CN100462324C - 用于填充方钢管的粉煤灰膨胀自密实混凝土 - Google Patents

用于填充方钢管的粉煤灰膨胀自密实混凝土 Download PDF

Info

Publication number
CN100462324C
CN100462324C CNB2007100373115A CN200710037311A CN100462324C CN 100462324 C CN100462324 C CN 100462324C CN B2007100373115 A CNB2007100373115 A CN B2007100373115A CN 200710037311 A CN200710037311 A CN 200710037311A CN 100462324 C CN100462324 C CN 100462324C
Authority
CN
China
Prior art keywords
steel pipe
square steel
coal ash
powder coal
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2007100373115A
Other languages
English (en)
Other versions
CN101037317A (zh
Inventor
陈兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CNB2007100373115A priority Critical patent/CN100462324C/zh
Publication of CN101037317A publication Critical patent/CN101037317A/zh
Application granted granted Critical
Publication of CN100462324C publication Critical patent/CN100462324C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00103Self-compacting mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

一种用于填充方钢管的大掺量低成本高钙粉煤灰自密实混凝土,其特征在于:包括普通硅酸盐水泥、粉煤灰、微硅粉、水、砂、碎石、激发剂和缓凝减水剂,其中普通硅酸盐水泥用量为9.0~10.0%,粉煤灰用量9.0~10.0%,微硅粉用量1.2~2.0%,水用量7.5~8.0%,砂用量为24~30%,碎石用量为40~47%,激发剂用量为0.5~1.0%,缓凝减水剂为0.1~0.3%。本发明具有充分利用高钙粉煤灰潜在活性,发挥废弃资源的重新利用,制备的混凝土价格低廉,流动性大,强度高,可持续膨胀性好,适用于填充钢管。

