CN100443869C - High stability and high spectral resolution interference imaging spectrometer imaging method and spectrometer - Google Patents
High stability and high spectral resolution interference imaging spectrometer imaging method and spectrometer Download PDFInfo
- Publication number
- CN100443869C CN100443869C CNB2005100961211A CN200510096121A CN100443869C CN 100443869 C CN100443869 C CN 100443869C CN B2005100961211 A CNB2005100961211 A CN B2005100961211A CN 200510096121 A CN200510096121 A CN 200510096121A CN 100443869 C CN100443869 C CN 100443869C
- Authority
- CN
- China
- Prior art keywords
- light
- beam splitter
- reflected
- optical path
- reflector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 28
- 230000003595 spectral effect Effects 0.000 title claims abstract description 16
- 230000003287 optical effect Effects 0.000 claims abstract description 78
- 238000000034 method Methods 0.000 claims abstract description 9
- 238000001228 spectrum Methods 0.000 claims description 14
- 230000001427 coherent effect Effects 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 abstract description 4
- 230000009466 transformation Effects 0.000 abstract description 2
- 230000007246 mechanism Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Images
Landscapes
- Spectrometry And Color Measurement (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种快速获得目标干涉光谱的动镜式干涉成像方法及实现该方法的光谱仪,具体涉及一种高稳定度、高光谱分辨率干涉成像光谱仪的成像方法及实现该方法的光谱仪。The invention relates to a moving-mirror interference imaging method for quickly obtaining target interference spectrum and a spectrometer for realizing the method, in particular to an imaging method for an interference imaging spectrometer with high stability and high spectral resolution and a spectrometer for realizing the method.
背景技术 Background technique
较早的成像光谱仪有法国太空空间与战略系统分部于1991年研制出的迈克尔逊干涉型时间调制空间成像傅里叶变换光谱仪【D Simenoni.New concept forhigh-compact imaging Fourier transform spectrometer(IFTS)[C].SPIE,1991,1479:127-138.】,美国罗伦斯利物摩尔实验室于1995年研制出的迈克尔逊干涉型时间调制空间成像傅里叶变换光谱仪【Michael R Carter,Charles LBennctt,DavidJ Fields,et al.Live more imaging Fourier transform spectrometer[C].SPIE,1995,2480:380-386.】。其采用线性往复扫描方式,每次扫描结束时必须转向,待稳定后再采集数据。所以,采集数据时必须通过一束参考激光提供相应的相干采样图谱。扫描速度通过伺服系统控制,并在转向时提供逆程扫描,随着扫描频率、速度的增加,往返时间成为总扫描时间的重要部分。为了得到精确的采样干涉图,伺服系统所需的带宽急剧增加。而随着扫描速度的增加,分辨率会受上述因素的制约。由于往返时间成为总扫描时间的重要部分,占空比会因伺服系统功率、扫描器件尺寸大小、扫描器件重量及系统稳定时间的制约而降低。例如,在360次/秒扫描、单次扫描时间为2.8毫秒的扫描频率下极难实现往复扫描。1-2毫秒的返程与稳定时间会将占空比降低至33-50%。在重复频率很高的情况下,将制约对分辨率有影响的扫描长度。因此,迈克尔逊干涉型时间调制空间成像傅里叶变换光谱仪稳定性差,工艺复杂,只适用于空间和光谱时间变化较慢的目标。The earlier imaging spectrometer is the Michelson interferometric time-modulated space imaging Fourier transform spectrometer [D Simenoni. New concept for high-compact imaging Fourier transform spectrometer (IFTS)[ C]. SPIE, 1991, 1479: 127-138.], the Michelson interferometric time-modulated spatial imaging Fourier transform spectrometer developed by the Lawrence Livermore Laboratory in the United States in 1995 [Michael R Carter, Charles LBennctt , DavidJ Fields, et al. Live more imaging Fourier transform spectrometer[C]. SPIE, 1995, 2480: 380-386.]. It adopts a linear reciprocating scanning method, and must turn at the end of each scanning, and collect data after stabilization. Therefore, a reference laser must be used to provide a corresponding coherent sample spectrum when collecting data. The scanning speed is controlled by the servo system, and reverse scanning is provided when turning. As the scanning frequency and speed increase, the round-trip time becomes an important part of the total scanning time. In order to obtain an accurate sampled interferogram, the bandwidth required by the servo system increases dramatically. As the scanning speed increases, the resolution will be restricted by the above factors. Since the round trip time becomes an important part of the total scan time, the duty cycle will be reduced due to the constraints of servo system power, scan device size, scan device weight, and system settling time. For example, it is extremely difficult to achieve reciprocating scanning at a scanning frequency of 360 scans per second and a single scanning time of 2.8 milliseconds. A return and settling time of 1-2 milliseconds reduces the duty cycle to 33-50%. In the case of a high repetition rate, the scan length which affects the resolution will be constrained. Therefore, the Michelson interferometric time-modulated spatial imaging Fourier transform spectrometer has poor stability and complicated process, and is only suitable for objects with slow spatial and spectral time changes.
