CN100462219C - 形成和控制共轭材料薄膜的结构、电学、光学和光电子学性能各向异性的、微米和纳米级制造方法 - Google Patents

形成和控制共轭材料薄膜的结构、电学、光学和光电子学性能各向异性的、微米和纳米级制造方法 Download PDF

Info

Publication number
CN100462219C
CN100462219C CNB02819781XA CN02819781A CN100462219C CN 100462219 C CN100462219 C CN 100462219C CN B02819781X A CNB02819781X A CN B02819781XA CN 02819781 A CN02819781 A CN 02819781A CN 100462219 C CN100462219 C CN 100462219C
Authority
CN
China
Prior art keywords
mould
film
molecule
mold
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB02819781XA
Other languages
English (en)
Other versions
CN1564737A (zh
Inventor
M·莫基亚
P·梅
F·比斯卡里尼
C·塔里阿尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL INSTITUTE
Consiglio Nazionale delle Richerche CNR
Original Assignee
NATIONAL INSTITUTE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL INSTITUTE filed Critical NATIONAL INSTITUTE
Publication of CN1564737A publication Critical patent/CN1564737A/zh
Application granted granted Critical
Publication of CN100462219C publication Critical patent/CN100462219C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/005Surface shaping of articles, e.g. embossing; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/026Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing of layered or coated substantially flat surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • B29C59/046Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts for layered or coated substantially flat surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0044Anisotropic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0045Isotropic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Liquid Crystal Substances (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Thin Film Transistor (AREA)

Abstract

一种用于在具有共轭双键的有机材料构成的薄膜中改善,提高和形成结构各向异性,组织和序态,以及机械,电学,光学,光电子学,电荷载带和能量负载性能各向异性的非传统平版印刷方法。该方法包括模塑成型,通过与模具表面紧密接触而直接在共轭薄膜上进行。薄膜直接与模具接触的部分经过性质的局部变化,其尺寸取决于模具上提供的结构尺寸。模塑成型可以在静态条件和动态条件下进行。方法的有效性取决于模具的性质(材料,形状,粘合性和表面张力)和发生啮合和接触时的模塑成型方法的性质(压力P和温度T的共同影响,模塑成型的持续时间),以及动态方法时模具相对试样的速度。所述方法被证明在几十微米(10-6米)到几十纳米(10-9米)的空间范围内是有效的。

