CN100438162C - 混合式燃料电池-脉冲引爆动力装置 - Google Patents
混合式燃料电池-脉冲引爆动力装置 Download PDFInfo
- Publication number
- CN100438162C CN100438162C CNB2004100716836A CN200410071683A CN100438162C CN 100438162 C CN100438162 C CN 100438162C CN B2004100716836 A CNB2004100716836 A CN B2004100716836A CN 200410071683 A CN200410071683 A CN 200410071683A CN 100438162 C CN100438162 C CN 100438162C
- Authority
- CN
- China
- Prior art keywords
- fuel
- fuel cell
- combustion chamber
- power set
- mentioned
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 106
- 238000005474 detonation Methods 0.000 title claims abstract description 69
- 238000004519 manufacturing process Methods 0.000 claims abstract description 4
- 238000002485 combustion reaction Methods 0.000 claims description 47
- 239000007800 oxidant agent Substances 0.000 claims description 10
- 230000001590 oxidative effect Effects 0.000 claims description 8
- 239000000295 fuel oil Substances 0.000 claims description 4
- 238000000605 extraction Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000004200 deflagration Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 206010000234 Abortion spontaneous Diseases 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000001833 catalytic reforming Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 208000015994 miscarriage Diseases 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- VEMKTZHHVJILDY-UHFFFAOYSA-N resmethrin Chemical compound CC1(C)C(C=C(C)C)C1C(=O)OCC1=COC(CC=2C=CC=CC=2)=C1 VEMKTZHHVJILDY-UHFFFAOYSA-N 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000002915 spent fuel radioactive waste Substances 0.000 description 1
- 208000000995 spontaneous abortion Diseases 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/20—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/20—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
- F02C3/26—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
- F02C3/28—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C5/00—Gas-turbine plants characterised by the working fluid being generated by intermittent combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
- F02C6/18—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K7/00—Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof
- F02K7/02—Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof the jet being intermittent, i.e. pulse-jet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K7/00—Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof
- F02K7/02—Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof the jet being intermittent, i.e. pulse-jet
- F02K7/06—Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof the jet being intermittent, i.e. pulse-jet with combustion chambers having valves