转镜干涉光谱成像是变形的时间调制型迈可尔逊干涉技术【J.Peter Dybward,et.al.“New Interferometer Design Concept”,STC Technical Report 2637,Science and Technology Corp,Hampton,VA,under contract#DAAA15-89-D-007,US Army CRDEC,APG,MD,8/92.】,该技术在扫描过程中有空扫。即转镜旋转时仅在一定角度内可获得干涉光谱图,而在其他角度为空扫。工作效率低,且只能对单象素取样,即只能对点目标扫描,只能应用于一个角度光线的扫描。Rotating mirror interferometer imaging is a deformed time-modulated Michelson interferometry [J.Peter Dybward, et.al. "New Interferometer Design Concept", STC Technical Report 2637, Science and Technology Corp, Hampton, VA, under contract #DAAA15-89-D-007, US Army CRDEC, APG, MD, 8/92.], the technology has an empty sweep during the scan. That is, when the rotating mirror rotates, the interference spectrum can only be obtained within a certain angle, and it is empty scan at other angles. The work efficiency is low, and it can only sample a single pixel, that is, it can only scan a point target, and can only be applied to the scanning of an angle of light.
一种超高速扫描傅立叶变化红外光谱测定法(Peter R.Griffiths,Blayne L.Hirsche,Christopher J.Manning.Ultra-rapid-scanningFourier transforminfared spectrometry.Vibrational Spectroscopy19(1999)165-176.),虽解决了转镜空扫的问题,但仍只能对单象素取样。如果要获得线目标或者面目标的干涉图谱,就必须在系统前部附加一个前置扫描系统,实现对目标每个点的逐个扫描,最后集合而获得整个目标的干涉图谱。存在的缺陷是系统结构复杂,体积较大,重量重。由于实时性差,不仅影响光谱图的质量,且扫描时间长,扫描速度低,分辨率低,适用的工作范围也较窄。A kind of ultra-high-speed scanning Fourier transforminfared spectrometry (Peter R.Griffiths, Blayne L.Hirsche, Christopher J.Manning.Ultra-rapid-scanningFourier transforminfared spectrometry.Vibrational Spectroscopy19(1999)165-176.), although solved The problem of mirror empty scanning, but still can only sample a single pixel. If you want to obtain the interferogram of a line target or a surface target, you must attach a pre-scanning system to the front of the system to scan each point of the target one by one, and finally gather to obtain the interferogram of the entire target. The existing defect is that the system structure is complex, the volume is large, and the weight is heavy. Due to the poor real-time performance, not only the quality of the spectrogram is affected, but also the scanning time is long, the scanning speed is low, the resolution is low, and the applicable working range is also narrow.
