KR20210145740A - 회전식 내연 기관 엔진 - Google Patents

회전식 내연 기관 엔진 Download PDF

Info

Publication number
KR20210145740A
KR20210145740A KR1020217030019A KR20217030019A KR20210145740A KR 20210145740 A KR20210145740 A KR 20210145740A KR 1020217030019 A KR1020217030019 A KR 1020217030019A KR 20217030019 A KR20217030019 A KR 20217030019A KR 20210145740 A KR20210145740 A KR 20210145740A
Authority
KR
South Korea
Prior art keywords
combustion
combustion chamber
turbine
exhaust
intake
Prior art date
Application number
KR1020217030019A
Other languages
English (en)
Inventor
찰스 매티슨 그린
그랜트 오. 머스그로브
케빈 엘. 호그
데이비드 피. 브래니언
토마스 이. 레인하트
Original Assignee
그린 엔진, 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 그린 엔진, 엘엘씨 filed Critical 그린 엔진, 엘엘씨
Publication of KR20210145740A publication Critical patent/KR20210145740A/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C5/00Gas-turbine plants characterised by the working fluid being generated by intermittent combustion
    • F02C5/12Gas-turbine plants characterised by the working fluid being generated by intermittent combustion the combustion chambers having inlet or outlet valves, e.g. Holzwarth gas-turbine plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/14Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant
    • F02C3/16Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant the combustion chambers being formed at least partly in the turbine rotor or in an other rotating part of the plant
    • F02C3/165Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant the combustion chambers being formed at least partly in the turbine rotor or in an other rotating part of the plant the combustion chamber contributes to the driving force by creating reactive thrust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C5/00Gas-turbine plants characterised by the working fluid being generated by intermittent combustion
    • F02C5/02Gas-turbine plants characterised by the working fluid being generated by intermittent combustion characterised by the arrangement of the combustion chamber in the chamber in the plant
    • F02C5/04Gas-turbine plants characterised by the working fluid being generated by intermittent combustion characterised by the arrangement of the combustion chamber in the chamber in the plant the combustion chambers being formed at least partly in the turbine rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/20Adaptations of gas-turbine plants for driving vehicles

Abstract

회전식 내연 기관 엔진이 제공된다. 엔진은 구동 샤프트와, 상기 구동 사프트와 결합된 회전가능한 실린더를 포함한다. 연소 챔버가 상기 회전가능한 실린더를 통해 형성된다. 연소 챔버는 회전가능한 실린더의 연소 블레이드에 의해 정의된다. 엔진은 가스들의 연소와, 상기 연소 가스들로부터 발생되는 터빈의 이동으로부터 동력을 생성하도록 구성된다. 고정된 실린더 연소 엔진이 또한, 개시된다.

Description

회전식 내연 기관 엔진
관련 출원에 대한 상호 참조
본 출원은, 2019년 2월 20일에 출원되고 발명의 명칭이 "Air-Cooled, Rotating Internal Combustion Engine"인 미국 특허 가출원 제62/808,174호(계류중)에 대한 우선권을 주장하며, 그 전체 내용이 본 명세서에 참조로 통합된다.
본 개시내용은, 회전하는 내연 기관 엔진을 포함하는 동력을 생성하기 위한 시스템, 장치 및 방법에 관한 것이다.
내연 기관 엔진(internal combustion engine; ICE)은 산화제의 존재 하에 연료를 연소시켜 팽창 가스를 형성하고, 이 팽창 가스는 기계 장치, 일반적으로 힘에 반응하여 움직이는 피스톤에 차례로 힘을 가하여, 궁극적으로 다른 기계 장치를 구동한다(예컨대, 차량 바퀴의 회전). 이러한 피스톤 엔진은, 로딩 단계, 압축 단계, 폭발 단계(detonation stage) 및 배기 단계를 포함하는 4단계 또는 스트로크를 포함한다.
전형적인 가스 터빈(gas turbine) 엔진은, 압축기 섹션과 터빈 섹션 사이에 위치되는 연소 전용 섹션을 갖는다. 이러한 전형적인 가스 터빈 엔진의 연소 과정은 일정한 압력에서 발생하는데, 여기서 압축기 섹션에서 연소 섹션으로 가스(예: 공기)가 지속적으로 유입되고, 주입기(injector)에 의해 연소 섹션으로 연료가 지속적으로 주입되며, 연소가 연소 섹션에서 연속적으로 발생된다.
본 개시내용의 일양태는 연소 터빈 엔진을 포함한다. 엔진에는 공기 흡입부와 연소 터빈이 포함된다. 연소 터빈은 슈라우드(shroud) 및 슈라우드에 결합되거나 슈라우드와 일체형인(integral with) 터빈 블레이드를 포함한다. 터빈 블레이드는 슈라우드 내에 위치되고, 인접한 터빈 블레이드 사이의 공간은 연소 챔버를 적어도 부분적으로 정의하며, 연소 챔버는 일정한 체적을 갖는다. 연소 터빈의 배기 단부는 연소 챔버 안으로 향하는 흡입구를 포함하고, 연소 터빈의 배기 단부는 연소 챔버에서 밖으로 향하는 배기구를 포함한다. 엔진은 연소 터빈의 회전이 구동 샤프트를 회전시키도록 연소 터빈에 결합된 구동 샤프트를 포함한다. 엔진의 상부 고정 플레이트는 흡기 단부에 인접하게 위치된 흡입구를 포함하고, 엔진의 하부 고정 플레이트는 배기 단부에 인접하게 위치된 배기구를 포함한다. 연소 터빈은 상부 및 하부 고정 플레이트 사이에 위치한다. 연소 터빈은 흡입구를 통해 연소 챔버로 흡입 공기가 통과할 수 있도록 상부 고정 플레이트에 대해 회전 가능하고, 배기구를 통해 연소 가스를 배기하도록 고정된 하부에 대해 회전 가능하다.
본 개시내용의 다른 실시예는 공기 흡입구 및 고정식 연소기를 포함하는 연소 터빈 엔진을 포함한다. 고정식 연소기는, 슈라우드 및 슈라우드에 결합되거나 일체화되는 연소 챔버 벽을 포함한다. 연소 챔버 벽은 슈라우드 내에 위치되며 인접한 연소 챔버 벽 사이의 공간은 연소 챔버들을 적어도 부분적으로 정의한다. 연소 챔버의 배기 단부는 연소 챔버로의 흡입구를 포함하고, 연소 챔버의 배기 단부는 연소 챔버 외부의 배기구를 포함한다. 엔진의 상부 플레이트는 배기 단부에 인접하게 위치된 흡기구를 포함하고, 엔진의 하부 플레이트는 배기 단부에 인접하게 위치된 배기구를 포함한다. 고정식 연소기는 상부 플레이트와 하부 플레이트 사이에 위치한다. 상부 플레이트는 흡입 공기를 연소 챔버로 안내하기 위한 노즐일 수 있는 흡입구를 포함하고, 하부 플레이트는 배기구를 포함하며, 이는 노즐일 수 있으며, 배기구는 상부 및 하부 플레이트들을 회전시킬 추력을 생성하기 위해, 고정 연소기를 중심으로 원주 방향으로 배기를 연소 챔버 밖으로 배출되도록 배치된다.구동 샤프트는 상부 및 하부 플레이트의 회전이 구동 샤프트를 회전시키도록 상부 및 하부 플레이트에 결합된다. 상부 및 하부 플레이트는 고정 연소기에 대해 회전 가능하여 흡입 공기가 흡입구를 통해 연소 챔버로 통과하고 배기 연소 가스를 배기 구를 통해 배기될 수 있게 허용한다.
