研究,而在实际车辆上得到运用的是天棚阻尼控制。天棚阻尼控制算法简单,合理选择参数就能够很好地抑制车身的垂直振动,提高平顺性能。但是这种平顺性能的提高是以操纵稳定性的降低为代价的,在某些工况下是不可以接受的。
依赖于模型的最优控制以及鲁棒控制,由于所需测量的状态比较多,增加了软硬件的复杂程度,应用也受到了限制。模糊控制、神经网络控制的智能控制方法也被应用于汽车的半主动减振控制,但这些方法常常是建立在各种假设的基础之上,控制的规则严重依赖于专家的经验,与实际的工况有较大的差异,并且由于算法复杂,目前还主要停留在仿真实验阶段。
发明内容
发明目的:本发明提出一种汽车磁流变半主动悬架阻尼控制的方法,运用仿人智能控制的方法对行进中的汽车进行姿态划分,并对不同的运动姿态采用不同控制模态,其目的是采用较少的传感器,获取车身的姿态并对运动姿态进行调整,抑制车身的垂直、俯仰以及侧倾运动,提高汽车的乘坐舒适性和操纵稳定性。
本发明的技术解决方案如下:
本发明方法的总体方案是:利用加速度传感器和倾角传感器在线提取汽车行驶中车身的运动姿态信号,运用仿人智能控制的方法将汽车的运动姿态划分为八种,对每种运动姿态采取不同的控制模态,并根据路面至车身的传递特性在各谐振频率处具有最小的幅频特性来确定控制参数,从而使汽车获得良好的平顺性和操纵稳定性。
本发明的关键是运用仿人智能控制的方法对汽车运动姿态的特征信息提取,并采用相应的控制模态进行控制。
以下结合附图对本发明方法做详细说明。
附图说明
图1是采用仿人智能控制方法的汽车磁流变半主动悬架系统示意图
图2是对行进中的汽车运动姿态的划分;
图3是仿人智能控制从定性决策到定量控制的过程;
图4是在随机路面上各个运动图式的控制作用时间(0-5s)。
图5是在随机路面上车身垂直振动控制的垂直振动加速度功率谱密度(40km/h);
图6是在随机路面上车身俯仰角振动控制的俯仰角振动加速度功率谱密度(40km/h);
图7是在随机路面上车身侧倾角振动控制的侧倾角振动加速度功率谱密度(40km/h);
具体实施方式
如图1所示,将加速度传感器1和倾角传感器2安装于车身质心处,采集车身垂直振动加速度、俯仰角以及侧倾角信号,作为控制器7的输入,控制器对输入的信号进行特振的提取,以判断车身所处的运动姿态,参见图2,运用仿人智能控制的方法,确定运动姿态,采取相对应的运动图式,对不同的运动姿态采用不同的控制模态,见图3。确定控制参数以使垂直振动、俯仰和侧倾运动在各谐振频率处具有最小的传递特性,进而确定减振器可调节的悬架阻尼力,输出控制信号(电流)至四支磁流变减振器3-6,调节阻尼特性,完成一个控制循环。
其中关键的仿人智能控制的方法是将行进中的汽车的运动姿态划分为八种,对每一种运动姿态采用不同的控制控制模态,其步骤如下:
1、设z(n)、θ(n)及
Figure C200610054068D00061
分别表示时刻n汽车车身的高度、侧倾角以及俯仰角;
Figure C200610054068D00063
Figure C200610054068D00064
分别表示时刻n汽车车身垂直振动的速度、侧倾角速度以及俯仰角速度;δz、δθ为确定姿态的阈值参数;Fdfl、Fdfr、Fdrl及Fdrr分别为汽车对应的前左、前右、后左及后右磁流变减振器阻尼力值;Csky-z、Cksy-θ
Figure C200610054068D00066
为天棚阻尼系数;Kp-z、Kp-θ
Figure C200610054068D00067
为比例系数;Kd-z、Kd-θ
Figure C200610054068D00068
为微分系数;a表示车身质心距前轴的距离,b表示车身质心距后轴的距离,w表示车宽;
2、对行进中的汽车运动姿态的划分