发明内容 Contents of the invention
本发明的目的在于提供一种高稳定度高光谱分辨率的干涉成像光谱仪的成像方法及实现该方法的光谱仪,其解决了背景技术中只能对单象素取样、工作效率低,或系统结构复杂、扫描速度低、稳定性差,光谱分辨率相对较低的技术问题。The object of the present invention is to provide an imaging method of an interference imaging spectrometer with high stability and high spectral resolution and a spectrometer for realizing the method, which solves the problems of single-pixel sampling, low work efficiency, or system structure in the background technology. Complexity, low scanning speed, poor stability, and relatively low spectral resolution technical problems.
本发明的技术解决方案是:Technical solution of the present invention is:
一种高稳定度高光谱分辨率干涉成像光谱仪的成像方法,其特殊之处在于:该方法包括以下步骤An imaging method for an interference imaging spectrometer with high stability and high spectral resolution, which is special in that the method includes the following steps
1)准直透镜1将来自目标的光束转换成平行光束;1) The
2)分束器2将平行光束分为反射光束IF和透射光束IT;2) The
(i)被分束器2分出的反射光束IF经转镜3和A角反射器5多次反射,再回到分束器2,通过傅立叶透镜8会聚到探测器9,形成第一束光的光程;(i) The reflected light beam I F split by the
(ii)被分束器2分出的透射光束IT到达平面反射镜7,经平面反射镜7和B角反射器6多次反射,再回到分束器2,通过傅立叶透镜8会聚到探测器9,形成第二束光的光程;(ii) the transmitted light beam I T that is split by the
3)第一束光与第二束光通过傅立叶透镜8到达探测器9时产生光程差,成为两束相干光,在探测器9上产生干涉光谱图;3) When the first beam of light and the second beam of light pass through the Fourier
4)沿垂直于分束器2平面的方向同步移动A角反射器5和B角反射器6,变化第一束光和第二束光通过傅立叶透镜8到达探测器9的光程差范围,在探测器9上产生与变化光程差范围所对应的干涉光谱图;4) synchronously move the
5)不同光程差范围所对应的干涉光谱图叠加后,经计算机处理系统12进行傅立叶变换,得到高光谱分辨率的目标复原图像。5) After the interferometric spectra corresponding to different optical path difference ranges are superimposed, Fourier transform is performed by the computer processing system 12 to obtain a target restoration image with high spectral resolution.
上述第一束光的光程可以是The optical path of the above-mentioned first beam of light can be
1)被分束器2分出的反射光束IF 1) The reflected light beam I F split by the
(i)被转镜3反射到A角反射器5,A角反射器5把入射的光沿与入射方向平行的方向反射回转镜3;(i) is reflected to the
(ii)转镜3将光反射回分束器2;(ii) the rotating
(iii)反射回分束器2的光又被分为反射光束IFF和透射光束IFT;(iii) The light reflected back to the
2)透射光束IFT透过分束器(2),通过傅立叶透镜(8)会聚到探测器(9);2) The transmitted light beam I FT passes through the beam splitter (2), and converges to the detector (9) through the Fourier lens (8);
上述第二束光的光程可以是The optical path of the above-mentioned second beam of light can be
1)被分束器2分出的透射光束IT 1) The transmitted light beam IT split by the
(i)被平面反射镜7反射到B角反射器6,B角反射器6把入射光沿与入射方向平行的方向反射回平面反射镜7;(i) is reflected to the
(ii)平面反射镜7将光反射回分束器2:(ii)
(iii)反射回分束器2的光又被分为反射光束ITF和透射光束ITT:(iii) The light reflected back to the
2)反射光束ITF,通过傅立叶透镜(8)会聚到探测器(9).2) The reflected light beam I TF converges to the detector (9) through the Fourier lens (8).