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
- H01M8/04022—Heating by combustion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Sustainable Development (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Fuel Cell (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
一种动力装置,它具有一个可接收第一燃料的燃料电池组件(20)和一个可接收和爆燃第二燃料并排出许多爆燃产物以形成可产生向前驱动力、机械功或发出电力的推力的脉冲式爆燃燃烧室(10),该动力装置(100)还包括用于接收和重整燃油并产生重整物的重整器(60),其中所述第一燃料包含所述重整物;其中,所述脉冲式爆燃燃烧室(10)按独立的模式工作,而所述燃料电池组件(20)按加热模式工作。
Description
技术领域
本发明总之涉及混合循环式发电装置,更具体地说,涉及一种混合式燃料电池/脉冲引爆发动机动力装置。
背景技术
燃料电池例如固态氧化物燃料电池(SOFCs)是通过使燃料与遍布离子传导层的氧化剂电化学结合而产生电力的能量转换装置。对于发电的用途而言,是采用大量的成组排列的燃料电池来发电。
燃料电池发电所面临的一个挑战是获得满负荷的长时间规模。虽然时间常数可通过燃料电池类型而改变,但是,要获得大约1兆瓦特或更多的功率,通常需要几小时至几天的时间。与此不同,普通的100MW的燃气涡轮从冷态起动至满负荷只需大约5分钟。因此,希望有一种可用于加入燃料电池的动力装置的快速起动的办法。
燃料电池发电所面临的另一个挑战是建造足够大到可利用供给燃料电池单元的燃料的大部分以便获得有竞争力的燃料效率的燃料电池。大的燃料电池是昂贵的,而且难以制造。因此,希望可使用较小的较便宜的燃料电池来获得有竞争力的燃料效率。
动力装置设计的另一目的是对于简单循环和综合循环都能提高效率。但是,要获得高的循环效率,无论压力比还是工作温度都要在材料和冷却技术的允许范围。目前,采用复杂的压气机和涡轮来达到高的压力比,这有助于补偿由于普通燃烧过程所造成的4-7%的压力损失。但是,这些装置包含许多复杂的转动机件。
目前,已开始致力于在航空发动机中开发应用脉冲式爆燃发动机。有利的是,脉冲式爆燃发动机通过一系列重复爆燃或超声燃烧过程而使压力升高。因此,希望发展一种应用脉冲式爆燃来提高循环效率的动力装置。还希望这种动力装置具有快速起动的性能。另外,也希望这种动力装置可使用较小的燃料电池而获得可竞争的燃料效率。
发明概述
简单地说,按照本发明的一个实施例的一种动力装置具有一个可接收第一燃料的燃料电池组件和一个可接收和爆燃第二燃料并排出许多爆燃产物而产生可发出向前驱动力、机械功或发出电力的推力的脉冲式爆燃燃烧室,该动力装置还包括用于接收和重整燃油并产生重整物的重整器,其中所述第一燃料包含所述重整物;其中,所述脉冲式爆燃燃烧室按独立的模式工作,而所述燃料电池组件按加热模式工作。
附图简述
如果参看附图阅读下面的详细说明将会更加明白本发明的上述的和其他的特征、方面和优点,所有的附图中,相同的零部件用相同标号表示,这些附图中:
图1示出一种装有一个燃料电池组件和一个可驱动涡轮/发电机的脉冲式爆燃燃烧室的混合式动力装置;
图2示出另一种装有一个燃料电池组件和一个可驱动涡轮/发电机的脉冲式爆燃燃烧室以及一个朗肯(Ranking)基本循环系统的动力装置的实施例;
图3示出图1和图2的燃料电池组件和脉冲式爆燃燃烧室;和
图4示出沿一个燃料电池单元的典型燃料利用率分布。
发明详述
参看图1来说明动力装置100。如图所示,动力装置100具有一个可承接第一燃料的燃料电池组件20和一个可承接和爆燃第二燃料并排出大量爆燃产物而形成可产生驱动力、机械功或发电的推力的脉冲式爆燃燃烧室10。
典型的脉冲式爆燃燃烧室10具有多个脉冲爆燃室16,例如图3所示。
本文用的术语“脉冲式爆燃燃烧室”应理解为是指可从装置内的一系列重复爆燃或准爆燃而既提高压力又增大速度的任何装置或系统。“准爆燃”是一种超声紊流燃烧过程,其使压力升高和速度增大比由于突爆(或恒压燃烧)波产生的压力升高和速度增大更显著。脉冲式爆燃燃烧室的典型实施例具有一个使燃料/氧化剂混合物(例如燃料/空气混合物)着火的装置和一个爆燃室,在该爆燃室内,由于点火过程起始的压力波前沿相聚合而形成一种爆燃波。每次爆燃或准爆燃或者由于外部点火(例如火花放电或激光脉冲)引起,或者由于气体动力过程(例如冲击聚焦、自动点火)引起,或者由于其他的爆燃(交叉火焰)引起。上述爆燃燃烧室的几何形状和尺寸要能使爆燃波的压力升高可将燃烧产物排出到脉冲式爆燃燃烧室之外以产生推力。正如熟悉本技术的人们所知道的,脉冲爆燃可在各种各样的爆燃室内进行,包括爆燃管、冲击管、谐振爆燃腔室、和环形爆燃室。
动力装置设计的主要目的是提高效率。但是,高的循环效率要求有高压力比(这通常要采用复杂的高压压气机和涡轮才能达到),以补偿普通燃烧过程所造成的4-7%的压力损失。上面所述的动力装置100的基本循环与普通的恒压燃烧过程不同,它是通过反复的爆燃而达到压力升高的燃烧过程。因此,与具有普通的基本燃烧循环的混合式燃料电池动力装置(未示出)相比,上述的动力装置100通过压气机40达到预定的高压力所需的能量较少。
下面参看图3来说明典型的燃料电池组件20。如图所示,典型的燃料电池组件20具有至少一个燃料电池组22,该燃料电池组22具有至少一个燃料电池单元24,典型燃料电池单元24包括一个阳极(未示出)、一个阴极(未示出)和一种置于阳极与阴极之间的电解质(未示出)。图3示出两组燃料电池组22的示例排列纯粹是说明性的,燃料电池组22的数目和排列以及每个电池组22内燃料电池单元的数目和排列根据具体用途的要求(例如所需输出功率和空间限制)而变化。图3所示的典型燃料电池组件20还具有一个可承接供给燃料电池组22的第一燃料的入口和一个可排出来自各燃料电池组22的废燃料流的出口。