汽车在行进中,汽车运动姿态的变化主要由不平路面的激励和由于驾驶员的一些操纵引起,从而呈现垂直振动、俯仰以及侧倾的一种、两种或两种以上的运动耦合,而磁流变半主动悬架的控制目标是尽量衰减这些运动,调整车辆的运动姿态,提高车辆的舒适性。把汽车的运动姿态划分为八种,如图2所示。第一种运动姿态为理想的姿态,即控制的目标,车身的姿态变化较小,舒适性和操纵稳定性都能得到保证,采用开环保持控制策略,第二~八种运动姿态是由于路面的激励或驾驶员操纵引起垂直振动、俯仰以及侧倾运动中的一种或几种的耦合,采用天棚控制与比例微分控制策略相结合。
3、分姿态协调控制设计
为了对汽车的各种运动姿态进行协调控制,将基于图式理论的仿人智能控制引入到半主动控制中,设计基于整车分姿态协调控制的仿人智能控制器。
一个适用于复杂系统运动控制的仿人智能控制器的内部模型,即动觉智能总图式可以用三元组给予描述:
SKG=<SP,SM,SA>                (1)
式中:SP感知图式集,SM运动图式集,SA关联图式集。分层递阶结构的总的动觉智能图式突破了传统控制单控制器单控制模态的结构,构成了具有多控制器和多控制模态的结构。第八种运动姿态存在三种运动的耦合,设计过程具有代表性,因此以第八种运动姿态为例,说明动觉智能图式的设计过程,其它运动姿态的动觉智能图式可以采用相似的方法进行设计:
(1)感知图式
特征基元的选择是为了正确提取车身的姿态,并采用不同的控制模态.特征基元集如下:
S P 8 = ( R 8 , Q 8 , K 8 , &CircleTimes; , &Phi; ) - - - ( 2 )
其中,输入变量R8为传感器输入,特征基元Q8的选取主要考虑如何有效地提取车身的姿态:
Figure C200610054068D00072
特征基元组合时,考虑到出现第八种运动姿态后,是继续偏离还是趋向于参考目标位置,关联矩阵作如下设置:K8={k1;...;k8},其中ki(i=1,...,8)对应于Q8每个特征基元的向量,各个元素取值0或1。
K 8 = 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1
定义运算
Figure C200610054068D00074
Figure C200610054068D00075
最终得到的感知特征模态如下:
Figure C200610054068D00076
               (4)
Figure C200610054068D00077
(2)运动图式
SM8=(R8,P8,L8,Ψ8,U8)                  (5)
当出现第八种运动姿态后,由于存在三种运动的耦合,而控制输入仅四支磁流变减振器的可调阻尼力,为此先分别计算抑制垂直、俯仰以及侧倾运动各自的控制力方程,然后进行解耦,具体做法如下:
1)抑制垂直振动
根据感知图式将垂直振动分为两种情况进行处理,一种是当车身趋向于设定的目标位置时,采用天棚阻尼控制,以提高平顺性能:
F dfl + F dfr + F drl + F drr = - C sky - z z . ( n ) - - - ( 6 )
式中Csky-z为抑制垂直振动的天棚阻尼系数,确定该系数的原则是使垂直振动在谐振频率处具有较小的车身对车轮的传递幅值。
另一种情况是当偏离设定目标位置时,采用比例微分控制,以使车身能够快速地恢复为设定的目标位置。
F dfl + F dfr + F drl + F drr = K p - z z ( n ) + K d - z z . ( n ) - - - ( 7 )
式中Kp-z及Kd-z分别为抑制车辆垂直振动比例和微分增益系数,同样确定两个增益系数的原则是使垂直振动在车身的共振频率处具有较小的车身对车轮的传递幅值。
2)抑制俯仰运动和侧倾运动
为了抑制俯仰力矩引起的车身姿态变化,与垂直运动的处理方法相类似,同样可以分为两种情况加以处理,当趋向设定的目标位置时:
Figure C200610054068D00082
当偏离设定目标位置时:
上述两式中,
Figure C200610054068D00084
为抑制车身的俯仰振动的天棚阻尼系数,
Figure C200610054068D00085
Figure C200610054068D00086