Description

形成和控制共轭材料薄膜的结构、电学、光学和光电子学性能各向异性的、微米和纳米级制造方法
技术领域
本发明报道一种适合于形成和控制共轭材料薄膜相关性能,即结构、机械、电学、光学和光电子学性能各向异性的微米和纳米级的制造方法。
背景技术
共轭材料由有机分子,配位化合物,聚合物,共聚物和聚合混合物构成,在各种组成原子(C,N,O,S)上含有具有空间离域π电子的官能团。这些材料具有类似于无机半导体的光学和电子学性能(因此常被称为有机半导体)。而且,已证实它们在合适的实验条件下,具有类似金属或超导体的行为。分子中π电子的空间分布通常是各向异性的。这意味着,分子聚集体在电磁场,流体流,机械力中的响应,在原则上可以是各向异性的,并取决于序参量。
共轭材料对有机(或塑料)光电子学,电子学和光子学等创新技术的开发是很重要的。这些术语是指各种含有厚度介于10和1000纳米之间的共轭材料薄膜的系统,器件,电路和集成元件(光学的和电子学的),其中的共轭材料薄膜在辐照时,起到电荷或能量传输层的作用。
有机光电子学和电子学是各种日常生活消费应用传统半导体技术的替代技术,因为其具有低制造成本,而且其中的元件是可处理的和能循环使用的,对环境影响小。产品实例包括智能卡(信息被编码在塑料介质上的基于一种共轭薄膜的微处理器中,并且信息是可以更改的);通过分子和/或聚合物电致发光薄膜工作的发光二极管,用于制造超平,高效和起亮的柔性屏;具有高生物相容性和低重量的环境和健康传感器;通过用随时,直接和非侵入性获得的信息来识别广泛使用商品(食品,衣服,信件,包裹)的标签;安全(信用卡,包裹,信件)和密码。据估计,到2002年底,仅有机集成电路市场就将超过7亿欧元。
本技术的成功不仅取决于共轭材料的独特性质,还取决于器件制造的有效性,简便性和成本。
在非传统制造方法(即,基于照相平版印刷方法的替代方法)中,接触晒印和压印(压凸印)是用于制造有机集成电路最有发展前途的方法。这是因为其方法简单,适应于平面技术,涉及方法有限,对能量,环境清洁度和化学有害物要求低,而且最后可将其升级为在大面积上能够多次循环的自动循环形式。这些方法已经被国际专利所保护,都是涉及在电阻材料薄膜上压印结构的,对其进行显影步骤和各种其他步骤(比如各向异性蚀刻,剥离(lift-off),薄膜淀积),最终获得要求的图案或图形。制成品通常不同于压印材料。与本专利有关的国际专利保护i)在光敏树脂上通过压力压凸印方法制造反射屏的方法(Kano等,Alps Electric Co.Ltd.(JP)申请号170715,1998年10月13日);ii)通过组合应用电子束平版印刷和压印,剥离(lift-off)和/或辊压法获得的纳米结构表面,目的在于提高基本粒子通过势垒的透射率(Cox等,BorealisTechnical Limited(London,UK),申请号045299,1998年3月20日);iii)通过将浸渍有试剂的模具压在表面上,获得亚微米级平版印刷结构的系统(Biebuyck和Michel,International Business Machine Corporation(Armonk,NY),申请号690956,1996年8月1日);iv)在金属薄膜上形成相反的外形的方法,然后对其进行腐蚀溶解(蚀刻)制造金属薄膜的方法(Calveley(Private Bag,MBE N180Auckland,NZ),申请号474420,1999年12月29日);v)Chou S.和Zhuang L.(Princeton University NJ,申请号US23717,1999年10月8日)。
纳米技术对先进经济可持续发展的影响已经被美国,日本和欧共体的政府提供的资金所证明。欧洲委员会已经在从2003年开始的第六号构架了计划中,对纳米技术课题优先划拨了13亿欧元的资金。
发明内容
本发明的目的是提供一种能够改进,提高,控制和制造薄膜中共轭分子和/或高分子的结构组织,序态和各向异性的方法。
本发明的一个目的是提供一种适用于制造由各向同性区和具有更高或不同分子序态的各向异性区构成的薄膜的方法,并因此对取决于分子序态的张量性质,比如极化率,超极化率,介电常数,线性和非线性折射率,电荷迁移率,电导率,热导率,磁化和磁化率,弹性,塑性和应力,以预定的周期性进行空间调制。
本发明的另一个目的是提供一种能大规模进行,而且能重复多个循环,并能用一种现有工业化技术设计的方法。
本发明的另一个目的是提供一种能改进,加强,控制和制造薄膜中共轭分子从微米到纳米范围长度级的结构组织,序态和各向异性的方法。
本发明的另一个目的是提供一种用于制造具有受控形状,空间分布和在线性和非线性光学和电学响应上具有各向异性的微区的方法。