본 개시내용의 다른 실시예는 연소 터빈 엔진을 사용하여 원동력(motive force)을 생성하는 방법을 포함한다. 방법은 연소 챔버의 배기 단부 내로 연료 및 흡입 공기를 제공하는 단계를 포함한다. 연소 챔버는 연소 터빈의 블레이드들 사이의 공간에 의하여 적어도 부분적으로 정의된다. 블레이드는 구동 샤프트와 결합된다. 방법은, 연소 챔버의 배기 단부 및 배기 단부를 폐쇄하고, 폐쇄된 고정 체적의 연소 챔버 내에서 연료 및 흡입 공기 혼합물을 연소시키는 단계를 포함한다. 연소는 연소 가스를 형성한다. 방법은, 연소 챔버의 배기 단부를 개방하고, 연소 챔버로부터 연소 가스를 배기하는 단계를 포함한다. 이론에 결부되지 않고, 뉴턴의 제3 법칙을 사용하여, 연소 가스 배출로부터의 추력이 블레이드의 회전을 구동하고, 블레이드의 회전이 구동 샤프트의 회전을 구동한다.
본 개시내용의 다른 실시예는 연소 터빈 엔진을 사용하여 원동력을 생성하는 방법을 포함한다. 방법은 연소 챔버의 배기 단부 내로 연료 및 흡입 공기를 제공하는 단계를 포함한다. 연소 챔버는 고정식 연소기의 블레이드들 사이의 공간에 의하여 적어도 부분적으로 정의된다. 방법은, 연소 챔버의 배기 단부 및 배기 단부를 폐쇄하고, 폐쇄된 연소 챔버 내에서 연료 및 흡입 공기 혼합물을 연소시키는 단계를 포함한다. 연소는 연소 가스를 형성한다. 방법은 연소 챔버의 배기 단부를 개방하고 연소 챔버로부터의 연소 가스를 배기시키는 단계를 포함한다. 고정식 연소기는 연소 터빈 엔진의 상부 플레이트 및 하부 플레이트 사이에 위치한다. 상부 플레이트는 배기 단부에 인접하여 배치된 흡입구를 포함하고, 하부 플레이트는 배기 단부에 인접하여 배치된 배기구를 포함한다. 상부 플레이트는, 흡입 공기를 연소 챔버 내로 유도하도록 배치된 노즐일 수 있는 흡입구를 포함하고, 하부 플레이트는, 상부 및 하부 플레이트를 회전시키기 위한 추력을 생성하게끔 고정식 연소기를 중심으로 원주 방향으로 연소 챔버로부터의 배기를 유도하도록 배치된 노즐일 수 있는 배기구를 포함한다. 상부 및 하부 플레이트는 구동 샤프트와 결합되어서, 상부 및 하부 플레이트의 회전이 구동 샤프트를 회전시키도록 한다. 상부 및 하부 플레이트는 고정식 연소기에 대하여 회전가능하여서 흡입구를 통해 연소 챔버 내로 흡입 공기의 통과를 허용하고 연소 가스가 배기구를 통해 배기되는 것을 허용한다.
본 개시내용의 시스템, 장치 및/또는 방법의 특징 및 이점이 더 상세히 이해될 수 있는 방식으로, 앞서 간단히 요약된 보다 구체적인 설명이, 본 명세서의 일부를 형성하는 첨부 도면에 도시된 본 발명의 실시예들을 참조하여 이루어질 수 있다. 하지만, 도면들은 오로지 다양한 예시적인 실시예를 도시하는 것이며, 따라서 다른 효과적인 실시예를 또한, 포함할 수 있으므로, 개시된 개념들을 한정하고자 의도되지 않았음을 유의해야 한다.
도 1a는 연소 터빈 엔진의 개략도이다.
도 1b는 연소 터빈 엔진의 다른 개략도이다.
도 2는 연소 터빈 엔진을 도시한다.
도 3은 4개의 흡입구를 갖는 엔진의 상부 고정 플레이트를 도시한다.
도 4는 4개의 흡입구를 갖는 연소 터빈의 배기 단부를 도시한다.
도 5는 연소 터빈의 연소 챔버를 도시한다.
도 6은 4개의 배기구를 갖는 연소 터빈의 배기 단부를 도시한다.
도 7은 4개의 배기구를 갖는 엔진의 하부 고정 플레이트를 도시한다.
도 8은 내연 피스톤(internal combustion piston)의 일부를 도시한다.
도 9는 도 2의 상세도 A를 도시한다.
도 10a는 연소 터빈의 부분들의 분해도를 도시한다.
도 10b는 상부 회전 플레이트의 유입구(inlet)와 정렬된 상부 고정 플레이트의 유입구를 갖는 연소 터빈을 도시한다.
도 10c는 상부 회전 플레이트의 유입구와 정렬되지 않은 상부 고정 플레이트의 유입구를 갖는 연소 터빈을 도시한다.
도 10d는 하부 회전 플레이트의 유입구와 정렬되지 않은 하부 고정 플레이트의 유입구를 갖는 연소 터빈을 도시한다.
도 10e는 하부 회전 플레이트의 유입구와 정렬된 하부 고정 플레이트의 유입구를 갖는 연소 터빈을 도시한다.
도 11a 및 11b는 연소 터빈 엔진을 도시한다.
도 12는 엔진의 연소 시퀀스의 도면이다.
도 13은 이상적인 공정을 위한 압력 대 비체적(specific volume)의 그래프이다.
도 14는 증가된 압축 비율로부터 발생되는 작업 출력의 증가를 도시하는 압력 대 비체적의 그래프이다.
도 15는 연소 챔버로 유입되는 누설 및 압력 강하 손실의 효과를 도시하는 압력 대 비체적의 그래프이다.
도 16은 엔진 시퀀스의 타임라인이다.
도 17은 연소 챔버를 빠져나가는 누설 및 압력 강하 손실의 효과를 도시하는 압력 대 비체적의 그래프이다.
도 18은 블레이드 속도 비율의 함수로서 정규화된 터빈 효율의 그래프이다.
도 19는 공기역학적 양력(aerodynamic lift)을 도시하는 개략도이다.
도 20은 연소 챔버 내의 연소 이벤트를 도시하는 개략도이다.
도 21은 회전 플레이트를 갖는 고정식 연소 챔버를 도시하는 개략도이다.
도 22a 내지 22d는 Otto, Diesel, Brayton 및 폭발(detonation) 사이클 각각에 대한 압력 대 체적의 그래프들이다.
본 개시내용에 따른 시스템, 장치 및 방법은 이제 첨부되는 도면을 참조하여 보다 완전하게 설명될 것이며, 이 도면은 다양한 예시적인 실시예를 도시한다. 하지만, 본 개시내용에 따른 개념들은, 다수의 상이한 형태로 구체화될 수 있고, 본 명세서에 기재된 도시되는 실시예들에 의해 제한되는 것으로 해석되서는 안된다. 그 보다는, 이 실시예들은 본 개시내용을 온전하면서 완전하게 만들고, 당업자에게 다양한 개념들의 범위를 완전하게 전달하며, 실시를 위한 최선 및 선호되는 모드들을 위하여 제공되는 것이다.
본 개시내용의 특정 실시예는 원동력을 생성하기 위한 시스템, 장치 및 방법을 포함한다. 일부 실시예는, 공기로 냉각될 수 있는 회전 내연기관 엔진과, 이를 제조하고 사용하는 방법을 포함한다.