分别为抑制车身的俯仰振动的比例和微分增益系数,确定这三个参数的原则是使车身的俯仰运动在谐振频率处具有较小的幅频特性。
同理可计算抑制由侧倾力矩引起的侧倾运动,当趋向设定的目标位置时:
F dfl w 2 - F dfr w 2 + F drl w 2 - F drr w 2 = - C sky - &theta; &theta; . ( n ) - - - ( 10 )
当偏离设定目标位置时:
F dfl w 2 - F dfr w 2 + F drl w 2 - F drr w 2 = K p - &theta; &theta; ( n ) + K d - &theta; &theta; . ( n ) - - - ( 11 )
上述两式中,Csky-θ为抑制车身的侧倾运动的天棚阻尼系数,Kp-θ和Kd-θ分别为抑制车身的侧倾振动的比例和微分增益系数,确定这三个参数的原则是使车身的侧倾运动在谐振频率处具有较小的幅频特性。
3)各磁流变减振器所需控制阻尼力解耦
由于需要确定四支磁流变减振器的阻尼力,而由1)及2)分析只能得到三个方程,无法求解,因此需补充条件。如不考虑车身的扭转,可补充以下方程:
F dfl w 2 - F dfr w 2 - F drl w 2 + F drr w 2 = 0 - - - ( 12 )
当垂直、俯仰及侧倾三种运动都趋向设定位置即与特征模态φ1相对应的控制阻尼力方程组为:
Figure C200610054068D000810
由上述方程组可分别求解出与特征模态φ1相对应的四支磁流变减振器所需的控制力向量p1=(Fdfl,Fdfr,Fdrl,Fdrr)T,采用相同的方法,可以依次计算出其它特征模态对应的控制力向量,最后构成由八个基元向量组成的运动图式基元集:
P8={p1,...,p8}                    (14)
式中,pi(i=1,...,8)代表四支磁流变减振器的控制力向量。
模态选择运算矩阵L8=I8×8,通过运算
Figure C200610054068D0009113203QIETU
得运动图式 &psi; 8 = L 8 &CircleTimes; P 8 T .
其它运动姿态的运动图式由于存在一种运动或两种运动的耦合,可使不存在运动对应控制力方程需要的控制力设为零,同样可设计出其它运动姿态的运动图式。
(3)关联图式
模仿人的控制经验,先定性地判断车身所处的运动姿态,然后根据选择相应的控制模态进行定量地控制,如图3所示,每一种运动图式都具有这种二次映射的信息处理过程。
图4显示了当汽车以40km/h速度在B级路面上行驶时在一段时间(5秒)各运动图式的作用时间。图5-7显示了汽车以40km/h速度在B级路面上行驶时的控制效果,其中图5显示了对车身垂直振动的控制效果,图中实线为被动悬架的簧载质量-车厢地板垂直加速度功率谱,虚线为采用基于仿人智能控制的汽车半主动悬架阻尼力控制方法后测得车厢地板垂直加速度功率谱。比较得知,本专利所采用的控制方法能有效降低人体敏感的4-12.5Hz的垂直加速度,提高汽车乘坐舒适性。图6-7显示了车身俯仰角振动和侧倾角振动的加速度功率谱,从两图可看出,通过控制,车身的俯仰和侧倾振动在人体敏感低频段也得到了很好抑制,在提高汽车乘坐舒适性的同时也提高了操纵稳定性。
本发明的优点:
本控制方法运用仿人智能控制的方法将行进中的汽车运动姿态划分为八种,包括了汽车在行进中可能出现的主要运动姿态。由于算法只需要利用一只加速度传感器和一个倾角传感器在线提取汽车行驶中车身运动姿态信号,无须预测路面,可极大地降低系统成本,提高系统可靠性。根据不同的运动姿态,采用相应的控制模态,并通过补充的力控制方程后,实现运动耦合下四支磁流变减振器的控制阻尼力解耦,从而使汽车获得良好的平顺性和操纵稳定性。本控制方法是通过对天棚阻尼控制和比例微分控制的综合,形成的一种多模态多控制器的仿人智能控制,算法比较简单,能够方便地应用到现有汽车半主动悬架上,实现实时控制。