本发明的另一个目的是提供一种用于制造具有独特性能的共轭材料薄膜的方法,这些性能是结构,电学,光学和光电子学性能的各向异性,该方法是有效的,简便的和低成本的。
通过以下说明,这些和其他发明目的是显而易见的,可以通过本发明所述的方法和薄膜而达到这些目的。
本发明提供一种用于改进由共轭材料构成的薄膜的张量特性的方法,包括将所述薄膜与模具接触和对所述模具施加模塑成型压力的步骤。
该共轭材料选自具有刚性棒状共轭单元的共轭分子和聚合物,基于棒状或双轴结构的结晶液体聚合物和分子。
具有棒状共轭单元的共轭分子和聚合物例如选自:噻吩低聚物,优选四、五、六、七、八噻吩,其在α和/或ω位或在β或β'位,或在α,ω,β或β'任何位上有取代基的衍生物,和其相应的区域规整(regioregular)和非区域规整聚合物;低聚苯基,优选四、五、六、七、八亚苯基,其在邻位和/或间位具有取代基的衍生物,其相应的区域规整和非区域规整聚合物;萘,蒽,菲,并四苯,并五苯和并苯衍生物;双-二噻吩并-噻吩;双-二噻吩并-富瓦烯;芴,双-二噻吩并-芴及其衍生物;低聚亚苯基亚乙烯基,优选四,五,六,七,八亚苯基亚乙烯基,其在邻位,间位和/或烯丙基位置具有取代基的衍生物,其相应的区域规整和非区域规整聚合物;和双-二苯乙烯基-芪。
该材料还可以选自具有盘状共轭单元的共轭分子和聚合物,比如苝及其衍生物,优选3,4,9,10-苝-四羧酸二酐(PTCDA),萘四羧酸二酐(NTDA);三苯并[de,kl,rst]戊芬,蒄,六苯并蒄,带或不带取代基;优选具有Cu或Zn金属中心的酞菁和卟啉;基于盘状结构的结晶液体分子。
而且,该材料可以选自由于电偶极子而具有强电子各向异性的配位化合物和分子,比如三-(羟基喹啉)Al(III),即Alq3,及其与不同金属中心,比如氧钒基,Pd,Pt,Zn,Ga,In,Tl,Sn,稀土元素,或与不同配位体,比如在2或4或5位取代的羟基喹啉和更常见的基于氧和氮的芳族螯合剂的衍生物。
可以被本发明方法改进的张量特性例如是极化率,介电常数,折射率,光吸收,能量传输,电荷迁移率,电导率和热导率,磁化和磁化率,弹性,塑性和应力。
用于本发明方法的模具可以是一种单突起模具,优选具有微米到纳米范围的特征尺寸,或者是多突起模具。
所用的模具可以是硬模具,优选由铬,钢,氮化硅或氧化硅制成,或由一种弹性材料优选聚-(二甲基硅氧烷)制成的模具。
本发明方法中所用印刷压力在1和1000巴范围之间。
本发明方法的模塑成型步骤优选在0和300℃温度范围之间进行。
在模塑成型步骤中,模具向所述薄膜施加垂直和/或横向的静态或动态压力。
印刷方法可以在比模具突起特征尺寸大的面积上进行。
可以与表面垂直或倾斜的相对位置施加模具,从而在薄膜中产生取向的连续空间变化。
当模具由多个突起构成时,各突起向薄膜施加的压力也可以被分别控制,比如通过各可寻址的压电元件进行控制。
所述压力可以被局部调制,从而引起连续或不连续的各种分子再取向。
在本发明的方法中,可以根据施加的压力对再取向进行调制,从而在薄膜上用相同的调制写入信息,获得等于或大于二进制所能提供密度的信息存储密度。
附图简要说明
参照附图对本发明进行更详细的说明,其中:
附图1是本发明方法的印刷步骤示意图。
附图1a是静态模塑成型方法的示意图。
附图1b是用一个球体进行动态模塑成型方法的示意图。
附图2是模塑成型获得线条的拉曼显微图像:
(a)宽度5微米,周期10微米(b)宽度200纳米,周期1微米(c)在(a)中印刷线条延伸方向的横向的强度分布。拉曼强度在模塑线条处为较高。
图3是通过拉曼显微镜在非模塑成型区域(a)和模塑成型线条(b)上取得的拉曼二向色性。平行于和垂直于模塑成型线条的极化强度的二色性比分别是1.6和2.2。因此,这种情况下,模塑成型造成对各向异性的增强超过35%。
图4是各种放大倍数的AFM图像,显示了该方法在大区域(a)和非模塑成型区域(b)的颗粒形态上的特性。垂直尺度(从0(黑色)到z(白色)纳米)分别是(a)z=60纳米,和(b)z=50纳米。模具的突起高度大约是100纳米,模塑成型只有20微米线条外形降低意味着模具并没有与整个薄膜表面接触。(c)是垂直于(b)中模塑成型线条的外形轮廓,表示模塑成型线条对于峰顶的降低约是30%。
图5是用来进行动态模塑成型(纳米摩擦)的实验设备。通过摇杆上的砝码施加负载力,并可将其设定在一定范围内,对薄膜施加合适的压力,比如在10+4和10+5帕之间。试样的移动由测微xy平台完成。
图6是各向异性共轭分子薄膜用滚球法纳米摩擦后的偏光显微镜的光学图像(放大100倍)。在受这方法影响的区域中对白光吸收的强各向异性是显而易见的。
图7是经过平行和垂直于摩擦方向的分量之间大极化比的纳米摩擦后,沟槽中的光致发光谱。
发明的实施方式