一种实现上述高稳定度高光谱分辨率干涉成像光谱仪成像方法的光谱仪,包括傅立叶透镜8,位于傅立叶透镜8焦面上的探测器9,与探测器9相连接的计算机处理系统12,设置于前置光学系统11主光轴上的准直透镜1,设置于准直透镜1轴线00′上的分束器2,其特殊之处在于:它还包括平面反射镜7,与电机4相连的转镜3,与驱动机构10相连、可沿垂直于分束器2平面的方向同步移动的A角反射器5和B角反射器6;所述平面反射镜7的位置应满足:当转镜3、A角反射器5与B角反射器6在某一位置定位时,A spectrometer for realizing the imaging method of the above-mentioned high-stability and high-spectral-resolution interference imaging spectrometer, comprising a Fourier
1)主光轴上的光被分束器2第一次分出的反射光束IF为第一束光;第一束光经转镜3和A角反射器5多次反射,再回到分束器2,通过傅立叶透镜8会聚到探测器9形成的第一束光的光程:1) the light on the main optical axis is the first beam light by the reflected light beam I F that the beam splitter 2 splits for the first time; The
2)主光轴上的光被分束器2第一次分出的透射光束IT为第二束光;第二束光到达平面反射镜7,经平面反射镜7和B角反射器6多次反射,再回到分束器2,通过傅立叶透镜8会聚到探测器9形成的第二束光的光程;2) the light on the main optical axis is the second beam of light by the transmitted light beam IT that the beam splitter 2 splits for the first time; the second beam of light arrives at the
3)第一束光再回到分束器2的交点与第二束光再回到分束器2的交点相重合:3) The intersection point where the first beam returns to the
4)第一束光被分束器2再次分出的透射光束IFT和第二束被分束器2再次分出的反射光束ITF光路重合;4) the optical path of the transmitted light beam I FT split by the
5)第一束光的光程与第二束光的光程相等;所述分束器2的位置还应满足:5) The optical path of the first beam of light is equal to the optical path of the second beam of light; the position of the
1)能接收到通过准直透镜1的初始入射光;1) Can receive the initial incident light passing through the collimating
2)能接收到经转镜3和A角反射器5反射回的反射光;2) Can receive the reflected light reflected back by the
3)能接收到平面反射镜7和B角反射器6反射回的反射光;所述A角反射器5、B角反射器6的结构相同,两者背向固连为一体:所述傅立叶透镜8的光轴位于第一束光的透射光束IFT与第二束光的反射光束ITF相重合的光路上。3) Can receive the reflected light reflected back by the
上述探测器9以采用红外探测器为佳,具体可采用CCD红外探测器。The above-mentioned
上述转镜3以由圆柱体的斜端面构成为宜,其便于加工、安装。It is advisable for the above-mentioned
本发明具有以下优点:The present invention has the following advantages:
1.可实现高频扫描,且稳定性好。采用转镜式动镜,系统运行连续,当扫描速度很高时,由于惯性的作用,旋转伺服系统仍能保持较好的稳定性。1. High-frequency scanning can be realized, and the stability is good. With the rotating mirror moving mirror, the system runs continuously. When the scanning speed is high, the rotation servo system can still maintain good stability due to the inertia.
2.抗干扰能力强。由于获得干涉图的时间极短,系统对振动敏感的程度低,机械振动频率一般对光谱图的质量无影响。2. Strong anti-interference ability. Due to the extremely short time to obtain the interferogram, the system is less sensitive to vibration, and the frequency of mechanical vibration generally has no effect on the quality of the spectrogram.
3.角反射器与转镜匹配形成的光路具有自补偿特性,从而使本发明具有较好的抗干扰性。3. The optical path formed by the matching of the corner reflector and the rotating mirror has self-compensation characteristics, so that the present invention has better anti-interference performance.
4.扫描效率高。转镜以一个圆柱体的具有一定倾斜度的端面作为反射面,在电机的带动下转动,无空扫现象,扫描效率高。4. High scanning efficiency. The rotating mirror uses the end surface of a cylinder with a certain inclination as the reflecting surface, and it rotates under the drive of the motor, so there is no idle scanning phenomenon and the scanning efficiency is high.