如图3所示,例如,燃料电池组件20还可承接第一氧化剂,脉冲式爆燃燃烧室10还可承接第二氧化剂。这里用的术语“第一氧化剂”和“第二氧化剂”是为了表明燃料电池组件20和脉冲式爆燃燃烧室10可以采用不同的氧化剂,例如,典型的燃料电池组件20和脉冲式爆燃燃烧室10可分别接收压缩空气和氧气(O2)。但是,在通常情况下,第一和第二氧化剂都包括压缩空气。具体地说,图1所示的典型动力装置100包含一个可对燃料电池组件20和脉冲式爆燃燃烧室10中的至少一个供给压缩空气的压气机40。对于所示的具体实施例,压气机40对燃料电池组件20和脉冲式爆燃燃烧室10都供给压缩空气。另外,为了加强爆燃的起爆,脉冲式爆燃燃烧室10还可接收辅助氧化剂例如O2。
如上所述,脉冲式爆燃燃烧室10排出燃烧产物可产生推力。动力装置100还具有一个受上述推力驱动的涡轮30和一个可发出电力的发电机50。更具体地说,涡轮30设置在脉冲式爆燃燃烧室10的出口处,并与该脉冲式爆燃燃烧室10呈流动连通状态。发电机50与涡轮30相连接,将轴功率转换成电能。当然,上述轴功率有许多用途包括驱动泵、风扇、或推进器(用于向前驱动的)。所有这些用途都包含在本发明中。
图2示出综合循环的动力装置100的另一个实施例,如图2所示,动力装置100具有一个朗肯基本循环(或者说蒸汽涡轮基本循环)系统。如图所示,蒸汽涡轮组件200可承接来自涡轮30的废蒸汽,用该废蒸汽产生蒸汽,再用该蒸汽发电。有利的是,接入蒸汽涡轮组件200便可从混合式动力装置100的废热中吸取附加动力。对于图2所示的具体实施例,蒸汽涡轮组件200具有一个适合于用蒸汽发电的蒸汽涡轮210。蒸汽涡轮组件200还具有一个可接受和冷凝来自蒸汽涡轮210的废蒸汽而供给液流的冷凝器230和一个可接受和泵送上述液流的泵240。另外,典型的蒸汽涡轮组件还具有一个可接收来自涡轮30的废蒸汽并接收来自泵240的液流并用上述废蒸汽从上述液流产生蒸汽的热回收蒸汽发生器250。
燃料电池组件20和脉冲式爆燃燃烧室10可燃用相同的燃料(例如汽油重整产品或氢(H2))或燃用不同燃料(例如蒸馏燃油或天然汽),在图1所示的具体实施例中,动力装置100还具有一个可接收和重整燃油并产生重整物的重整器60。上述的重整物被供给到燃料电池组件20内。更具体地说,对于图1所示的实施例,上述重整物也供给到脉冲式爆燃燃烧室10内。另外,脉冲式爆燃燃烧室10还可接收来自燃料电池组件的尾气(如图1中虚线所示)。
燃料电池发电所面临的更重大的技术挑战之一是要建造足够大到可利用供给燃料电池单元的大部分燃料以便能达到可竞争的燃料效率的燃料电池单元24。粗略估计,要达到约65%的效率,必须利用供入燃料中的约80%的燃料。同理,要达到约70%的效率,便要求燃料利用率约为85%。但是,由于燃料电池单元内燃料利用的本质之故,要在燃料电池单元24内达到这么高的燃料利用率,其成本是极高的。如图4所示,在前半个燃料电池单元中达到了大约80%的燃料利用率(图4中以x表示)。因此,使脉冲式爆燃燃烧室10接收来自燃料电池组件20的尾气有利于减小燃料电池单元的尺寸(致使电池单元的燃料利用率“x”较低),仍然可达到所希望的燃料利用率(以及效率),例如,混合式燃料电池/PDE装置的总的燃料利用率超过99%。
本文用的术语“重整炉”指的是一种通过蒸汽与可重整燃料发生反应而产生氢的设备。典型的可重整燃料包括碳氢化合物例如天然气或液态蒸馏燃料。典型的重整炉包括催化重整炉60。这种重整炉在重整蒸汽与碳氢化合物燃料混合物时,根据燃料和催化剂的种类不同,其工作温度约为800-1400°F。重整炉使蒸汽与燃料混合物发生反应而产生夹杂有一定量的水、甲烷、二氧化碳、一氧化碳和各种微量物质的氢(总称为“重整物”)。虽然在图1中只示出一台重整炉60,但是,应当明白,为了更有效地产生氢气,可以应用两台或多台具有相同或不同催化剂的重整炉60。
对于动力装置100的具体实施例,脉冲式爆燃燃烧室10可按一种独立的模式而工作,上述重整炉60可对在独立的模式下工作的脉冲式爆燃燃气炉10供给重整物。上述的术语“独立”的意思是规定的组件(此处是脉冲式爆燃燃烧室10)在另一组件(此处是燃料电池组件20)不工作时工作。例如,在一个典型实施例中,脉冲式爆燃燃烧室10可按独立的模式工作,而燃料电池组件20则处在一种加热模式中。适用于发电的大型燃料电池单元24具有慢的时间常数,到达满负荷的过程较慢(根据燃料电池和负荷类型不同,需要几小时至几天时间)。对于发电的用途来说,这种延滞是不希望有的。因此,希望脉冲式爆燃燃烧室10最好独立地工作,以便在燃料电池组件加热或由于其他原因(例如维修)而脱离生产线时仍可发出电力。同理,也希望燃料电池组件20可按独立的模式工作,以便在脉冲式爆燃燃烧室10脱离生产线(例如维修)时可继续发电。
另外,最好使上述脉冲式爆燃燃烧室10和涡轮30的尺寸大于动力装置100通常稳定作业时所要求的尺寸,以便增大动力装置100的瞬变响应。这种超尺寸的实施例可补偿燃料电池的寿命减少,就是说,由于脉冲式爆燃燃烧室10和涡轮30的尺寸超过标准,故它们可在燃料电池单元24衰退时,以较高的输出功率运转。另外,对于峰值作业而言,可通过脉冲式爆燃燃烧室10和涡轮30在全额输出功率情况下的运行而以极少的总效率损失发出更多的电力。
虽然上面仅仅说明和示出了本发明的某些特征,但是,熟悉本技术的人们将会进行许多的改进和改变。因此,应当明白,所附的技术方案包括所有符合本发明实际精神的上述改进和改变。
零部件明细表
10 脉冲式爆燃燃烧室
12 入口
14 出口
16 爆燃室
20 燃料电池组件
22 燃料电池组
24 燃料电池单元
30 涡轮
40 压气机
50 发电机
60 重整炉
100 动力装置
200 蒸汽涡轮组件
210 蒸汽涡轮
220 发电机
230 冷凝器
240 泵
250 热回收蒸汽发电机
Claims (7)
1.一种动力装置(100),它具有:
一个用于接收第一燃料的燃料电池组件(20);和
一个用于接收和爆燃第二燃料并排出爆燃产物的脉冲式爆燃燃烧室(10);
该动力装置(100)还包括用于接收和重整燃油并产生重整物的重整器(60),其中所述第一燃料包含所述重整物;
其中,在所述燃料电池组件(20)被加热或脱离生产线时,所述脉冲式爆燃燃烧室(10)独立地工作。
2.根据权利要求1的动力装置(100),其特征在于,上述的燃料电池组件(20)还用于接收第一氧化剂,其中,上述的脉冲式爆燃燃烧室(10)还用于接收第二氧化剂。