엔진 개략도
도 1a를 참조하면, 본 개시내용의 일부 실시예에 따른 엔진을 포함하는 시스템이 도시된다. 도 1a는 일실시예에 따른 컴포넌트들의 상대적인 배치 및 위치설정을 도시하는 개략도이다. 하지만, 본 명세서에 개시된 시스템 및 엔진은 도 1a에 도시된 배치로 제한되지 않는다. 시스템(1000)은 엔진(100)을 포함한다. 본 명세서에 개시된 엔진은, 연료의 연소를 위한 연소 챔버 및 연소 동안에 방출되는 에너지의 획득을 위한 터빈 둘 다로 기능하는 컴포넌트를 포함한다. 일부 실시예에서, 이 컴포넌트는 연소 터빈 또는 회전 실린더로 본 명세서에서 지칭된다. 연소 터빈(152)은 연소가 발생되는 하나 이상의 챔버를 포함할 수 있다. 연소 터빈(152)의 챔버는, 터빈 블레이드로서 추가적으로 기능하도록 형상화 및/또는 배치될 수 있어서, 그 안에서 이동하는 유체(예컨대, 팽창하는 가스)가 연소 챔버(블레이드)의 벽들 상에 힘을 가하도록 한다. 예컨대, 연료 혼합물(114), 가령 공급 공기(118) 및 가솔린(184)의 혼합물은, 연소 터빈(152)의 일정한 체적의 연소 챔버 내에서 연소될 수 있고, 연소 가스(186)를 형성한다. 연소 챔버 상에 이러한 유체(연소 가스)의 배기에 의해 가해진 동등하고 반대방향의 추력은, 연소 터빈(152) 또는 그것의 부분들이 회전하도록 야기한다. 본 명세서에서 사용되는 것처럼, 연소 챔버와 관련된 "일정한 체적"은 연소가 챔버 내에서 발생할 때 일정한 체적(constant volume)을 갖는 연소 챔버를 지칭한다. 예컨대, 전형적인 피스톤 엔진은, 연소 챔버의 체적이 피스톤의 이동과 함께 변화하기 때문에 일정한 체적의 연소 챔버가 아니다. 본 명세서에서 사용되는 것처럼, 연소 프로세스 또는 이벤트와 관련된 "일정한 체적"은, 일정한 체적의 연소 챔버를 사용한 연소의 발생을 지칭한다.
일부 실시예에서, 연소 터빈(152)은, 연소 터빈(152)의 회전으로 인해 구동 샤프트(104)가 회전하도록 구동 샤프트(104)와 결합된다. 구동 샤프트(104)는 차례로 다른 컴포넌트(111)에 결합되어, 구동 샤프트(104)의 회전이 컴포넌트(111)를 구동하여, 컴포넌트(111)가 회전하거나 달리 움직이게 할 수 있다. 예를 들어, 컴포넌트(111)는 하나 이상의 휠, 팬, 프로펠러, 펌프, 발전기, 또는 회전하는 구동 샤프트(104)의 기계적 에너지가 전달, 이용 및/또는 변환될 수 있는 다른 디바이스이거나 이를 포함할 수 있다. 따라서, 일부 실시예에서 연소 터빈(152)은 차량의 바퀴의 회전을 구동하거나, 팬의 회전을 구동하거나, 차량(예를 들어, 비행기 또는 보트)의 프로펠러의 회전을 구동하거나, 전기 생산을 위한 발전기를 구동한다. 일부 실시예에서, 연소 가스(186)는 연소 터빈(152)을 빠져나가고, 연소 가스(186)의 적어도 일부 잔여 에너지는, 가령 보조 터빈(113) 또는 구동 샤프트(104)와 결합된 다른 회전 팽창기를 통해, 연소 터빈(152)의 하류에서 획득된다. 보조 터빈(113)에 의해 획득된 에너지는 시스템(1000)의 다른 컴포넌트에 전력을 공급하는데 사용될 수 있다. 예를 들어, 일부 실시예에서, 공기(118)는 적어도 하나의 압축기(130)를 관통하는 통과를 통해 연소 터빈(152)의 연소 챔버에 들어가기 전에 압축되고, 보조 터빈(113)에 의해 획득된 에너지는, 적어도 하나의 압축기(130)에 적어도 부분적으로 동력을 공급하기 위해 사용된다. 도 1a에 도시된 바와 같이, 압축기(130)는 또한 (117)을 통해 표시된 바와 같이 연소 터빈(152)과 결합되어, 압축기(130)가 압축 공기를 연소 터빈(152)에 제공하도록 할 수 있다. 일부 실시예에서, 보조 터빈(113)에 의해 수확된 에너지는, 구동 샤프트(104)를 통해 기계적 에너지로서 압축기(130)에 제공된다. 다른 실시예에서, 보조 터빈(113)에 의해 수확된 에너지는 압축기(130)에 제공되기 전에 전기 에너지로 변환된다. 도 1a에 도시된 바와 같이, 엔진(100)은 압축기(compressor; 130), 연소 터빈(152), 보조 터빈(113), 및 구동 샤프트(104)를 포함한다. 그러나, 엔진(100)은 이러한 구성요소를 포함하는 것으로 제한되지 않는다. 일부 실시예에서, 도 1a의 엔진(100)의 컴포넌트 중의 일부는, 제거될 수 있다(예를 들어, 보조 터빈은 일부 실시예에서 제거될 수 있다). 또한, 일부 실시예에서, 추가 컴포넌트가 엔진(100)에 추가될 수 있다(예를 들어, 하나보다 많은 압축기가 연소 터빈(152)의 상류에 포함될 수 있다).
도 1b는 시스템(1000)의 다른 실시예를 도시한다. 시스템(1000)은 도 1a의 시스템과 실질적으로 유사하다. 하지만, 도 1b에서 공기(118)는 먼저 터보차저, 슈퍼차저, 또는 트윈차저일 수 있는 충전기(charger; 116)를 통과한다. 그 다음, 공기(118)는 충전기(116)로부터 적어도 하나의 압축기로 흐른다. 충전기(116)는 배기부(186)에 의해 적어도 부분적으로 구동될 수 있다.
엔진 흡기 및 압축
도 2는 연소 이전에 2개의 압축 스테이지 및 터보차저를 포함하는 엔진(100)의 다른 실시예를 도시한다. ICE로 또한, 지칭되는 엔진(100)은, 엔진(100)의 내부 컴포넌트의 전부 또는 적어도 일부를 포함하는 하우징을 적어도 부분적으로 정의하는 외부 실린더(102)를 포함한다. 외부 실린더(102)는, 엔진(100)의 내부 컴포넌트의 전부 또는 대부분을 하우징하는 상대적으로 두껍고, 무거운 금속 실린더일 수 있다. 예컨대, 외부 실린더(102)는 적어도 부분적으로 강철(steel)로 구성될 수 있다.