Description

用于填充方钢管的粉煤灰膨胀自密实混凝土
技术领域
本发明涉及一种建筑材料技术领域的混凝土,具体地讲,涉及一种用于填充方钢管的粉煤灰膨胀自密实混凝土。
背景技术
钢管混凝土具有承载力高、塑性和韧性好,外形美观、施工方便、耐火性能和经济效益显著等优点,近年来在高层和大跨度结构中迅速得到推广应用。钢管和钢管中的混凝土相结合,通过钢管对其内填充的混凝土产生紧固作用力,这样可以各自发挥所长,获取优良的力学性能和结构性能。因此,为了达到这一目的,通常在硅酸盐水泥、粗细集料等混凝土组分中加入膨胀剂,使其在硅酸盐水泥水化体系中发生化学反应产生体积膨胀,形成一定的膨胀应力,从而使钢管与核心混凝土能够产生紧箍作用力。为了实现这一膨胀,大多通过掺入定量的膨胀剂以达到控制和保持持续膨胀的作用。
经对现有技术的文献检索发现,中国专利公开号:CN17726904A,专利名称:膨胀可设计的高强钢管混凝土及制备方法,该专利技术在混凝土中掺入一定量的可控膨胀剂和吸湿多孔材料,利用它们共同作用而实现填充混凝土产生膨胀。但通常的膨胀剂在水化过程中需要吸收一定量的水,在钢管内部由于处于封闭下没有足够的水提供因此,后期的膨胀难以保证。因此,为了保证后期的膨胀,通常需要添加一些保水物质,这样实施起来无疑大幅度地提高钢管混凝土的施工成本和后期膨胀的作用效果。同时,在进行浇注时,由于实际的钢管比较长而且内部封闭很难进行振捣,因此,普通的膨胀混凝土难以保证混凝土结构内部的密实,从而不能体现钢管混凝土的优异的协调复合作用。
高钙粉煤灰是火力发电厂采用褐煤、次烟煤作为燃料时排放出的一种氧化钙含量较高的粉煤灰.它既含有一定数量的水硬性晶体矿物又具有潜在活性。可用作水泥混合材料或混凝土掺合料,具有减水效果好、早期强度发展快等优点。但由于其游离氧化钙含量高,若使用不当,会导致水泥安定性不合格甚至导致混凝土膨胀开裂,因而至今尚未得到很好的利用。
发明内容
本发明的目的在于针对现有技术中存在不足和缺陷,提供一种充分利用和发挥高钙粉煤灰潜在活的用于填充方钢管的粉煤灰膨胀自密实混凝土。本发明利用高钙粉煤灰的潜在活性,在混凝土凝结硬化后产生膨胀,从而克服了专利CN17726904A中为产生膨胀而掺加膨胀剂和多孔材料,节约了成本和工序,同时又克服了高钙粉煤灰在普通混凝土应用中的潜在危害性。
本发明是通过以下技术方案实现的,本发明各组分及其重量百分比为:
普通硅酸盐水泥              9.0~10.0%
粉煤灰                      9.0~10.0%
微硅粉                      1.2~2.0%
水                          7.5~8.0%
建筑用砂                    24~30%
碎石                        40~47%
激发剂                      0.5~1.0%
减水剂                      0.1~0.3%
本发明主要是利用市售普通建筑材料来实现填充方钢管形成高强膨胀自密实混凝土:
1.采用高钙粉煤灰大掺量取代硅酸盐水泥,利用高钙粉煤灰潜在的活性,通过碱性激发剂激发,充分发挥其含有的大量f-CaO在后期的水化反应产生膨胀使核心混凝土与钢管内壁间有约束力,同时高钙粉煤灰具有早强和减水作用,这样充分发挥高钙粉煤灰的优点,实现核心混凝土的后期膨胀和自密实作用,采用微硅粉改善拌和物的保水性和提高核心混凝土强度和密实性。这样可以大大降低了成本,而且减少环境污染,有效充分利用废物。水泥宜选用P.O42.5或P.O52.5水泥,其中C50钢管混凝土选用P.O42.5水泥,C60以及C60以上钢管混凝土选用P.O52.5水泥,粉煤灰宜选用II级磨细高钙粉煤灰,微硅粉宜选用Elken公司提供的,其颗粒粒径约0.01~0.1μm。
2.所述的砂子符合JGJ52-92《普通混凝土用砂质量标准和试验方法》要求的普通建筑用砂,通过严格控制砂子的级配将砂子分级后再混合,以大大改善砂浆的流动性和减少价格昂贵的有机外加剂的用量。本发明中用的砂子应符合如下粒径和级配要求:
2.500~5.000mm                     0~6%(重量比)
1.250~2.500mm                     20~35%(重量比)
0.315~1.250mm                     55~65%(重量比)
<0.315mm                           10~15%(重量比)
即砂子的细度模数在2.7~2.9范围内。
3.所述的碎石,其粒径范围宜在5~16mm,含泥量<1%。
4.所述的激发剂主要由石灰、明矾、煅烧石膏、硫酸钠和氧化锌复合而成,其各组分重量含量分别为石灰35%,明矾20%,煅烧石膏25%,硫酸钠10%,氧化锌10%。通过化学反应激活高钙粉煤灰,使其在核心混凝土凝结硬化过程中产生体积膨胀,从而使核心混凝土变得更密实并由于钢管的约束而产生自应力,其掺量为高钙粉煤灰的6~10%。
5.所述的减水剂为萘磺酸盐系减水剂液体,其固含量在40%左右,具有缓凝保塑作用。
本发明用于填充方钢管大掺量粉煤灰膨胀高强自密实混凝土的制备方法,按以下顺序进行拌和浇注灌入方钢管中:先将按配合比设计要求的水泥、粉煤灰、微硅粉和激发剂进行干拌30秒,加入碎石和砂子,其搅拌时间为30秒~1分钟,加入60%水搅拌1分钟,将剩余的40%水和减水剂加入,搅拌1.5~2分钟。
本发明的优点在于:在原材料中采用高钙粉煤灰大掺量取代水泥,利用高钙粉煤灰的潜在活性和大量的f-CaO后期的水化反应产生膨胀,有效地利用和提高了钢管混凝土的特性。大掺量的掺加高钙粉煤灰,不但没有降低核心混凝土强度,而且由于钢管的约束,整体上提高了方钢管的承载力和变形能力。因此掺加粉煤灰一方面为废物利用,可减少对环境的污染和减少水泥用量,节省能,另外一方面,掺加粉煤灰,利用其玻璃微珠效应,提高拌和物流动性,减少化学外加剂掺量,降低成本,并且实现核心混凝土浇注的自密实,降低人工成本。
具体实施方式
下面对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
用于填充方钢管的大掺量粉煤灰高强膨胀自密实混凝土,由普通硅酸盐水泥、粉煤灰、微硅粉、砂、碎石、激发剂、缓凝减水剂和水按一定比例、以如下工艺方法完成拌和并浇注到120mm×120mm×400mm的方形截面冷弯型钢钢管中:先将按配合比设计要求的水泥、粉煤灰、微硅粉和激发剂进行干拌30秒,加入粗集料和细集料,其搅拌时间为30秒~1分钟,加入60%水搅拌1分钟,将剩余的水和减水剂加入,搅拌1.5~2分钟。
制备的用于填充方钢管的大掺量粉煤灰高强膨胀自密实混凝土单位体积的各组成如下:
Figure C200710037311D00071
具体实施的结果如下:
Figure C200710037311D00072
从以上测试结果可见:本发明的用于填充方钢管的高强膨胀自密实混凝土具有良好的施工性能和力学性能,满足高强钢管混凝土性能要求,同时价格低廉。