不希望受特定的机理的限制,要注意本方法物理原理的基础是,各向异性共轭分子薄膜具有的粘性应力(剪切)张量使x-y平面上的分子沿Z轴在法向负载作用下取向。分子再取向在空间上局限于薄膜与模具接触的区域。发现表明,局部再取向效应的开始要求薄膜:
--由各向异性,或具有各向异性的形状和极化率,或具有永久偶极的分子或高分子构成;
--在施加的压力下屈服,而不是完全塑性的;
--具有大于取向粘度的平移粘度;
--不是流变性流体,至少不是经典的各向同性液体;
--对模具表面具有低粘合性,对基片表面具有高粘合性。
本方法的直接例证是通过改变薄膜结构和分子取向,薄膜形态和光学性质而给出的。改变这些性质导致改变电荷载带特性(比如在场效应晶体管(FET)中:电荷迁移率,开/关信号比,频率相关响应率),分光特性,比如光吸收和光致发光及电致发光。实例是沿各种空间方向发射或吸收光的强度,量子产额,光谱性质和形状。
在适当设计的金属或其他材料制成的模具的帮助下进行模塑成型。在动态情况下,可以使用球形端部(固定的或滚动的),以受控的负载力使其在薄膜上滑动。该方法中的薄膜温度,由每单位接触表面施加的力(即,有效压力),接触界面的尺寸,和动态方法中模具相对薄膜的前进速度,都是控制分子薄膜发生变化程度的因素。
在静态方法中(图1a),方法的有效性取决于模塑成型时压力P和温度T的共同影响,模塑成型持续时间,和啮合及接触方式。移动表面使其互相靠近,不施加力使其接触,然后迅速增大压力至选定值。
进行这些变化需要的标称压力值对每纳米厚度是0.1-10巴。有效压力取决于由模具表面形状决定的接触面积,共轭材料对模具的适应性和贴合性,以及界面的相对平整性。薄膜与模具突起的接触区域受到分子重组过程的影响,因此其性质是局部的。模具的形状(比如平行线和沟槽)能产生方位取向并从而使模塑成型区域具有单轴性。这里所述方法的结果是,一种模塑成型区域是由平面取向分子的微区构成的薄膜。模塑成型区域比未模塑成型区域更薄,因为不同分子取向导致厚度减小。
温度必须略高于阈值(比如聚合物的玻璃化转变温度),使之发生取向扩散,但是必须不到熔融温度。共轭分子薄膜的最佳结果是在池压力下在接近于,但低于材料退火温度的温度下获得的。这个温度对塑料电子学中所用的共轭分子而言,通常低于200℃。
模塑成型操作的持续时间通常比分子再取向时间短,其范围较宽:1-10分钟足以使50-100纳米的薄膜到达平衡状态。P和T的值根据薄膜的材料和厚度而变化。
在微米摩擦或纳米摩擦的动态方法中(附图1b),通过滑动彼此接触的两个表面进行模塑成型。实验设备如图5所示,球体半径是100微米,并对玻璃上100纳米的六噻吩基(T6)薄膜施加预定的负载力。球体相对试样滑动,留下均匀宽度的线条,宽度在20和2微米之间变化,取决于逐渐减小的负载力。偏光显微镜下的偏振光图像(偏振器—分析器结构)(图6)表明了与球体接触的区域中明显的光学各向异性(二向色性),而薄膜其他部分保持各向同性。偏振光下的光致发光显微分析(PL)(附图7)证实,在模塑区域中,分子沿前进方向具有平面取向。在未经模塑成型影响的部分中,分子取向在平面上是各向同性的。文献中的X射线衍射测定[B.Servet,G.Horowitz,S.Ries,O.Lagorese,P.Alnot,A.Yassar,F.Deloffre,P.Srivastara,R.Hajlaoui,P.Lang和F.Garnier,Chem.Master.6,1809(1994)]表明,长轴平均与基片表面垂直方向大致成20°角。因此,从实验数据可以推论出,在球体施加力的作用下使分子再取向与其长轴成一平面。
最好的结果是在老化薄膜上获得的,在刚制备的薄膜上能观察到,取下材料方法中会发生变差现象。除了P和T参数之外,模具相对试样的速度V也是重要的。V的典型值在1和10毫米/秒之间。分子再取向是部分由垂直力决定的,部分是由两个表面之间的横向摩擦力决定的,横向摩擦力作用于粘性应力张量的x-y分量上。
本发明所述方法是用单突起模具说明的,比如球体或扫描探针显微分析中的触针,曲率半径在几百微米和几纳米之间。本发明最普通实例中的模具具有多个突起或具有各种复杂制造结构,在静态或动态条件下引起分子再取向。虽然用静态模塑成型改变厚度是已知的,并被国际专利所覆盖(即,压凸印,纳米压印),本发明的中心内容,即由模塑成型引起的局部再取向效应,是绝对新颖和创新的。
用于引起分子再取向的模具可以是硬模具,比如由铬,钢,氧化硅,氮化硅制成。也可以使用由弹性材料,比如聚-(二甲基硅氧烷)制成的模具。
本发明方法能控制上述模塑条件,在大面积上用模具对薄膜的分子取向进行局部改变。
本申请要求其优选的意大利专利申请号MI2001A002075的内容在此参考引入。