5.可实现线目标或面目标的直接扫描。采用角反射镜,不仅能扫描主光轴光线,还可扫描具有一定角度的光线,即可对线目标或面目标直接进行扫描,缩短了扫描时间,进一步提高了扫描效率和光谱图的质量。5. It can realize direct scanning of line target or surface target. The use of corner reflectors can not only scan the light of the main optical axis, but also scan the light with a certain angle, which can directly scan the line target or surface target, shorten the scanning time, and further improve the scanning efficiency and the quality of the spectrogram.
6.实时性好,分辨率更高,工作范围宽。尤适用于对较大目标的大面积扫描。6. Good real-time performance, higher resolution and wide working range. Especially suitable for large area scanning of larger objects.
7.功耗低,所需驱动功率小。7. Low power consumption and low driving power required.
8.结构简单,体积小,重量轻。8. Simple structure, small size and light weight.
9.结构相同的两个角反射器背向固连为一体,结构具有对称性,可以抵消加工产生的误差的影响,在装配时位置也容易确定。9. The two corner reflectors with the same structure are fixed back to one body, and the structure is symmetrical, which can offset the influence of processing errors, and the position is easy to determine during assembly.
10.A角反射器5、与B角反射器6绑定为一体,一起作水平方向移动时,两者受到水平位移的影响会相互抵消,具有自补偿的特性,提高了信噪比。10. The
11.采用B角反射器6和平面反射镜7结合的设计,大大缩小了仪器的整体结构,减轻了仪器的重量。11. The combination design of the B-
12.光谱分辨率大大提高。A角反射器5与B角反射器6在驱动机构10的带动下同时做水平运动,获得不同光程差范围内的干涉光谱图,这些干涉光谱图以立方体数据方式叠加后。12. The spectral resolution is greatly improved. The
经计算机处理可以获得较A角反射器5、与B角反射器6位置固定时几倍甚至更高的光谱分辨率。Through computer processing, the spectral resolution can be several times or even higher than when the positions of the
附图说明 Description of drawings
图1为本发明的结构原理示意图;Fig. 1 is the structural principle schematic diagram of the present invention;
图2为本发明实施例的结构示意图。Fig. 2 is a schematic structural diagram of an embodiment of the present invention.
附图标号说明:1-准直透镜,2-分束器,3-转镜,4-电机,5-A角反射器,6-B角反射器,7-平面反射镜,8-傅立叶透镜,9-探测器,10-驱动机构,11-前置光学系统,12-计算机处理系统,13-被观测物。Description of reference numerals: 1-collimating lens, 2-beam splitter, 3-turning mirror, 4-motor, 5-A corner reflector, 6-B corner reflector, 7-plane reflector, 8-Fourier lens , 9-detector, 10-driving mechanism, 11-front optical system, 12-computer processing system, 13-observed object.