Claims (3)

1、汽车磁流变半主动悬架分姿态协调仿人智能控制的方法,其步骤如下:
(1)利用加速度传感器和倾角传感器在线提取车身的运动姿态信号;
(2)运用仿人智能控制的方法,确定运动姿态;
(3)对不同的运动姿态采用不同的控制模态;
(4)确定控制参数以使垂直振动、俯仰和侧倾运动在各谐振频率处具有最小的传递特性,进而调节磁流变减振器阻尼力,从而使汽车获得良好的平顺性和操纵稳定性;
其特征在于:所述仿人智能控制的方法是将行进中的汽车的运动姿态划分为八种,对每一种运动姿态采用不同的控制模态,其具体步骤如下:
1)设z(n)、θ(n)及分别表示时刻n汽车车身的高度、侧倾角以及俯仰角;
Figure C200610054068C00022
分别表示时刻n汽车车身垂直振动的速度、侧倾角速度以及俯仰角速度;δz、δθ
Figure C200610054068C00025
为确定姿态的阈值参数;Fdfl、Fdfr、Fdfl及Fdrr分别为汽车对应的前左、前右、后左及后右磁流变减振器阻尼力值;Csky-z、Csky-θ
Figure C200610054068C00026
为天棚阻尼系数;Kp-z、Kp-θ
Figure C200610054068C00027
为比例系数;Kd-z、Kd-θ
Figure C200610054068C00028
为微分系数;a表示车身质心距前轴的距离,b表示车身质心距后轴的距离,w表示车宽;
2)对行进中的汽车运动姿态的划分:
第一种运动姿态为理想的姿态,即控制的目标,采用开环保持控制策略,第二~八种运动姿态是由于路面的激励或驾驶员操纵引起的垂直振动、俯仰以及侧倾运动中的一种或几种的耦合,采用天棚控制与比例微分控制策略相结合;
3)分姿态协调控制设计
设计一个适用于复杂系统运动控制的仿人智能控制器的内部模型,即动觉智能总图式,用三元组给予描述:
SKG=<SP,SM,SA>        (1)
式中:SP感知图式集,SM运动图式集,SA关联图式集,这是一个具有分层递阶结构的总的动觉智能图式,对于存在垂直、俯仰以及侧倾三种运动耦合的第八种运动姿态,其动觉智能总图式的设计过程如下:
①、感知图式
特征基元集如下:
S P 8 = ( R 8 , Q 8 , K 8 , &CircleTimes; , &Phi; ) - - - ( 2 )
其中,输入变量R8为传感器输入,特征基元Q8的选取主要考虑如何有效地提取车身的姿态:
Figure C200610054068C000210
         (3)
特征基元组合时,关联矩阵作如下设置:K8={k1;...;k8},其中ki(i=1,...,8)对应于Q8每个特征基元的向量,各个元素取值0或1;
K 8 = 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1
定义运算
Figure C200610054068C00032
Figure C200610054068C00033
最终得到的感知特征模态如下:
                                             (4)
Figure C200610054068C00035
②、运动图式
SM8=(R8,P8,L8,Ψ8,U8)     (5)
当出现第八种运动姿态后,先分别计算抑制垂直、俯仰以及侧倾运动各自的控制力方程,然后进行解耦,具体做法如下:
a、抑制垂直振动
根据感知图式将垂直振动分为两种情况进行处理,一种是当车身趋向于设定的目标位置时,采用天棚阻尼控制:
F dfl + F dfr + F drl + F drr = - C sky - z z &CenterDot; ( n ) - - - ( 6 )
式中Csky-z为抑制垂直振动的天棚阻尼系数,确定该系数的原则是使垂直振动在谐振频率处具有较小的车身对车轮的传递幅值;
另一种情况是当偏离设定目标位置时,采用比例微分控制,使车身能够快速地恢复为设定的目标位置:
F dfl + F dfr + F drl + F drr = K p - z z ( n ) + K d - z z &CenterDot; ( n ) - - - ( 7 )
式中Kp-z及Kd-z分别为抑制车辆垂直振动比例和微分增益系数,同样确定两个增益系数的原则是使垂直振动在车身的共振频率处具有较小的车身对车轮的传递幅值;
b、抑制俯仰运动和侧倾运动
为抑制俯仰力矩引起的车身姿态变化,分为两种情况加以处理:
当趋向设定的目标位置时:
Figure C200610054068C00038
当偏离设定目标位置时:
上述两式中,
Figure C200610054068C00041
为抑制车身的俯仰振动的天棚阻尼系数,
Figure C200610054068C00042
Figure C200610054068C00043
分别为抑制车身的俯仰振动的比例和微分增益系数,确定这三个参数的原则是使车身的俯仰运动在谐振频率处具有较小的幅频特性;
计算抑制由侧倾力矩引起的侧倾运动,分为两种情况加以处理:
当趋向设定的目标位置时:
F dfl w 2 - F dfr w 2 + F dfl w 2 - F drr w 2 = - C sky - &theta; &theta; &CenterDot; ( n ) - - - ( 10 )
当偏离设定目标位置时:
F dfl w 2 - F dfr w 2 + F dfl w 2 - F drr w 2 = K p - &theta; &theta; ( n ) + K d - &theta; &theta; &CenterDot; ( n ) - - - ( 11 )
上述两式中,Csky-θ为抑制车身的侧倾运动的天棚阻尼系数,Kp-θ和Kd-θ分别为抑制车身的侧倾振动的比例和微分增益系数,确定这三个参数的原则是使车身的侧倾运动在谐振频率处具有较小的幅频特性;
c、各磁流变减振器所需控制阻尼力解耦
在不考虑车身的扭转的条件下,补充以下方程:
F dfl w 2 - F dfr w 2 - F dfl w 2 + F drr w 2 = 0 - - - ( 12 )
当垂直、俯仰及侧倾三种运动都趋向设定位置即与特征模态φ1相对应的控制阻尼力方程组为:
Figure C200610054068C00047
由上述方程组可分别求解出与特征模态φ1相对应的四支磁流变减振器所需的控制力向量p1=(Fdfl,Fdfr,Fdrl,Fdrr)T,采用相同的方法,可以依次计算出其它特征模态对应的控制力向量,最后构成由八个基元向量组成的运动图式基元集:
P8={p1,..,p8}       (14)
式中,pi(i=1,...,8)代表四支磁流变减振器的控制力向量;
模态选择运算矩阵L8=I8×8,通过运算
Figure C200610054068C00048
得运动图式
Figure C200610054068C00049
其它运动姿态的运动图式由于存在一种运动或两种运动的耦合,可使不存在运动对应控制力方程需要的控制力设为零,同样可设计出其它运动姿态的运动图式;
③关联图式
模仿人的控制经验,先定性地判断车身所处的运动姿态,然后根据选择相应的控制模态进行定量地控制,每一种运动图式都具有这种二次映射的信息处理过程。
CNB2006100540683A 2006-01-28 2006-01-28 汽车磁流变半主动悬架分姿态协调仿人智能控制方法 Expired - Fee Related CN100484788C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100540683A CN100484788C (zh) 2006-01-28 2006-01-28 汽车磁流变半主动悬架分姿态协调仿人智能控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100540683A CN100484788C (zh) 2006-01-28 2006-01-28 汽车磁流变半主动悬架分姿态协调仿人智能控制方法