3.根据权利要求2的动力装置(100),其特征在于,上述的第二燃料包括第一燃料加上来自上述燃料电池组件(20)的尾气。
4.根据权利要求2的动力装置(100),其特征在于,还具有一个可对上述燃料电池组件(20)和上述脉冲式爆燃燃烧室(10)中的至少一个供给压缩空气的压气机(40)。
5.根据权利要求2的动力装置(100),其特征在于,还具有一个设置在上述脉冲式爆燃燃烧室(10)下游的涡轮(30),该涡轮(30)与上述脉冲式爆燃燃烧室(10)处于流动连通状态。
6.根据权利要求5的动力装置(100),其特征在于,还具有一个与上述涡轮(30)相连接的发电机(50),该发电机(50)用于发电。
7.根据权利要求6的动力装置(100),其特征在于,还具有一个用于接收来自上述涡轮(30)的废气流以便用该废气流产生蒸汽并用该蒸汽发电的蒸汽涡轮组件(200)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/624,114 US7150143B2 (en) | 2003-07-21 | 2003-07-21 | Hybrid fuel cell-pulse detonation power system |
US10/624114 | 2003-07-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1577934A CN1577934A (zh) | 2005-02-09 |
CN100438162C true CN100438162C (zh) | 2008-11-26 |
Family
ID=33490865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100716836A Expired - Fee Related CN100438162C (zh) | 2003-07-21 | 2004-07-21 | 混合式燃料电池-脉冲引爆动力装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US7150143B2 (zh) |
EP (1) | EP1501139B1 (zh) |
JP (1) | JP2005043046A (zh) |
CN (1) | CN100438162C (zh) |
CA (1) | CA2473279A1 (zh) |
DE (1) | DE602004025534D1 (zh) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004072451A1 (en) * | 2003-02-12 | 2004-08-26 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Pulse detonation engine system for driving turbine |
US20050109010A1 (en) * | 2003-11-25 | 2005-05-26 | General Electric Company | Pulse detonation power system and plant with fuel preconditioning |
JP2005194968A (ja) * | 2004-01-09 | 2005-07-21 | Hitachi Ltd | 排気再燃プラント及びプラント設備の改造方法 |
US7395670B1 (en) * | 2005-02-18 | 2008-07-08 | Praxair Technology, Inc. | Gas turbine fuel preparation and introduction method |
US20060228960A1 (en) * | 2005-04-07 | 2006-10-12 | Lockheed Martin Corporation | Integrated marine vessel hull for energy storage |
US7380749B2 (en) * | 2005-04-21 | 2008-06-03 | The Boeing Company | Combined fuel cell aircraft auxiliary power unit and environmental control system |
US7743861B2 (en) * | 2006-01-06 | 2010-06-29 | Delphi Technologies, Inc. | Hybrid solid oxide fuel cell and gas turbine electric generating system using liquid oxygen |
DE102006003740B4 (de) * | 2006-01-20 | 2011-06-30 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 | Verfahren und System zum Betreiben einer Hochtemperaturbrennstoffzelle |
US20070180814A1 (en) * | 2006-02-03 | 2007-08-09 | General Electric Company | Direct liquid fuel injection and ignition for a pulse detonation combustor |
US7784265B2 (en) * | 2006-02-07 | 2010-08-31 | General Electric Company | Multiple tube pulse detonation engine turbine apparatus and system |
US7966830B2 (en) * | 2006-06-29 | 2011-06-28 | The Boeing Company | Fuel cell/combustor systems and methods for aircraft and other applications |