具体实施方式Detailed ways
参见图1,本发明的光学系统主要由准直透镜1、分束器2、转镜3、A角反射器5与B角反射器6、前置光学系统11和傅立叶透镜8构成;干涉系统主要由准直透镜1、分束器2、转镜3、A角反射器5与B角反射器6、平面反射镜7和傅立叶透镜8构成。探测系统主要由探测器9构成,信息处理系统主要由计算机处理系统12构成,见附图2。Referring to Fig. 1, the optical system of the present invention is mainly made of
本发明的工作原理:Working principle of the present invention:
1)在转镜3静止时,主光轴上的光束被分束器2分成两束光,该两束光的光程相等。1) When the
2)当转镜3在电机4的带动下转动时,被分束器2第一次分出的反射光束IF,经转镜3与A角反射器5多次反射后,回到分束器2,再到达傅立叶透镜8的第一束光的光程会发生变化。而被分束器2第一次分出的透射光束IT,经过平面反射镜7与B角反射器6多次反射后,回到分束器2,被分束器2反射到达傅立叶透镜8的第二束光的光程不变化。两束光的光路不再重合,最后到达探测器9的光程不再相等,从而产生光程差,成为两束相干光,在探测器9上产生干涉图。随着转镜3的转动,两束光的光程差不断变化,由此获得一定光程差范围内的干涉光谱图。2) When the
3)转镜3在电机4带动下转动的同时,A角反射器5与B角反射器6在驱动机构10的带动下沿垂直于分束器2平面的方向同步移动,使第一束光和第二束光通过傅立叶透镜8到达探测器9的光程差范围发生变化,在探测器9上产生不同光程差范围内的干涉光谱图。不同光程差范围所对应的干涉光谱图以立方体数据方式叠加,经计算机处理系统12进行傅立叶变换后,可得到较A角反射器5与B角反射器6位置固定时几倍甚至更高的高光谱分辨率的目标复原图像。3) While the
例如:A角反射器5与B角反射器6在某位置时,光程差范围为[0,1];当A角反射器5与B角反射器6移动到下一位置时,光程差范围变为[1,2;A角反射器5与B角反射器6继续移动,在下一位置光程差范围又变为[2,3]…依次类推,在探测器9上产生与变化光程差范围所对应的干涉光谱图。这些不同光程差范围所对应的干涉光谱图叠加后,经过计算机处理系统12进行傅立叶变换,得到复原的目标图像。For example: when
4)转镜3在电机4带动下高速转动,即可实现高速扫描。4) The
参见图1,本发明准直透镜1的轴线00′位于前置光学系统11的主光轴上。分束器2的位置应确保既能接收到通过准直透镜1的初始入射光,又能接收到通过转镜3与A角反射器5、平面反射镜7与B角反射器6多次反射回的光。与电机4相连的转镜3的位置根据实际设计需要设置。A角反射器5、B角反射器6的结构相同,两者背向固连为一体,与驱动机构10相连,可沿垂直于分束器2平面的方向同步移动。平面反射镜7的位置应满足:当转镜3、A角反射器5与B角反射器6在某一位置定位时,Referring to FIG. 1 , the axis 00 ′ of the
1)主光轴上的光在分束器2上第一次被分出的反射光束IF为第一束光;其经转镜3和A角反射器5多次反射,再回到分束器2,被分束器2分为反射光束IFF和透射光束IFr,透射光束IFT通过傅立叶透镜8到达探测器9的光程形成第一束光的光程。1) The reflected light beam I F that the light on the main optical axis is separated on the
2)主光轴上的光在分束器2上第一次被分出的透射光束IT为第二束光;其经平面反射镜7和B角反射器6多次反射,再回到分束器2,被分束器2分为反射光束ITF和透射光束ITT,反射光束ITF通过傅立叶透镜8到达探测器9的光程形成第二束光的光程。2) the light on the main optical axis is split the transmitted light beam IT for the first time on the
3)第一束光再回到分束器2的交点与第二束光再回到分束器2的交点相重合。3) The intersection point where the first light beam returns to the
4)第一束光被分束器2再次分出的透射光束IFT和第二束被分束器2再次分出的反射光束ITF光路重合。4) The optical paths of the first transmitted light beam I FT split by the
5)第一束光的光程与第二束光的光程相等。傅立叶透镜8的光轴位于第一束光的透射光束IFT与第二束光的反射光束ITF相重合的光路上。探测器9位于傅立叶透镜8的焦面上。探测器9以采用红外CCD探测器为宜。图2所示的被观测物13是火箭,其是本发明用于观测火箭尾焰的示意图。5) The optical distance of the first beam of light is equal to the optical distance of the second beam of light. The optical axis of the
本发明光的传输过程:The light transmission process of the present invention:
1.来自目标的光束经前置光学系统11到达准直透镜1,准直透镜1将目标光束转换成平行光束;平行光束投射到镀有半透半反膜的分束器2上。1. The light beam from the target reaches the
2.分束器2将光束分为反射光束IF和透射光束IT。其中,2. The
1)被分束器2分出的反射光束IF 1) The reflected light beam I F split by the
(1)经转镜3反射到A角反射器5,A角反射器5把入射的光沿与入射方向平行的方向反射回转镜3;(1) reflect to the
(2)转镜3将光反射回分束器2;(2) The
(3)反射回分束器2的光再次被分为反射光束IFF和透射光束IFT。2)被分束器2分出的透射光束IT (3) The light reflected back to the
(1)被平面反射镜7反射到B角反射器6,B角反射器6把入射的光沿与入射方向平行的方向反射回平面反射镜7;(1) is reflected to the
(2)平面反射镜7将光反射回分束器2;(2)
(3)反射回分束器2的光再次被分为反射光束ITF和透射光束ITT。(3) The light reflected back to the
3,被分束器2分出的反射光束IF,再次被分束器2分出的透射光束IFT,透过分束器2到达傅立叶透镜8,被位于傅立叶透镜8焦面上的探测器9接收。3. The reflected light beam I F split by the