흡기에서 배기로, 엔진(100)의 연료 사이클을 따라 이동하면서, 엔진(100)의 동작이 이제 설명될 것이다. 일부 실시예에서, 본 명세서에 개시된 엔진은 자연적으로 공기가 통하게 된다. 다른 실시예에서, 본 명세서에 개시된 엔진은, 공기를 수용하고, 엔진의 연소 챔버를 향해, 그리고 하나 이상의 압축기(예컨대, 압축기(126, 130) 내로 공기를 강제로 주입하도록 배치된 터보차저, 슈퍼차저 또는 트윈차저(즉, 터보차저 및 트윈차저의 조합)을 포함하는 강제 유도(forced induction) 엔진이다. 예컨대, 도 2에서, 엔진(100)은 터보차저, 슈퍼차저 또는 트윈차저일 수 있는 강제 유도 디바이스(116)를 포함한다. 터보차저는 엔진의 연소 챔버를 향해 압축된 공기를 강제하는 강제 유도 디바이스이다. 터보차저는 엔진의 배기 가스에 의해 구동되는 터빈에 의해 구동된다. 따라서, 강제 유도 디바이스(116)가 터보차저인 경우, 강제 유도 디바이스(116)는 엔진(100)의 배기 스트림 내에 배치될 수 있다. 슈퍼차저는, 가령 엔진의 구동 샤프트에 부착된 벨트에 의해, 엔진에 의해 기계적으로 구동될 수 있는 기계적으로 구동되는 강제 유도 디바이스이다. 도 2를 참조하면, 엔진(100)은, 이를 통해 공기(118)가 엔진(100) 내로 들어가는 공기 유입구(112)를 포함한다. 여기서 엔진(100)의 배기 스트림 내에 배치된 터보차저로 도시되는 강제 유도 디바이스(116)는, 유입구(112)로부터 공기(118)를 수용한다. 강제 유도 디바이스(116)는 연소 터빈(152)의 연소 챔버(120)를 향하도록 공기(118)를 강제한다. 공기로 설명되었지만, 일부 실시예에서 엔진(100)은 다른 산화제, 가령 순수한 산소를 이용한다.
강제 유도 장치(116)로부터, 공급 공기(118)는 공급 도관(122)을 통과하여 엔진(100)의 압축 챔버(124)(공급 챔버로도 지칭됨) 내로 통과한다. 압축 챔버(124) 내에서, 공급 공기(118)는 제1 공기 압축기(126) 및 제2 공기 압축기(130)를 포함하는 일련의 공기 압축기를 통과한다.
공기(118)는 도 2에서 2개의 순차 공기 압축기를 통과하는 것으로 도시되지만, 엔진(100)은 2개의 순차 공기 압축기를 포함하는 것으로 제한되지 않고, 오로지 하나의 공기 압축기 또는 2개 이상의 순차 공기 압축기를 포함할 수 있다. 공기(118)가 압축 챔버(124)에 들어갈 때, 공기(118)는 제1 공기 압축기(126)를 통과한다. 제1 공기 압축기(126)(또한, 저압 공기 압축기로도 지칭됨) 내에서, 공기가 압축되어서, 제1 공기 압축기(126)를 빠져나가는 공기(118)는 제1 공기 압축기(126)로 들어가는 공기보다 더 압축되도록 한다. 제1 공기 압축기(126)를 빠져 나온 후, 공기(118)는 유입되어 제2 공기 압축기(130)(고압 공기 압축기라고도 함) 내에서 압축된다. 제2 공기 압축기(130) 내에서, 공기가 압축되어, 제2 공기 압축기(130)를 나가는 공기(118)가 제2 공기 압축기(130)에 들어가는 공기보다 더 압축되도록 한다. 일부 실시예에서, 하나 이상의 공기 압축기가 구동 샤프트(104)와 결합되고 엔진(100)의 구동 샤프트(104)에 의해 구동되어서, 구동 샤프트(104)의 회전이 압축기들을 구동하도록 한다. 예를 들어, 구동 샤프트(104)의 회전이 벨트를 이동시키고 벨트의 이동이 압축기를 구동하도록, 다른 컴포넌트의 벨트가 구동 샤프트(104)와 압축기 사이에 결합될 수 있다.
제2 공기 압축기(130)로부터, 공기(118)는, 압축기(130)의 출구 및 연소 터빈(152)의 흡입구 대해, 엔진(100) 내에서 동심으로 배열될 수 있는 공기 가압 노즐(127)을 통과한다. 공기 가압 노즐(127)은 연소 터빈(152)의 상부 고정 플레이트(108)와 일체형이거나, 이에 부착되거나 그렇지 않다면 이에 결합될 수 있다. 공기 가압 노즐(127)은, 상대적으로 짧고 각진 벽일 수 있는 깔때기 벽(funnel wall; 128)을 포함한다. 일부 실시예에서, 깔때기 벽(128)은 외부 실린더(102)와 맞물리지 않는다. 깔때기 벽(128)의 상단부(132)로부터 상부 고정 플레이트(108)까지, 깔때기 벽(128)은, 축(106)에 대하여 경사지게끔 내부로 기울어져서, 깔대기 벽(128)의 하단부(134)가 깔대기 벽(128)의 상단부(132)에 의해 정의된 개구보다 작은 직경을 갖는 개구를 정의하도록 한다. 깔대기 벽(128)은 고압 공기 압축기(130)로부터 압축된 공급 공기(118)를 받고, 연소 챔버(120) 안을 향하여 압축된 공급 공기(118)를 깔대기 안으로 이동시킨다. 공기 가압 노즐(127)은 상부 고정 플레이트(108) 상의 유입구 개구로 공급 공기(118)가 흘러가기 이전에 공급 공기(118)를 더 압축한다. 일부 실시예에서, 깔대기 벽(128)의 하단부(134)는, 상부 고정 플레이트(108) 바깥쪽의 3분의 1 부분 내의 위치에서 상부 고정 플레이트(108)와 결합된다(즉, 상부 고정 플레이트(108)의 중심점보다 상부 고정 플레이트(108)의 원주 둘레에 더 가깝게 위치된다).
연소 터빈 엔진
도 2, 3, 4 및 5를 참조하면, 연소 터빈(152)의 흡기 단부(intake end)가 설명된다. 본 개시내용은 피스톤이 없는, 즉 피스톤을 포함하지 않는 연소 터빈 엔진을 포함한다. 엔진은 상부 고정 플레이트(108)와 하부 고정 플레이트(110)를 포함한다. 연소 터빈(152)은 상부 고정 플레이트(108) 및 하부 고정 플레이트(110) 사이에 배치된다. 연소 터빈(152)은 슈라우드(153) 내에 위치한 블레이드(180)를 포함한다. 블레이드(180)(터빈 블레이드)는 슈라우드(153)에 대하여 이동가능하다. 블레이드(180) 사이의 공간은 연소 터빈(152)의 연소 챔버(120)를 정의하고, 블레이드(180)는, 연소 챔버(152)의 하부측(170) 및 연소 챔버(152)의 흡기측(150) 사이에서 연장된다. 연소 터빈(152)의 흡기 단부는 회전 연소 터빈(152)의 흡기측(150) 및 상부 고정 플레이트(108)를 포함한다. 상부 고정 플레이트(108)는, 외부 실린더(102)의 벽의 내부 둘레에 부착된 상대적으로 두껍고, 고정되고 금속인 플레이트일 수 있다.
상부 고정 플레이트(108)는 여기서 유입구(136)로 도시되는, 관통하는 것으로 정의되는 개구 또는 구멍을 포함한다. 일부 실시예에서, 상부 고정 플레이트(108)는 짝수 개의 유입구들(136)을 갖는다. 일부 실시예에서, 유입구(136)는 상부 고정 플레이트(108) 상에서 대칭 패턴으로 배치되고 이격된다. 상부 고정 플레이트(108)는 임의의 개수, 가령 1 내지 12개, 또는 2 내지 10개 또는 4 내지 8개 또는 5 내지 7개의 유입구들(136)을 포함할 수 있다. 일부 실시예에서, 상부 고정 플레이트(108)는 적어도 4개의 유입구(136)를 갖는다. 유입구(136)의 개수는 연소 터빈(152) 내에서 연소 챔버의 개수와 매칭될 수 있다. 특정 실시예에서, 유입구(136)는, 중심점(140)과 원주 둘레(138) 사이에서, 상부 고정 플레이트(108)의 가운데 3분의 2부분에 배치될 수 있다. 유입구(136)는 압축 챔버(124)로부터 연소 챔버(120) 내로의 압축된 공급 공기(118)의 통과를 허용한다. 유입구들(136) 사이에는, 본 명세서에서 전력 웨지(146)로 지칭되는, 상부 고정 플레이트(108)가 적어도 부분적으로 이로부터 구성되는 재료의 웨지들(wedges)이 있다.