US20080113230A1 (en) * | 2006-11-10 | 2008-05-15 | Whyatt Greg A | Method and apparatus for improving water balance in fuel cell power unit |
US7802434B2 (en) * | 2006-12-18 | 2010-09-28 | General Electric Company | Systems and processes for reducing NOx emissions |
US7980082B2 (en) * | 2007-08-01 | 2011-07-19 | General Electric Company | Wobbe control and enhanced operability through in-line fuel reforming |
WO2009040112A2 (en) * | 2007-09-25 | 2009-04-02 | Eads Deutschland Gmbh | Method for operating a gas turbine engine, power supplying device for conducting such method and aircraft using such method |
US8302377B2 (en) * | 2009-01-30 | 2012-11-06 | General Electric Company | Ground-based simple cycle pulse detonation combustor based hybrid engine for power generation |
EP2312126B1 (en) | 2009-10-08 | 2015-12-23 | General Electric Company | Power generation system and corresponding power generating method |
US7818969B1 (en) * | 2009-12-18 | 2010-10-26 | Energyield, Llc | Enhanced efficiency turbine |
CN102536427B (zh) * | 2010-09-13 | 2014-04-09 | 靳北彪 | 低熵混燃充气爆排发动机 |
US8869502B2 (en) * | 2011-01-13 | 2014-10-28 | General Electric Company | Fuel reformer system for a turbomachine system |
CN102536442A (zh) * | 2011-03-22 | 2012-07-04 | 摩尔动力(北京)技术股份有限公司 | 高效热动力系统 |
US20120251899A1 (en) * | 2011-03-31 | 2012-10-04 | General Electric Company | Solid-oxide fuel cell high-efficiency reform-and-recirculate system |
CN103597643B (zh) * | 2011-04-21 | 2016-06-08 | 空中客车德国运营有限责任公司 | 驱动单元、用于提供动力的方法以及驱动单元的运用 |
CN102820480A (zh) * | 2011-06-09 | 2012-12-12 | 通用电气公司 | 燃料电池-燃机混合发电系统及通过其发电方法 |
EP3741723A1 (en) | 2011-09-02 | 2020-11-25 | Battelle Memorial Institute | Sweep membrane separator and and fuel processing systems |
JP6109529B2 (ja) * | 2012-10-31 | 2017-04-05 | 三菱日立パワーシステムズ株式会社 | 発電システム |
JP5769695B2 (ja) * | 2012-12-25 | 2015-08-26 | 三菱日立パワーシステムズ株式会社 | 発電システム及び発電システムの停止方法 |
JP6099408B2 (ja) * | 2013-01-18 | 2017-03-22 | 三菱日立パワーシステムズ株式会社 | 発電システム、及び発電システムの運転方法 |
JP6053560B2 (ja) | 2013-02-20 | 2016-12-27 | 三菱日立パワーシステムズ株式会社 | 発電システム及び発電システムの運転方法 |
KR20160032172A (ko) * | 2013-07-15 | 2016-03-23 | 오매트 테크놀로지스 인코포레이티드 | 연료전지의 폐열로부터 전원 발생 |
US11280196B2 (en) | 2014-03-20 | 2022-03-22 | Board Of Regents, The University Of Texas System | Systems and methods for generating power using a combustion source |
US10522860B2 (en) | 2015-06-09 | 2019-12-31 | Honeywell International Inc. | Systems for hybrid fuel cell power generation |
US20170292447A1 (en) * | 2016-04-08 | 2017-10-12 | Hamilton Sundstrand Corporation | Hybrid electric aircraft with rankine cycle heat recovery system |
CN106523157A (zh) * | 2016-11-11 | 2017-03-22 | 丁元章 | 一种车用燃料电池复合动力发电系统 |