4.被分束器2分出的透射光束IT,再次被分束器2分出的反射光束ITF,通过傅立叶透镜8,被位于傅立叶透镜8焦面上的探测器9接收。4. The transmitted beam I T split by the
5.分束器2第一次分出的反射光束IF,经转镜3和第一A角反射器5反射,再回到分束器2,通过傅立叶透镜8会聚到探测;分束器2第一次分出的透射光束IT,到达平面反射镜7,又经平面反射镜7和B角反射器6反射,再回到分束器2,通过傅立叶透镜8会聚到探测器9形成第二束光的光程;该两束光产生光程差,成为两束相干光,在探测器9上产生干涉光谱图。5. The reflected light beam I F split by the
6.A角反射器5和B角反射器6在驱动机构10的带动下沿垂直于分束器2平面的方向同步移动,变化第一束光和第二束光通过傅立叶透镜8到达探测器9的光程差范围,可获得第一束光和第二束光在不同光程差范围内的干涉光谱图。6. The
7.不同光程差范围所对应的干涉光谱图叠加后,经计算机处理系统12进行傅立叶变换,得到高光谱分辨率的目标复原图像。7. After superimposing the interference spectrograms corresponding to different optical path difference ranges, Fourier transform is performed by the computer processing system 12 to obtain a target restoration image with high spectral resolution.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100961211A CN100443869C (en) | 2005-10-09 | 2005-10-09 | High stability and high spectral resolution interference imaging spectrometer imaging method and spectrometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100961211A CN100443869C (en) | 2005-10-09 | 2005-10-09 | High stability and high spectral resolution interference imaging spectrometer imaging method and spectrometer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1945244A CN1945244A (en) | 2007-04-11 |
CN100443869C true CN100443869C (en) | 2008-12-17 |
Family
ID=38044744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100961211A Expired - Fee Related CN100443869C (en) | 2005-10-09 | 2005-10-09 | High stability and high spectral resolution interference imaging spectrometer imaging method and spectrometer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100443869C (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5101468B2 (en) * | 2007-12-07 | 2012-12-19 | 富士フイルム株式会社 | IMAGING SYSTEM, IMAGING DEVICE EQUIPPED WITH THIS IMAGING SYSTEM, PORTABLE TERMINAL DEVICE, IN-VEHICLE DEVICE, MEDICAL DEVICE, AND IMAGING SYSTEM MANUFACTURING METHOD |
CN102564589B (en) * | 2011-12-20 | 2013-07-24 | 华中科技大学 | Spectral characteristic detection identification method for multi-wave-band moving objects and device thereof |
CN103308926B (en) * | 2013-06-18 | 2015-07-22 | 浙江大学 | A high spectral resolution lidar device |
CN113640241B (en) * | 2021-08-20 | 2023-03-14 | 中国科学院空天信息创新研究院 | Oscillating Fourier transform infrared spectrum device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5066990A (en) * | 1988-11-17 | 1991-11-19 | Erwin Kayser - Threde Gmbh | Reflector system for michelson interferometers |
CN1145114A (en) * | 1994-03-10 | 1997-03-12 | 奥普斯公司 | Interferometer and Fourier transform spectrometer |
CN2619244Y (en) * | 2003-05-12 | 2004-06-02 | 中国科学院西安光学精密机械研究所 | Optical path difference rotating mirror system |
-
2005
- 2005-10-09 CN CNB2005100961211A patent/CN100443869C/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5066990A (en) * | 1988-11-17 | 1991-11-19 | Erwin Kayser - Threde Gmbh | Reflector system for michelson interferometers |
CN1145114A (en) * | 1994-03-10 | 1997-03-12 | 奥普斯公司 | Interferometer and Fourier transform spectrometer |
CN2619244Y (en) * | 2003-05-12 | 2004-06-02 | 中国科学院西安光学精密机械研究所 | Optical path difference rotating mirror system |