엔진(100)은 하나 이상의 점화 디바이스 및 하나 이상의 연료 주입 디바이스를 포함한다. 도 3에 도시되는 것처럼, 일부 실시예에서, 엔진(100)의 점화 및 연료 주입 디바이스는 상부 고정 플레이트(108)와 결합되고, 이는 일부 실시예에서, 압축 챔버(124)의 외부에 배치될 수 있다. 상부 고정 플레이트(108)는 연소 챔버(120) 내에서 공기 혼합물 및 연료의 점화에 사용하기 위한 점화 장치(142)를 포함한다. 각 점화 장치(142)는 유입구들(136) 사이의 위치에서 상부 고정 플레이트(108) 내에 또는 그 위에 배치될 수 있다. 상부 고정 플레이트(108)는 임의의 개수의 점화 장치(142), 가령 1 내지 12개, 또는 2 내지 11개 또는 3 내지 10개 또는 4 내지 8개 또는 5 내지 7개를 포함할 수 있다. 일부 실시예에서, 상부 고정 플레이트(108)는 적어도 4개의 점화 장치를 갖는다. 점화 장치의 개수는 연소 챔버의 개수와 매칭될 수 있다. 특정 실시예에서, 점화 장치는 스파크 플러그(spark plug)이거나 이를 포함한다.
일부 실시예에서, 각 연료 주입 포트(144)는, 엔진 실린더의 외부에 배치될 수 있는, FADEC(Full Authority Digital Engine Controller)와 결합되거나 및/또는 통신가능할 수 있고, 엔진(100)이나 엔진(100)의 컴포넌트의 동작을 제어할 수 있다. 예컨대, FADEC는 언제 그리고 얼마나 많은 연료가 연소 챔버로 주입되는지와, 언제 점화 장치가 활성화(actuated)되는지(예컨대, 언제 스파크 플러그에 의해 스파크가 생성되는지)를 제어할 수 있다. FADEC는, 엔진 성능의 일부 또는 모든 양태를 제어하는 악세서리와 관련되는 것뿐만 아니라 EEC(electronic engine controller) 또는 ECU(engine control unit)로 또한, 지칭될 수 있는 디지털 컴퓨터를 포함하는 시스템이다.
도 3에 도시되는 것처럼, 일부 실시예에서, 엔진(100)의 연료 주입 디바이스는 상부 고정 플레이트(108)의 연료 주입 포트들이다. 상부 고정 플레이트(108)는 연료를 연소 챔버(120)로 주입하는데 사용하기 위한 연료 주입 포트(144)를 포함한다. 주입될 수 있는 일부 예시적인 연료는 가솔린 및 디젤 연료를 포함한다. 각 연료 주입 포트(144)는 유입구들(136) 사이의 위치에서 상부 고정 플레이트(108) 내에 또는 그 위에 배치될 수 있다. 상부 고정 플레이트(108)는 임의의 개수의 연료 주입 포트(144), 가령 1 내지 12개 또는 2 내지 11개 또는 3 내지 10개 또는 4 내지 8개 또는 5 내지 7개를 포함할 수 있다. 일부 실시예에서, 상부 고정 플레이트(108)는 적어도 4개의 연료 주입 포트를 갖는다. 연료 주입 포트의 개수는 연소 챔버의 개수와 매칭될 수 있다.
일부 실시예에서, 점화 및 연료 주입 컴포넌트(예컨대, 점화 장치(142) 및 연료 주입 포트(144)는 외부 실린더(102)의 바깥에 배치될 수 있다. 예컨대, 도 3의 파선(broken line; 109)은 상부 고정 플레이트(108)의 대안적인 경계를 나타내어서, 점화 장치(142) 및 연료 주입 포트(144)가 상부 고정 플레이트(108)의 외부 및 외부 실린더(102)의 외부에 배치된다.
도 4는 흡기측(150)에서 연소 터빈(152)의 예시적인 뷰를 도시한다. 연소 터빈(152)은, 상부 연소 터빈(152)이 외부 실린더(102)와 결합되지 않고, 따라서 외부 실린더(102)에 대하여 이동할 수 있으며, 연소 터빈(152)이 연료 주입 포트나 점화 장치를 포함하지 않는다는 점을 제외하고는, 상부 고정 플레이트(108)와 유사할 수 있다. 연소 터빈(152)은 구동 샤프트(104)에 결합된 상대적으로 두꺼운 금속 플레이트일 수 있다. 연소 터빈(152)은, 여기서 연소 챔버(120) 내의 유입구(166)로 도시되는, 흡기측(150)을 통해 정의되는 개구 또는 구멍을 포함한다. 일부 실시예에서, 연소 터빈(152)은 짝수 개수의 유입구들(166)을 갖는다. 일부 실시예에서, 유입구(166)는 연소 터빈(152) 상의 대칭적인 패턴으로 배치 및 이격된다. 연소 터빈은 임의의 개수의 유입구들(166), 가령 1 내지 12개 또는 2 내지 10개 또는 4 내지 8개 또는 5 내지 7개를 포함할 수 있다. 일부 실시예에서, 상부 회전 플레이트(150)는 적어도 4개의 유입구들(166)을 갖는다. 특정 실시예에서, 유입구(166)는, 중심점(141) 및 원주 경계(139) 사이에서, 흡기측(intake side; 150)에서 연소 터빈(152)의 중간의 3분의 2부분에 배치될 수 있다. 유입구(136) 및 유입구(166)는 정렬되며, 유입구(166)는, 유입구(136)로부터 연소 챔버(120) 안으로 향하는 압축된 공급 공기(118)의 통과를 허용한다. 유입구들(166) 사이에는, 블레이드(180)를 적어도 부분적으로 구성하는 재료의 웨지(wedge; 168)가 있다. 웨지(168)는 또한, 파워 웨지(power wedge)로도 지칭된다.
따라서, 제2 공기 압축기(130)로부터, 공기(118)는, 상부 고정 플레이트(108) 내에 형성된 유입구를 통해 그리고 연소 터빈(152)의 흡기측(150) 내에 형성된 유입구(166)를 통하여 이동하고, 연소 챔버(120)에 진입한다. 연소 챔버(120) 내부의 공기와 함께, 연소 터빈(152)은, 유입구(136) 및 유입구(166)가 더 이상 정렬되지 않고 웨지(146)가 유입구(166)와 정렬될 때까지 회전한다.
도 5에 도시되는 것처럼, 웨지(146)가 유입구(166)와 정렬되는 경우, 연료(184)는 연료 주입기(144)를 통해 연소 챔버(120) 내에 주입되고, 점화 장치(142)는 연소 챔버(120) 내에 스파크(182) 또는 다른 점화 매체를 제공하여, 연소 챔버(120) 내에서 공기(118)의 존재 하에 연료(184)의 점화를 발생시킨다. 공기(118) 및 연료(184)의 혼합물의 점화는, 연소 챔버(120) 내에 연소 가스의 형성을 발생시킨다. 연소 가스는, 연소 터빈(152)의 배기 단부(170)를 향하여 연소 챔버(120)를 통해 유동하여, 연소 챔버(120)를 정의하는 연소 챔버 벽(180)(연소 블레이드로도 지칭됨) 상에 배기의 힘만큼의 크기를 갖는 추력을 가한다. 배기 단부(170)의 배기구(176)는 흡입구(166)로부터 비스듬한 위치(askew)에 있기 때문에, 연소 챔버 벽(180)은, 연소 챔버가 유입구(166)로부터 방출구(176)로 연장함에 따라 만곡된다. 이것은 팽창하는 연소 가스가, 연소 챔버 벽(180)의 표면에 대하여 수직이거나 빗각으로, 연소 챔버 벽(180) 상에 추력을 가하게 한다. 연소 챔버 벽(180)에 가해진 추력은 연소 터빈(152)의 회전을 구동시키고, 차례로 이는 구동 샤프트(104)의 회전을 구동시키며, 차례로 이는 다른 컴포넌트, 가령 차량의 바퀴의 회전을 구동시킬 수 있다.