GB2556063B (en) * | 2016-11-16 | 2019-07-24 | Ge Aviat Systems Ltd | Auxiliary power unit with solid oxide fuel cell for an aircraft |
EP3590143A4 (en) * | 2017-03-01 | 2020-12-02 | Eviation Tech Ltd | HYDROGEN AFTERBURNER |
CN109357287A (zh) * | 2018-11-21 | 2019-02-19 | 贵州智慧能源科技有限公司 | 分段式火箭发动机燃烧室及动力驱动装置 |
KR20210145740A (ko) * | 2019-02-20 | 2021-12-02 | 그린 엔진, 엘엘씨 | 회전식 내연 기관 엔진 |
CN111042919A (zh) * | 2019-12-27 | 2020-04-21 | 至玥腾风科技集团有限公司 | 一种三联合循环系统、交通工具、充电系统 |
US12123353B2 (en) * | 2021-05-04 | 2024-10-22 | General Electric Company | Integrated fuel cell and engine combustor assembly |
PL439009A1 (pl) * | 2021-09-22 | 2023-03-27 | Sieć Badawcza Łukasiewicz-Instytut Lotnictwa | Komora spalania wstępnego do zasilania turbiny w silnikach rakietowych na ciekłe materiały pędne |
CN115172798B (zh) * | 2022-06-24 | 2024-07-09 | 天津大学 | 一种sofc-pdc联合循环系统及其控制方法 |
US12006866B2 (en) | 2022-07-08 | 2024-06-11 | Rtx Corporation | Hybrid electric hydrogen engine for aircraft |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5955039A (en) * | 1996-12-19 | 1999-09-21 | Siemens Westinghouse Power Corporation | Coal gasification and hydrogen production system and method |
US6062018A (en) * | 1993-04-14 | 2000-05-16 | Adroit Systems, Inc. | Pulse detonation electrical power generation apparatus with water injection |
US6077620A (en) * | 1997-11-26 | 2000-06-20 | General Motors Corporation | Fuel cell system with combustor-heated reformer |
US20020174659A1 (en) * | 2001-05-24 | 2002-11-28 | Fermin Viteri | Combined fuel cell and fuel combustion power generation systems |
US6548197B1 (en) * | 1999-08-19 | 2003-04-15 | Manufacturing & Technology Conversion International, Inc. | System integration of a steam reformer and fuel cell |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1232837B (it) * | 1989-09-06 | 1992-03-05 | Kinetics Technology | Procedimento per l'alimentazione di celle a combustibile mediante reforming di idrocarburi leggeri e impianto relativo |
JP5123453B2 (ja) * | 2001-09-21 | 2013-01-23 | 三菱重工業株式会社 | タービン発電設備 |
JP2003193865A (ja) * | 2001-12-27 | 2003-07-09 | Kansai Tlo Kk | ガスタービン発電システム及びガスタービン動力システムおよびその起動方法 |
-
2003
- 2003-07-21 US US10/624,114 patent/US7150143B2/en not_active Expired - Fee Related
-
2004
- 2004-07-08 CA CA002473279A patent/CA2473279A1/en not_active Abandoned
- 2004-07-16 EP EP04254290A patent/EP1501139B1/en not_active Expired - Lifetime
- 2004-07-16 DE DE602004025534T patent/DE602004025534D1/de not_active Expired - Lifetime
- 2004-07-20 JP JP2004210910A patent/JP2005043046A/ja active Pending
- 2004-07-21 CN CNB2004100716836A patent/CN100438162C/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6062018A (en) * | 1993-04-14 | 2000-05-16 | Adroit Systems, Inc. | Pulse detonation electrical power generation apparatus with water injection |