Non-Patent Citations (2)
Title |
---|
基于高速转镜得高分辩率干涉光谱仪非线性理论研究. 苏星,黄惠民,相里斌.光子学报,第30卷第12期. 2001 * |
转镜式傅立叶变换光谱仪光程差非线性得研究. 杨晓许等.光学学报,第24卷第10期. 2004 * |
Also Published As
Publication number | Publication date |
---|---|
CN1945244A (en) | 2007-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7710577B2 (en) | Multiplexing spectrum interference optical coherence tomography | |
CN103076090B (en) | Laser interferometer optical path difference location method and system | |
CN100464697C (en) | Transmissive fast optical scanning delay line for OCT balanced detection | |
CN109297600B (en) | Fourier transform hyperspectral imaging device based on high-speed double-reflection rotating mirror | |
CN112945130B (en) | Ultrafast Microscopic Imaging System for Simultaneous Acquisition of Depth and Surface Information | |
CN101368849B (en) | Compact Fresnel two-sided mirror full reflection large visual field interference imaging optical spectrometer light path structure | |
CN104568152B (en) | transverse shearing interference scanning Fourier transform imaging spectrometer | |
CN102253393A (en) | Multispectral streak tube laser radar polarization imaging device | |
CN203869776U (en) | Scanning interferometer device for imaging Fourier transform spectrometry | |
CN110160440A (en) | A kind of three-dimensional colour dynamic imaging device and method based on frequency domain OCT technology | |
US11971303B2 (en) | Quadrilateral common-path time-modulated interferometric spectral imaging device and method | |
CN203069274U (en) | Laser interferometer optical path difference positioning system | |
CN1828332A (en) | Laser detection device for invisible flying target | |
CN100443869C (en) | High stability and high spectral resolution interference imaging spectrometer imaging method and spectrometer | |
CN103439703B (en) | The reflective two-sided translation emitter of Orthoptic synthetic aperture laser imaging radar | |
CN209043460U (en) | Fourier transform hyperspectral imaging device based on high-speed double-reflection rotating mirror | |
CN115031630A (en) | Optical frequency comb dispersion interference plane pose measuring device and measuring method | |
CN100401027C (en) | Imaging method of high-stability interference imaging spectrometer and spectrometer for realizing the method | |
CN201897569U (en) | A multi-path interferometer | |
CN112684460A (en) | Area array sweep frequency measuring device and method | |
CN100485331C (en) | Imaging method of high-stability interference imaging spectrometer and spectrometer for realizing the method | |
CN116223374B (en) | Optical coherence tomography multi-point distributed imaging method | |
CN107664514A (en) | A kind of multi-frame interferometry imaging optical system | |
CN100416240C (en) | High stability and high spectral resolution interference imaging spectrometer imaging method and spectrometer | |
CN209514069U (en) | Laser radar scanning detection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081217 Termination date: 20111009 |