Claims (9)

1.一种用于填充方钢管的粉煤灰膨胀自密实混凝土,其特征在于,各组分及其重量百分比为:
普通硅酸盐水泥                         9.0~10.0%
粉煤灰                                 9.0~10.0%
微硅粉                                 1.2~2.0%
水                                     7.5~8.0%
建筑用砂                               24~30%
碎石                                   40~47%
激发剂                                 0.5~1.0%
减水剂                                 0.1~0.3%。
2.权利要求1所述的用于填充方钢管的粉煤灰膨胀自密实混凝土,其特征是,所述的建筑用砂必须符合以下粒径和级配要求:
2.500~5.000mm                          0~6%重量比
1.250~2.500mm                          20~35%重量比
315~1.250mm                          55~65%重量比
<0.315mm                                10~15%重量比。
3.权利要求1所述的用于填充方钢管的粉煤灰膨胀自密实混凝土,其特征是,所述的粉煤灰选用II级磨细高钙粉煤灰。
4.权利要求1所述的用于填充方钢管的粉煤灰膨胀自密实混凝土,其特征是,所述的激发剂,掺量为高钙粉煤灰的6~10%。
5.权利要求1或4所述的用于填充方钢管的粉煤灰膨胀自密实混凝土,其特征是,所述的激发剂主要由石灰、明矾、煅烧石膏、硫酸钠和氧化锌复合而成,其各组分重量含量分别为石灰35%,明矾20%,煅烧石膏25%,硫酸钠10%,氧化锌10%。
6.权利要求1所述的用于填充方钢管的粉煤灰膨胀自密实混凝土,其特征是,所述的减水剂为萘磺酸盐系减水剂液体,其固含量在40%。
7.权利要求1所述的用于填充方钢管的粉煤灰膨胀自密实混凝土,其特征是,所述的普通硅酸盐水泥,选用P.O42.5或P.O52.5水泥。
8.权利要求1所述的用于填充方钢管的粉煤灰膨胀自密实混凝土,其特征是,所述的微硅粉,其颗粒粒径为0.01~0.1μm。
9.权利要求1所述的用于填充方钢管的粉煤灰膨胀自密实混凝土,其特征是,所述的碎石,其粒径范围在5~16mm,含泥量<1%。
CNB2007100373115A 2007-02-08 2007-02-08 用于填充方钢管的粉煤灰膨胀自密实混凝土 Expired - Fee Related CN100462324C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007100373115A CN100462324C (zh) 2007-02-08 2007-02-08 用于填充方钢管的粉煤灰膨胀自密实混凝土

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007100373115A CN100462324C (zh) 2007-02-08 2007-02-08 用于填充方钢管的粉煤灰膨胀自密实混凝土

Publications (2)

Publication Number Publication Date
CN101037317A CN101037317A (zh) 2007-09-19
CN100462324C true CN100462324C (zh) 2009-02-18

Family

ID=38888519

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007100373115A Expired - Fee Related CN100462324C (zh) 2007-02-08 2007-02-08 用于填充方钢管的粉煤灰膨胀自密实混凝土

Country Status (1)