US5955039A (en) * | 1996-12-19 | 1999-09-21 | Siemens Westinghouse Power Corporation | Coal gasification and hydrogen production system and method |
US6077620A (en) * | 1997-11-26 | 2000-06-20 | General Motors Corporation | Fuel cell system with combustor-heated reformer |
US6548197B1 (en) * | 1999-08-19 | 2003-04-15 | Manufacturing & Technology Conversion International, Inc. | System integration of a steam reformer and fuel cell |
US20020174659A1 (en) * | 2001-05-24 | 2002-11-28 | Fermin Viteri | Combined fuel cell and fuel combustion power generation systems |
Also Published As
Publication number | Publication date |
---|---|
EP1501139B1 (en) | 2010-02-17 |
US7150143B2 (en) | 2006-12-19 |
EP1501139A3 (en) | 2006-02-01 |
DE602004025534D1 (de) | 2010-04-01 |
US20050019620A1 (en) | 2005-01-27 |
JP2005043046A (ja) | 2005-02-17 |
CN1577934A (zh) | 2005-02-09 |
EP1501139A2 (en) | 2005-01-26 |
CA2473279A1 (en) | 2005-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100438162C (zh) | 混合式燃料电池-脉冲引爆动力装置 | |
US7966830B2 (en) | Fuel cell/combustor systems and methods for aircraft and other applications | |
US5968680A (en) | Hybrid electrical power system | |
US5417051A (en) | Process and installation for the combined generation of electrical and mechanical energy | |
US5449568A (en) | Indirect-fired gas turbine bottomed with fuel cell | |
EP2127005B1 (en) | Integrated fuel cell and heat engine hybrid system for high efficiency power generation | |
EP1547188B1 (en) | A solid oxide fuel cell system | |
EP0271360A2 (en) | Power generating device and method | |
US20060232071A1 (en) | Turbo set with starting device | |
US12037127B2 (en) | Hydrogen-fuelled aircraft power system | |
EP0951087B1 (en) | Air supply device for fuel cell | |
JP2005155632A (ja) | 燃料プリコンディショニングを備えたパルス爆発発電システム及びプラント | |
JPH04342961A (ja) | 燃料電池発電設備 | |
CN115355091A (zh) | 用于燃料电池和发动机燃烧器组件的控制系统 | |
CN108049976A (zh) | 一种宽功率范围的化学复合循环燃气轮机装置及控制方法 | |
KR20100062093A (ko) | 왕복동 엔진의 과급기와 배기 가스를 이용한 연료전지 시스템 | |
WO2024018988A1 (ja) | 航空機ハイブリッド動力源システム及びその制御方法 | |
RU2290724C2 (ru) | Электрохимический генератор | |
CN115172798B (zh) | 一种sofc-pdc联合循环系统及其控制方法 | |
CN211654956U (zh) | 一种燃料电池发电装置 | |
CN107178424A (zh) | 一种飞机用质子交换膜燃料电池燃气轮机联合发电系统 | |
AU2023210900A1 (en) | High efficiency power solution by integration of pressurized solid oxide fuel cell with expanders | |
CN116706123A (zh) | 基于阴极与阳极再循环的sofc/gt/sco2混合动力系统 | |
RU2434790C1 (ru) | Вспомогательная силовая установка для самолета | |
CN114033595A (zh) | 甲醇制氢发电设备及其启动装置、启动方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081126 Termination date: 20110721 |