Claims (26)

1.一种用于改进由共轭材料构成的薄膜张量特性的方法,包括将所述薄膜与模具接触和对所述模具施加模塑成型压力的步骤,该模塑成型压力适于改变所述薄膜与该模具接触的区域中构成所述材料的分子取向;
所述模具具有单个或多个突起;
所述压力在1和1000巴范围之间,所述步骤在0和300℃温度范围之间进行。
2.如权利要求1所述方法,其特征在于所述共轭材料选自具有刚性棒状共轭单元的共轭分子和聚合物,基于棒状或双轴结构的结晶液体聚合物和分子。
3.如权利要求2所述方法,其特征在于所述具有棒状共轭单元的共轭分子和聚合物选自:噻吩低聚物,其在α和/或ω位或在β或β′位上,或在任一α,ω,β或β′任何位上具有取代基的衍生物,和其相应的区域规整和非区域规整聚合物;低聚苯基,其在邻位和/或间位具有取代基的衍生物,其相应区域规整和非区域规整聚合物;萘,蒽,菲,并四苯,并五苯,和并苯衍生物;双-二噻吩并-噻吩;双-二噻吩并-富瓦烯;芴,双-二噻吩并-芴及其衍生物;低聚亚苯基亚乙烯基,其在邻位,间位和/或烯丙基位上具有取代基的衍生物;其相应的区域规整和非区域规整聚合物;和双-二苯乙烯基-芪。
4.如权利要求3所述的方法,其特征在于所述噻吩包括四、五、六、七、八噻吩。
5.如权利要求3所述的方法,其特征在于所述低聚苯基包括四、五、六、七、八亚苯基。
6.如权利要求3所述的方法,其特征在于所述低聚亚苯基亚乙烯基包括四、五、六、七、八亚苯基亚乙烯基。
7.如权利要求1所述方法,其特征在于所述材料选自具有盘状共轭单元的共轭分子和聚合物。
8.如权利要求7所述方法,其特征在于所述材料选自苝及其衍生物,萘四羧酸二酐;三苯并[de,kl,rst]戊芬,蒄,六苯并蒄,带或不带取代基;酞菁和卟啉;基于盘状结构的结晶液体分子。
9.如权利要求8所述的方法,其特征在于所述苝包括3,4,9,10-苝-四羧酸二酐。
10.如权利要求8所述的方法,其特征在于所述的酞菁和卟啉具有Cu或Zn金属中心。
11.如权利要求1所述方法,其特征在于所述材料选自具有电子各向异性和电偶极子的配位化合物和分子。
12.如权利要求11所述方法,其特征在于所述材料选自称为Alq3的三-(羟基喹啉)Al(III),及其带非Al金属中心的衍生物,或带不同键合剂的衍生物。
13.如权利要求12所述的方法,其特征在于所述非铝金属中心选自氧钒基,Pd,Pt,Zn,Ga,In,Tl,Sn或稀土元素。
14.如权利要求12所述的方法,其特征在于所述键合剂包括在2或4或5位取代的羟基喹啉或者基于氧-氮的芳香螯合剂。
15.如权利要求1所述方法,其特征在于所述张量特性是极化率,介电常数,折射率,光吸收,能量传输,电荷迁移率,电导率和热导率,磁化和磁化率,弹性,塑性和应力。
16.如权利要求1所述方法,其特征在于所述单个突起具有微米到纳米范围的尺寸。
17.如权利要求1所述方法,其特征在于所述模具是比所述薄膜硬的模具。
18.如权利要求17所述的方法,其特征在于所述模具由铬,钢或氧化硅制成。
19.如权利要求1所述方法,其特征在于所述模具是由弹性材料制成的模具。
20.如权利要求19所述的方法,其特征在于所述弹性材料包括聚二甲基硅氧烷。
21.如权利要求1所述方法,其特征在于所述模具向所述薄膜施加静态或动态的垂直和/或横向的力。
22.如权利要求1所述方法,其特征在于该模塑成型方法是在比模具突起尺寸大的面积上进行的。
23.如权利要求1所述方法,其特征在于以与表面相对倾斜的位置施加所述模具,从而产生分子取向的连续空间变化。
24.如权利要求1所述方法,其特征在于该模具由多个突起构成,这些突起对薄膜施加的压力可以被分别控制。
25.如权利要求1或24所述方法,其特征在于所述压力被调制,从而引起连续或非连续的各种局部分子再取向。
26.如权利要求25所述方法,其特征在于所述再取向效应可以被调制用于局部写入信息,并具有等于或大于二进制可获得密度的存储密度。
CNB02819781XA 2001-10-08 2002-10-07 形成和控制共轭材料薄膜的结构、电学、光学和光电子学性能各向异性的、微米和纳米级制造方法 Expired - Fee Related CN100462219C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT2001MI002075A ITMI20012075A1 (it) 2001-10-08 2001-10-08 Procedimento per il conferimento e controllo su scale micro e nanomatriche dell'anisotropia di proprieta' strutturali elettriche ottiche ed
ITMI2001A002075 2001-10-08