구동 샤프트(104)는 축(106)을 따라 배치 및 연장된다. 축(106)은 엔진(100)의 길이방향의 중심선과 평행하거나 일치할 수 있다. 일부 실시예에서, 엔진(100)의 내부 컴포넌트의 전부 또는 대부분은 구동 샤프트(104)에 부착 또는 그렇지 않다면 결합된다. 이러한 일부 실시예에서, 엔진(100)의 상부 고정 플레이트(108) 및 하부 고정 플레이트(110)는 베어링을 통해 구동 샤프트(104)에 결합되거나 그와 일체형이 되어서, 구동 샤프트(104)가 상부 고정 플레이트(108) 및 하부 고정 플레이트(110)에 대하여 이동가능하도록 한다.
일부 실시예에서, 하나 이상의 공기 냉각 구멍(air-cooling holes; 154)이 상부 고정 플레이트(108)의 외부 및/또는 연소 터빈(152)의 벽 내에 위치한다. 공기 냉각 구멍(154)은, 압력 강하로부터 발생한, 연소가 발생하는 연소 터빈(152)을 둘러싸는 저압 영역으로 향하는 공기의 냉각 흐름을 제공한다. 일부 실시예에서, 공기 냉각 구멍은, 고압 맥동 댐퍼(pulsation damper) 및 보유 챔버(131) 내의 공기 압력을 조절하기 위한 압력 컨트롤러를 통합할 수 있다.
연소 터빈(152)이 엔진(100)의 연소 챔버로 기능하게 허용하는 연소 챔버(120) 및 연소 터빈(152)이 엔진(100)의 터빈으로서 기능하게 허용하는 연소 챔버 벽(180)과 함께, 연소 터빈(152)은 연소 활동 및 터빈 활동 둘 모두를 사용하여 전력을 추출할 수 있다. 연료(184) 및 공기(118)는 연소 터빈(152) 안으로 간헐적으로 그리고 주기적으로 흐르고, 연소는 연소 챔버(120) 내에서 주기적으로 그리고 간헐적으로 발생하며, 연소는 터빈의 상류보다는 터빈 내에서 발생하게 된다. 따라서, 일부 실시예에서, 본 개시내용은 연소가 그 안에서 발생하는 챔버를 갖는 터빈을 포함한다.
연소 터빈(152)의 배기 단부(170)의 배출구(outlet; 176) 및 하부 고정 플레이트(110)의 배출구(101)는, 엔진(100)의 배기 단부의 적어도 일부를 정의한다. 배기 단부(170)는 흡기 단부(150)와 동일한 개수의 대칭적으로 배치된 개구들, 배출구들(176)을 갖는다. 도 6은 배출구(176) 및 웨지(168)(또한, 배기 웨지로도 지칭됨)를 포함하는 배기 단부(170)의 실시예를 도시한다. 일부 실시예에서, 배기 단부(170)는 짝수 개수의 배출구(176)를 갖는다. 일부 실시예에서, 배출구(176)는 대칭적인 패턴으로 배치 및 이격된다. 배기 단부는 임의의 개수의 배출구(176), 가령 1 내지 12개, 또는 2 내지 10개 또는 4 내지 8개 또는 5 내지 7개를 포함할 수 있다. 일부 실시예에서, 배기 단부(170)는 적어도 4개의 배출구(176)를 갖는다. 특정 실시예에서, 배출구(176)는 중심점(141) 및 원주 경계(173) 사이에서, 배기 단부(170)의 중간 3분의 2의 부분에 배치될 수 있다.
하부 고정 플레이트(110)는 상부 고정 플레이트(108)와 동일한 개수의 대칭적으로 위치된 개구를 가질 수 있다. 도 7은 배출구(101) 및 배기 웨지(103)를 포함하는 하부 고정 플레이트(110)의 실시예를 도시한다. 일부 실시예에서, 하부 고정 플레이트(110)는 짝수 개수의 배출구(101)를 갖는다. 일부 실시예에서, 배출구(101)는 하부 고정 플레이트(110) 상에서 대칭적인 패턴으로 배치 및 이격된다. 하부 고정 플레이트(110)는 1 내지 12개, 또는 2 내지 10개, 또는 4 내지 8개, 또는 5 내지 7개와 같은 임의의 개수의 배출구(101)를 포함할 수 있다. 일부 실시예에서, 하부 고정 플레이트(110)는 적어도 4개의 배출구(101)를 갖는다. 특정 실시예에서, 배출구(101)는 중심점(107)과 원주 둘레(105) 사이의 하부 고정 플레이트(110)의 중간 3분의 2의 부분에 위치될 수 있다. 웨지(103)는, 하부 고정 플레이트(110)가 적어도 부분적으로 구성되는 가령 강철과 같은 재료를 포함한다. 하부 고정 플레이트(110)는, 외부 실린더(102) 벽의 둘레에 부착되거나 그렇지 않으면 결합되는 비교적 두꺼운, 고정된 금속 플레이트일 수 있다. 상부 고정 플레이트(108)와 유사하게, 하부 고정 플레이트(110)는, 하부 고정 플레이트(110)의 중간 3분의 2부분에 실질적으로 위치하는 짝수 개수의 대칭적으로 배치된 개구(예를 들어, 4개 이상)를 가질 수 있다. 배출구(176)와 배출구(101)가 정렬될 때 , 배출구(101, 176)는 연소 챔버(120) 밖으로 배기(186)의 통과를 허용한다.
상부 고정 플레이트(108), 연소 터빈(152) 및 하부 고정 플레이트(110) 각각은 구멍, 구멍들(189a-189d)을 포함한다. 구멍(189a-189d)은, 축(106)을 따라 연장되는 구동 샤프트(104)가 구멍(189a-189d)을 통과하도록 정렬된다. 구동 샤프트(104)는 연소 터빈(152)의 회전이 구동 샤프트(104)를 회전시키도록 구멍(189b 및 189c)에서 연소 터빈(152)과 결합될 수 있다. 일부 실시예에서, 구동 샤프트(104)는, 상부 및 하부 고정 플레이트를 회전시키지 않고, 상부 및 하부 고정 플레이트에 대해 회전할 수 있도록, 구멍(189a, 189d)에서 상부 및 하부 고정 플레이트와 결합된다.
연소 터빈(152)은 실린더 또는 슈라우드(153)를 포함한다. 슈라우드(153)는 상대적으로 두꺼운 벽을 갖고, 비어있고, 금속인(예컨대, 강철) 실린더일 수 있다. 슈라우드(153)는 연소 터빈(152)의 흡기 단부(150) 및 배기 단부(170)와 결합될 수 있다. 슈라우드(153)는, 상부 고정 플레이트(108)보다 작은 직경일 수 있다. 연소 터빈(152)은, 구동 샤프트(104)와 결합될 수 있다. 이러한 실시예 중 일부에서, 연소 터빈(152)의 흡기 단부(150) 및 배기 단부(170)는 구동 샤프트(104)와 결합되며, 여기서 구동 샤프트(104)는 구멍(189b, 189c)을 통과한다. 연소 터빈(152)의 회전은 구동 샤프트(104)로 하여금 축(106)을 중심으로 회전하게 한다. 즉, 연소 터빈(152)의 회전은 구동 샤프트(104)가 대응되게 회전하도록 구동한다.