Publications (2)

Publication Number Publication Date
CN1807135A CN1807135A (zh) 2006-07-26
CN100484788C true CN100484788C (zh) 2009-05-06

Family

ID=36839286

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100540683A Expired - Fee Related CN100484788C (zh) 2006-01-28 2006-01-28 汽车磁流变半主动悬架分姿态协调仿人智能控制方法

Country Status (1)

Country Link
CN (1) CN100484788C (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE515400T1 (de) * 2008-04-02 2011-07-15 Gm Global Tech Operations Inc Adaptive aufhängungssteuerung für ein kraftfahrzeug
CN101269618B (zh) * 2008-04-25 2010-06-02 江苏大学 一种电子控制空气悬架三档可调减振器阻尼值的控制方法
CN101332817B (zh) * 2008-07-18 2011-06-01 西安交通大学 车辆悬挂系统用磁流变阻尼器控制装置及控制方法
DE102009001306A1 (de) * 2009-03-03 2010-09-09 Robert Bosch Gmbh Verfahren zur Stabilisierung eines Kraftfahrzeugs, insbesondere eines einspurigen Kraftfahrzeugs
CN103419588B (zh) * 2013-07-30 2015-08-26 江苏大学 三级阻尼可调的主动馈能悬架分层控制器及其构造方法
CN107229226A (zh) * 2016-03-25 2017-10-03 重庆邮电大学 车辆制动作用下磁敏桥墩支座隔振系统的仿人自适应控制方法及装置
CN105946496A (zh) * 2016-04-27 2016-09-21 东华大学 一种基于天棚控制算法的悬挂控制系统
CN105922836B (zh) * 2016-06-14 2018-11-23 陈超 具有加和模式的车辆磁流变悬架系统控制装置及方法
JP6286091B1 (ja) * 2017-05-30 2018-02-28 株式会社ショーワ 車両状態推定装置、制御装置、サスペンション制御装置、及びサスペンション装置。
CN107215165B (zh) * 2017-06-08 2018-05-11 南京林业大学 基于大阻尼力磁流变半主动悬架的汽车主动倾摆控制方法
CN110712491B (zh) * 2019-10-16 2022-01-21 湖南大学 一种用于车辆模态解耦的分层控制方法、系统及介质
CN111391595B (zh) * 2020-03-02 2021-10-29 南京林业大学 车辆防侧翻主动倾摆模型预测控制方法
CN112339517B (zh) * 2020-11-13 2023-10-10 成都九鼎科技(集团)有限公司 一种半主动悬架控制方法及控制系统
CN113619346B (zh) * 2021-08-09 2023-03-31 深圳先进技术研究院 磁流变半主动悬架的控制方法、装置及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于磁流变减振器的汽车前悬架半主动控制研究. 余淼,李锐,廖昌荣,陈伟民.中国机械工程,第16卷第6期. 2005 *
基于磁流变减振器的汽车半主动悬架非线性控制方法. 李以农,郑玲.机械工程学报,第41卷第5期. 2005 *

Also Published As

Publication number Publication date
CN1807135A (zh) 2006-07-26

Similar Documents

Publication Publication Date Title
CN100484788C (zh) 汽车磁流变半主动悬架分姿态协调仿人智能控制方法
CN110654195B (zh) 车辆、车辆悬架系统及其调节方法、装置
CN104080629B (zh) 车辆的控制装置和车辆的控制方法
US5020781A (en) Controls for a semiactive chassis
CN104080672B (zh) 车辆的控制装置和车辆的控制方法
CN104080627B (zh) 车辆的控制装置
CN101269618B (zh) 一种电子控制空气悬架三档可调减振器阻尼值的控制方法
Soleymani et al. Adaptive fuzzy controller for vehicle active suspension system based on traffic conditions
CN102325662B (zh) 衰减力控制装置
CN112339517A (zh) 一种半主动悬架控制方法及控制系统
EP1787834A1 (en) Frequency-weighted vehicle suspension control
CN112896186A (zh) 一种车路协同环境下的自动驾驶纵向决策控制方法
EP3867088A1 (en) Method and apparatus for responding to road surface discontinuities
CN101916113A (zh) 一种基于主动悬架评价指标的车身姿态解耦控制方法
CN113183709A (zh) 一种汽车电控悬架预瞄控制方法
US6298294B1 (en) Device for controlling suspension shock absorbers of vehicles based upon phantom substitute therefor
CN102975587A (zh) 基于双可控阻尼器的车辆半主动悬架及其控制方法
CN100358739C (zh) 一种基于小波分解的汽车磁流变半主动悬架阻尼控制的方法
US20230100858A1 (en) Vehicle control apparatus, vehicle control method, and vehicle control system
CN114559938A (zh) 一种协同控制模块、自适应巡航系统及其控制方法、交通工具
CN116749700A (zh) 一种基于路面信息考虑乘员晕动的车辆主动悬架控制方法
CN108608822B (zh) 一种agv悬挂系统弹性调节方法及系统
CN111231595B (zh) 一种考虑汽车前后轴动态耦合的半主动悬架控制方法
Gustafsson et al. Neural network controller for semi-active suspension systems with road preview
CN114261251A (zh) 目标车辆悬架控制方法、系统、车辆、设备及存储介质

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090506

Termination date: 20120128