Publications (2)

Publication Number Publication Date
CN1564737A CN1564737A (zh) 2005-01-12
CN100462219C true CN100462219C (zh) 2009-02-18

Family

ID=11448483

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB02819781XA Expired - Fee Related CN100462219C (zh) 2001-10-08 2002-10-07 形成和控制共轭材料薄膜的结构、电学、光学和光电子学性能各向异性的、微米和纳米级制造方法

Country Status (6)

Country Link
US (1) US20040262255A1 (zh)
EP (1) EP1434681A1 (zh)
JP (1) JP2005504663A (zh)
CN (1) CN100462219C (zh)
IT (1) ITMI20012075A1 (zh)
WO (1) WO2003031158A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584655A (zh) * 2012-01-20 2012-07-18 北京印刷学院 侧链含硫醚的六苯并蔻化合物及其制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314097C (zh) * 2003-09-25 2007-05-02 茂德科技股份有限公司 隔离沟槽的侧壁掺杂方法
JPWO2006082867A1 (ja) * 2005-02-02 2008-06-26 Scivax株式会社 ハイブリッド接離システム
JP2006228860A (ja) * 2005-02-16 2006-08-31 Kyoto Univ 有機電界効果型トランジスタ及びその製造方法
CN1292977C (zh) * 2005-06-09 2007-01-03 西安交通大学 深亚微米三维滚压模具及其制作方法
US7467873B2 (en) * 2005-10-14 2008-12-23 3M Innovative Properties Company Privacy film
US20080131705A1 (en) * 2006-12-01 2008-06-05 International Business Machines Corporation Method and system for nanostructure placement using imprint lithography
JP2008235435A (ja) * 2007-03-19 2008-10-02 Ricoh Co Ltd π共役ポリマーの一軸配向膜の製造方法
AT503845B1 (de) * 2007-04-11 2008-03-15 Arc Austrian Res Centers Gmbh Optische messverfahren zur molekularen detektion anhand von relaxationsmessungen in optisch anisotropen nanopartikeln
DE102007022437A1 (de) * 2007-05-10 2008-11-13 Leonhard Kurz Gmbh & Co. Kg Verfahren zur Herstellung einer vernetzen Flüssigkristallschicht sowie Vorrichtung zur Durchführung des Verfahrens
JP4641552B2 (ja) * 2008-06-23 2011-03-02 キヤノン株式会社 微細加工方法及び微細加工装置
GB2528289A (en) 2014-07-16 2016-01-20 Kraft Foods R&D Inc A die-cut lid and associated container and method
US11251310B2 (en) * 2017-02-22 2022-02-15 Idemitsu Kosan Co., Ltd. Oxide semiconductor film, electronic device comprising thin film transistor, oxide sintered body and sputtering target