도 2 및 8을 참조하면, 일부 실시예에서 상부 고정 플레이트(108) 및 흡기 단부(150) 사이에 그리고 하부 고정 플레이트(110) 및 배기 단부(170) 사이의 허용오차(tolerance)는, 내연기관 피스톤 엔진 내의 피스톤(160) 및 측벽(162) 사이의 허용오차와 동일하거나 실질적으로 동일하다.
도 2 및 9 모두를 참조하면, 피스톤 엔진 피스톤 상에 사용된 링과 동일하거나 실질적으로 유사할 수 있는 링(164)이 상부 고정 플레이트(108) 및 흡기 단부(150) 사이에 배치된다. 링(164)은, 상부 회전 플레이트(150)를 통해 형성되는 블라스트 닙(blast nib; 169) 및 유입구(166)의 외부 및 내부에 배치된다. 베어링(172)은 구동 샤프트(104) 및 상부 고정 플레이트(108)의 체결부 사이에 배치되어서, 구동 샤프트(104)는 상부 고정 플레이트(108)에 대해 회전할 수 있게 한다. 블라스트 닙(169)은, 필요한 경우 링(164)과 베어링(172)을 보호하기 위해, 상부 고정 플레이트(108) 및 상부 회전 플레이트(150) 내로 통합되거나 이와 결합되거나 또는 구축된다. 하부 고정 플레이트(110)는 도 2 및 9와 관련하여 상술한 바와 같이 상부 고정 플레이트(108)와 동일한 방식으로 구성될 수 있고, 링은 하부 고정 플레이트(110) 및 배기 단부(170) 사이에 배치된다. 링은 하부 회전 플레이트(170)를 통해 형성되는 블라스트 닙 및 배출구(176)의 외부 및 내부 상에 배치될 수 있다. 베어링은 또한, 하부 고정 플레이트(110) 및 구동 샤프트(104)의 체결부 사이에 배치될 수 있어서, 구동 샤프트(104)가 하부 고정 플레이트(110)에 대해 회전할 수 있도록 한다. 블라스트 닙은, 필요한 경우 링 및 베어링을 보호하기 위해, 하부 회전 플레이트(170) 및 하부 고정 플레이트(110)로 구축되거나, 이와 결합되거나 또는 이와 통합될 수 있다.
도 10a는 본 명세서에 개시된 엔진의 부분들의 분해도를 도시한다. 구동 샤프트(104)는 (상부 회전 플레이트(150) 및 하부 회전 플레이트(170) 및 하부 고정 플레이트(110)를 포함하는) 연소 터빈(152), 상부 고정 플레이트(108)를 통과하고 이들과 결합된다. 유입구(136)가 유입구(166)와 정렬되고(도 10b), 배출구(101)가 배출구(176)와 정렬되는 경우(도 10e), 이후 공기는 연소 챔버(120)에 진입하고 빠져나올 수 있다. 유입구(136)가 유입구(166)와 정렬되지 않고(도 10c), 배출구(101)가 배출구(176)와 정렬되지 않은 경우(도 10d) 이후 공기는 연소 챔버(120)에 진입하거나 빠져나올 수 없다. 유입구(136)가 유입구(166)와 정렬되고(도 10b) 배출구(101)가 배출구(176)와 정렬되지 않은 경우(도 10d) 이후 공기는 연소 챔버(120)에 진입할 수 있지만 이로부터 빠져나올 수 없다. 유입구(136)가 유입구(166)와 정렬되지 않고(도 10c), 배출구(101)가 배출구(176)와 정렬된 경우(도 10e), 이후 공기는 연소 챔버(120)를 빠져나올 수 있지만 이에 진입할 수 없다.
동작 시에 압출된 공급 공기(118)는, 연소 터빈(152) 내에서 연소 챔버(120)를 채우기 위해 유입구(136, 166)를 통해 유동하고, 유입구(136, 166)가 정렬되고, 유입구(136, 166) 및 배출구(176, 101)가 정렬되지 않은 경우, 연소 챔버(120)는 밀폐된다(enclosed). 연소 챔버(120)가 밀폐된 경우, 연소가 그 안에서 발생한다. 연소 이후, 배출구(176, 101)는 정렬되어서 배기(186)가 연소 챔버(120)로부터 방출되게 된다. 일부 실시예에서, 유입구(136, 166) 및 배출구(176, 101)의 기하학적 형상은 다음의 시퀀스로 최적화되어 설계된다: (1) 압출된 공기가 고압 공기로 연소 챔버를 충전하고; (2) 연소 챔버는, 일정한 체적의 연소 챔버를 형성하도록 밀폐 및/또는 밀봉되고, 이 시점에서 도입된 연료 및 공기가 점화되며; (3) 배출구(176)는, 연소 가스가 연소 챔버로부터 방출되는 것을 시작하게끔 허용하기 위해 배출구(101)와 정렬되어 회전하며; 그럼으로써 연소 터빈의 연소 블레이드(180)의 회전을 구동하는 추력을 생성하고; (4) 유입구(166)는 유입구(136)와 정렬되어 회전하여서, 상부 유입구(136, 166) 및 하부 배출구(101, 176)가 동시에 고온, 고압의 연소 가스의 배기를 위해 개방되게 하며, 연소 챔버를 신선하고 압축된 가스로 충전하는 것을 시작하며; 및 (5) 하부 배출구(101, 176)는, 연소 챔버 내에 고압의 공기를 트랩(trap)하기 위해 유입구(136, 166)를 폐쇄하기 이전에, 하부 회전 플레이트(170)의 회전을 통해 폐쇄된다.
도 11a는 엔진(100)의 다른 실시예를 도시한다. 도 11a의 엔진(100)은 도 2의 엔진(100)과 실질적으로 유사하며, 유사한 참조 번호는 유사한 구성요소를 가리킨다. 도 11a에서, 공기(118)는 우선 압축 챔버(124) 안으로 유동하기 이전에 터보차저, 슈퍼차저 또는 트윈차저(116)를 통과한다. 2개의 압축기 대신에, 도 2에서와 같이, 도 11a의 엔진(100)은 하나의 고압 압축기(130)를 갖는다. 압축 이후에, 압축된 공기(118)는, 맥동 감쇠기(pulsation dampener) 및 고압 보유 챔버(131)에 저장되며, 여기서 공기(118)의 맥동 감쇠가 발생된다. 챔버(131)로부터, 공기(118)는 고압 연소 터빈(152) 안으로 포트(유입구(136, 166))를 통해 진입된다. 연소는 고압 연소 터빈(152)에서 발생되는 한편, 흡기 포트(136, 166) 및 배기 포트(101, 176)는 폐쇄되어서, 일정한 체적의 연소 이벤트가 연소 챔버(120) 내에서 발생하게끔 한다. 따라서, 배기 가스(186)는 배기 포트(101, 176)를 통해 고압 연소 터빈(152)을 떠나고, 이후 배기로 방출되기 이전에 팽창된다. 배기(186)는 사용되는 경우 터보차저(116)를 통해 유동할 수 있다. 배기(186)(공기 몇 연소 가스)는 이후 왕복(reciprocating) 엔진에 사용된 배기 시스템과 동일하거나 실질적으로 유사한 엔진(100)의 하류의 배기 시스템 안으로 유동할 수 있다. 도 11a에 도시된 실시예에서, 구동 샤프트 작업은 구동 샤프트(104a, 104b)의 양 단부에서 이용가능하다. 이와 같이 엔진(100)의 구동 샤프트는 2개의 상이한 컴포넌트를 구동하기 위해 사용될 수 있다. 일부 실시예에서, 연소 터빈(152)은 충분한 강도 및 중량의 하나 이상의 재료로 적어도 부분적으로 구성될 수 있어서, 연소 터빈(152)은 연소 가스를 함유하는 것이 가능하고 따라서, 플라이휠(flywheel)로 기능할 수 있다.