Country Link
CN (1) CN100462324C (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104058645B (zh) * 2014-05-29 2016-03-23 蚌埠华东石膏有限公司 一种含萤石易养护混凝土及其制备方法
CN105218055B (zh) * 2015-10-14 2017-07-28 山东隆和节能科技股份有限公司 自密实免振捣混凝土及其制备方法
CN106380137A (zh) * 2016-08-26 2017-02-08 吴肖颜 一种高性能混凝土
CN106836808A (zh) * 2017-02-21 2017-06-13 中建二局第三建筑工程有限公司 自密实大体积混凝土施工方法
CN108395174B (zh) * 2018-03-30 2020-11-27 东南大学 一种大跨度cfst拱桥管内用自密实、无收缩混凝土
CN110144880A (zh) * 2019-05-28 2019-08-20 连云港晟宇新型建材有限公司 一种免蒸压的预应力高强混凝土管桩及其制备方法
CN110482913A (zh) * 2019-07-19 2019-11-22 中国建筑第二工程局有限公司 一种混凝土配方及其配制方法
CN112194419B (zh) * 2020-12-03 2021-06-04 广东博智林机器人有限公司 碱激发自密实混凝土及其制备方法
CN112441765B (zh) * 2020-12-03 2022-03-18 广东博智林机器人有限公司 碱激发剂、碱激发凝胶材料、混凝土和混凝土的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1085195A (zh) * 1993-09-02 1994-04-13 运城市地方国营水泥厂 粉煤灰矿渣水泥及其制造方法
CN1587180A (zh) * 2004-07-22 2005-03-02 上海交通大学 高性能水泥基自流平材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1085195A (zh) * 1993-09-02 1994-04-13 运城市地方国营水泥厂 粉煤灰矿渣水泥及其制造方法
CN1587180A (zh) * 2004-07-22 2005-03-02 上海交通大学 高性能水泥基自流平材料

Also Published As

Publication number Publication date
CN101037317A (zh) 2007-09-19

Similar Documents

Publication Publication Date Title
CN100462324C (zh) 用于填充方钢管的粉煤灰膨胀自密实混凝土
Nuruddin et al. Effect of superplasticizer and NaOH molarity on workability, compressive strength and microstructure properties of self-compacting geopolymer concrete
Liu et al. Recycled aggregate concrete with the incorporation of rice husk ash: Mechanical properties and microstructure
CN104478325A (zh) 一种c90级自密实高强混凝土及其配制方法
CN102690089A (zh) 强度等级为c50的自密实清水混凝土
CN101113090A (zh) 污水厂污泥无臭无三废制造免烧砖的方法
CN105601135A (zh) 一种利用赤泥和粉煤灰制备地质聚合物材料的方法
CN105819779A (zh) 一种c60级高强再生混凝土及其配制方法
Chen et al. Experimental study on the effect of wastewater and waste slurry of mixing plant on mechanical properties and microstructure of concrete
Demie et al. Effects of curing temperature and superplasticizer on workability and compressive strength of self-compacting geopolymer concrete
CN105753410A (zh) 一种湿磨工艺制备高抗渗混凝土材料的方法
CN102659370B (zh) 一种矿物掺合料混凝土及其制备方法
CN101913822B (zh) 一种用于型钢混凝土组合结构强度等级为c150的混凝土
Islam et al. Sustainable high-performance, self-compacting concrete using ladle slag
Rath et al. An experimental study on strength and durability of glass fiber reinforced cement concrete with partial replacement of cement and sand with coal ashes available in central chhattisgarh region
Shaaban Sustainability of excavation soil and red brick waste in rammed earth
CN101805139B (zh) 用于高性能混凝土的复合掺合料
Sai et al. An experimental study on synergic effect of sugar cane bagasse ash with Rice husk ash on self compaction concrete
CN101913816B (zh) 一种用于型钢混凝土组合结构强度等级为c130的混凝土
Apeh Properties of self-compacting concrete containing granite dust particles
Selvamony et al. Development of high strength self-compacted self-curing concrete with mineral admixtures
Askari Dolatabad et al. Rheological and mechanical properties of light weight self-compacting concrete containing Sirjan iron mine waste
Sulistyoini et al. The Compressive Strength of Fly Ash and Stone Dush in Concrete
WO2024108868A1 (zh) 一种基于膨胀土和工业固废的泡沫轻质土及其制备方法
Iqbal et al. Use of Waste Material for Sustainable Self Compacting Concrete

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090218

Termination date: 20130208