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438421A (en) * 1991-04-24 1995-08-01 Alps Electric Co., Ltd. Orientation film of liquid crystal having bilaterally asymmetric ridges separated by grooves
US5725915A (en) * 1994-09-21 1998-03-10 Alps Electric Co., Ltd. Liquid crystal display
US5754264A (en) * 1994-02-09 1998-05-19 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Ferroelectric liquid crystal device alignment
CN1216556A (zh) * 1996-04-17 1999-05-12 德国赫彻斯特研究技术两合公司 含螺原子的聚合物和其作为电致发光材料的用途
CN1227040A (zh) * 1996-07-29 1999-08-25 剑桥显示技术有限公司 具有电极保护的场致发光元件
US6117529A (en) * 1996-12-18 2000-09-12 Gunther Leising Organic electroluminescence devices and displays

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2484818A (en) * 1944-12-09 1949-10-18 Gen Polarizing Company Light polarizing mirror
US3235631A (en) * 1962-08-23 1966-02-15 Ind Biology Lab Inc Polarization process
US3437401A (en) * 1964-05-25 1969-04-08 Visorama Printed Motions Co Light-intercepting sheet for an illuminated display device
US3601469A (en) * 1969-08-11 1971-08-24 Anthony Siksai Rotary polarizer
US4033059A (en) * 1972-07-06 1977-07-05 American Bank Note Company Documents of value including intaglio printed transitory images
US4575838A (en) * 1984-02-29 1986-03-11 Rca Corporation Sandwich-type capacitive electronic discs
US5151472A (en) * 1990-08-10 1992-09-29 General Dynamics Corporation, Convair Division Method of preparing rigid rod polymers in thermoplastic matrices
US5281371A (en) * 1990-11-16 1994-01-25 Canon Kabushiki Kaisha Method and apparatus for forming substrate sheet for optical recording medium
DE4213802A1 (de) * 1991-07-08 1993-01-21 Alps Electric Co Ltd Fluessigkristall-orientierungs-film, verfahren zu seiner herstellung, fluessigkristall-vorrichtung und verfahren zu ihrer herstellung
EP0544529B1 (en) * 1991-11-28 1997-03-26 Canon Kabushiki Kaisha Apparatus and process for manufacturing substrate sheet for information recording mediums
DE59205351D1 (de) * 1991-12-05 1996-03-28 Hoffmann La Roche Mikromechanisches Verfahren zur Strukturierung einer Polymer-Orientierungsschicht
US5512131A (en) * 1993-10-04 1996-04-30 President And Fellows Of Harvard College Formation of microstamped patterns on surfaces and derivative articles
US5556706A (en) * 1993-10-06 1996-09-17 Matsushita Electric Industrial Co., Ltd. Conductive layered product and method of manufacturing the same
US5599899A (en) * 1993-11-01 1997-02-04 Research Corporation Technologies, Inc. Rigid rod and ladder polymers and process for making same
US6023312A (en) * 1995-10-26 2000-02-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Optical device with memory function employing liquid crystal/orientation-sustaining material composite, and method for using same
KR100296613B1 (ko) * 1997-02-06 2001-09-22 포만 제프리 엘 분자,이를포함하는적층매질,상기적층매질에패턴을형성하는방법및상기적층매질에서패턴을검색하는방법
US5973834A (en) * 1997-12-19 1999-10-26 Polaroid Corporation Method for the manufacture of a light-polarizing polyvinylene sheet
DE59909408D1 (de) * 1998-06-16 2004-06-09 Whd Elektron Prueftech Gmbh Merkmalsstoffe und sicherheitsmerkmale und verfahren zur integration dieser in die papierstoffbahn sowie verfahren zur prüfung
WO2001029146A1 (en) * 1999-10-18 2001-04-26 Foster-Miller, Inc. Environmentally friendly de-icer and anti-icer compositions
JP4984343B2 (ja) * 2000-09-29 2012-07-25 株式会社日立製作所 有機電界発光素子及びそれを用いた光電子素子
US6597012B2 (en) * 2001-05-02 2003-07-22 Junji Kido Organic electroluminescent device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438421A (en) * 1991-04-24 1995-08-01 Alps Electric Co., Ltd. Orientation film of liquid crystal having bilaterally asymmetric ridges separated by grooves
US5754264A (en) * 1994-02-09 1998-05-19 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Ferroelectric liquid crystal device alignment
US5725915A (en) * 1994-09-21 1998-03-10 Alps Electric Co., Ltd. Liquid crystal display
CN1216556A (zh) * 1996-04-17 1999-05-12 德国赫彻斯特研究技术两合公司 含螺原子的聚合物和其作为电致发光材料的用途
CN1227040A (zh) * 1996-07-29 1999-08-25 剑桥显示技术有限公司 具有电极保护的场致发光元件
US6117529A (en) * 1996-12-18 2000-09-12 Gunther Leising Organic electroluminescence devices and displays

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584655A (zh) * 2012-01-20 2012-07-18 北京印刷学院 侧链含硫醚的六苯并蔻化合物及其制备方法
CN102584655B (zh) * 2012-01-20 2014-06-25 北京印刷学院 侧链含硫醚的六苯并蔻化合物及其制备方法

Also Published As

Publication number Publication date
EP1434681A1 (en) 2004-07-07
JP2005504663A (ja) 2005-02-17
CN1564737A (zh) 2005-01-12
WO2003031158A1 (en) 2003-04-17
US20040262255A1 (en) 2004-12-30
ITMI20012075A1 (it) 2003-04-08

Similar Documents

Publication Publication Date Title
CN100462219C (zh) 形成和控制共轭材料薄膜的结构、电学、光学和光电子学性能各向异性的、微米和纳米级制造方法
Min et al. Organic nanowire fabrication and device applications
Gamota et al. Printed organic and molecular electronics
Schön et al. Gate-induced superconductivity in a solution-processed organic polymer film
Hu et al. High-throughput fabrication of organic nanowire devices with preferential internal alignment and improved performance
Sirringhaus et al. High-resolution inkjet printing of all-polymer transistor circuits
Reese et al. Organic thin film transistors
Xu et al. Patterning of conjugated polymers for organic optoelectronic devices
Rogers et al. Printing process suitable for reel‐to‐reel production of high‐performance organic transistors and circuits
Li et al. Organic thin film transistor integration: A hybrid approach
Jacobs et al. Direct-write optical patterning of P3HT films beyond the diffraction limit
Jung et al. A TIPS-TPDO-tetraCN-based n-type organic field-effect transistor with a cross-linked PMMA polymer gate dielectric
Zhao et al. Role of borderline solvents to induce pronounced extended-chain lamellar order in π-stackable polymers
Lodha et al. Prospects of manufacturing organic semiconductor-based integrated circuits
Takami et al. Conductivity measurement of polydiacetylene thin films by double-tip scanning tunneling microscopy
CN101849281A (zh) 一种制造有机电子器件或者光电器件的方法
Nardes On the conductivity of PEDOT: PSS thin films
US20040007758A1 (en) Method for conductance switching in molecular electronic junctions
Imanishi et al. Uniaxial orientation of P3HT film prepared by soft friction transfer method
Hussain et al. Langmuir–Blodgett films and molecular electronics
Tajima Look beyond the surface: recent progress in applications of surface-segregated monolayers for organic electronics
US20030141498A1 (en) Electronic devices containing organic semiconductor materials
Wang et al. Molecular alignment in submicron patterned polymer matrix using nanoimprint lithography
Collins Next stretch for plastic electronics
Bedolla‐Valdez et al. Reversible doping and photo patterning of polymer nanowires

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090218

Termination date: 20101007