도 11b는 엔진(100)의 다른 실시예를 도시한다. 도 11b의 엔진(100)은, 도 2 및 11a의 엔진(100)과 실질적으로 유사하며, 유사한 참조 번호는 유사한 구성요소를 가리킨다. 도 11b에서, 공기 흡입부(112)는 배기 단부보다는 엔진(100)의 "저온" 측("cold" side)에 배치된다. 공기(118)는 엔진(100)에 들어가고, 연소 터빈(152)에 들어가기 이전에 (예컨대, 압축기(130)를 포함하는) 하나 이상의 압축기에 의해 압축된다. 배기(186)는, 연소 터빈(152)을 빠져나간 이후 보조 터빈(113)을 통과한다. 보조 터빈(113)은 구동 샤프트(104)와 결합될 수 있어서, 보조 터빈(113)이 배기(186)로부터 에너지를 획득하도록 하고, 보조 터빈(113)이 회전하도록 야기한다. 보조 터빈(113)의 회전은 구동 샤프트(104)의 회전을 야기한다.
엔진 사이클
특정 실시예에서, 본 명세서에 개시된 엔진은 상대적으로 효율적이고, 3개의 구별된 스테이지 또는 "스트로크(stroke)"를 포함한다. 엔진의 3개의 구별된 스테이지 또는 스트로크는: (1) 압축 및 로딩(loading) 스테이지(즉, 공기의 압축 및 압축된 공기와 연료를 이용한 연소 챔버의 충전); (2) 폭발 스테이지(즉, 연소 챔버 내에서 공기의 존재 하의 연료의 폭발); 및 (3) 배기 스테이지(즉, 연소 챔버로부터의 연소 가스의 배기)를 포함한다. 연소 터빈은: (1) 상부 고정 플레이트의 유입구로부터 연소 챔버 안으로 공기 흐름의 통과를 선택적으로 허용하기 위해 상부 고정 플레이트에 대하여 회전가능하고(즉, 연소 챔버의 로딩); (2) 상부 고정 플레이트 및 하부 고정 플레이트에 대하여 회전가능하여서, 상부 및 하부 회전 플레이트 둘 모두에서 유입구 및 배출구가 상부 및 하부 고정 플레이트에서의 유입구 및 배출구에 대하여 폐쇄(즉, 정렬되지 않음)되게끔 하여서, 연소 챔버 내의 공기 및 연료의 폭발을 제공하며(즉, 폭발 스테이지); 및 (3) 연소 챔버로부터 하부 고정 플레이트의 배출구로부터 배기 흐름을 선택적으로 허용하기 위해 고정된 하부에 대하여 회전가능하다(즉, 연소 챔버의 배기). 따라서, 일부 실시예에서, 본 명세서에 개시된 엔진은 3개의 스테이지 또는 스트로크 엔진이고, 4개의 구별된 스테이지: (1) 폭발, (2) 배기, (3) 로딩, 및 (4) 압축을 포함하는 4개의 스테이지 또는 스트로크 피스톤 엔진에 비해 더 적은 개수의 스테이지나 스트로크를 갖는, 3개의 스테이지 또는 스트로크 엔진이다. 일부 실시예에서, 본 명세서에 개시된 엔진은, 엔진의 구동 샤프트의 일회전 미만으로 엔진의 3개의 "스테이지" 또는 "스트로크"를 통해 순환(cycle)하는 한편, 폭발, 배기, 로딩 및 압축을 통해 순환하는 4개의 스테이지 또는 스트로크 피스톤 엔진은, 720°의 구동 샤프트 회전을 요구한다.
도 12는, 엔진의 다양한 스테이지나 스트로크 동안에 본 명세서에 개시된 회전하는 내연 엔진의 컴포넌트들의 위치를 도시하며, 이는 상부 및 하부 고정 플레이트에 대하여 연소 터빈의 배치를 도시하고, 엔진의 단일 사이클을 통한 공기의 흐름 및 연소 생성물을 도시한 것을 포함한다. FADEC는 점화 및 연료 주입을 포함하는 엔진 기능의 전부 또는 적어도 일부를 제어한다. 도 12에 표현된 엔진은 4개의 연소 챔버(120a-120d)를 포함한다.
도 12의 상단에 도시된 제1 위치(702)에서, 상부 고정 플레이트(108) 및 상부 회전 플레이트(150)를 포함하는 흡기 단부와, 하부 고정 플레이트(110) 및 하부 회전 플레이트(170)를 포함하는 배기 단부는, 배출구(176)가 하부 고정 플레이트(110)에서 배출구(101)와 정렬되지 않고, 유입구(166)는 오로지 유입구(136)와 부분적으로 정렬되도록 하여, 공급 공기(118)가 연소 챔버(120a-120d) 밖으로 흐르지 않고, 연소 챔버(120a-120d) 안으로 흐르게 한다. 따라서, 제1 위치(702)에서, 연소 챔버(120a-120d)는 유입 공기(118)에 의해 가압된다. 제1 위치(702)는 또한, "공급 공기 위치"로 지칭되며, 본 명세서에 개시된 엔진의 압축 및 로딩 스테이지 동안에 상부 및 하부 고정 및 회전 플레이트의 위치이다.
제2 위치(704)에서, 흡기 단부는, 유입구(166)가 상부 고정 플레이트(108)에서 유입구(136)와 정렬되지 않도록 배치된다. 또한, 배기 단부는 배출구(176)가 하부 고정 플레이트(110) 상에서 배출구(101)와 정렬되지 않도록 배치된다. 이와 같이, 상부 고정 플레이트(108) 위에 배치된 공기는 연소 챔버(120a-120d) 안과 밖으로 유동할 수 없다. 즉, 연소 챔버(120a-120d)는 점화 시기에 폐쇄된다. 또한, 제2 위치(704)에서 연소 챔버(120a-120d)의 체적은 고정되어서, 연소 챔버(120a-120d)가 제2 위치에서 일정한 체적의 연소 챔버가 되도록 한다. 제2 위치(704)에서, 점화(182) 및 연료(184)는 연소 챔버(120a-120d) 안으로 제공된다. 제2 위치(704)가 연료 및 공기 혼합물의 점화 및 폭발을 위해 구성되는 것으로 도시되지만, 일부 상황에서, 가령 엔진의 시동 조건 동안에, FADEC는, 가령 연소가 그 시간에 필요하지 않은 경우에서와 같이 연료공급, 점화 및 폭발을 시작하지 않을 수 있다. 제2 위치(704)는 또한, 본 명세서에서 "연소 위치"로 지칭되고, 본 명세서에 개시된 엔진의 폭발 및 연소 스테이지 동안에 상부 및 하부 고정 및 회전 플레이트들의 위치이다. 연료(184)의 점화는 연소 챔버(120a-120d) 내에서 연소 가스(186)를 생성한다.
제3 위치(706)에서, 흡기 단부 및 배기 단부는 회전되어서(예컨대, 구동 샤프트(104)를 중심으로 회전되어서), 배출구(176)가 하부 고정 플레이트(110)에서 배출구(101)와 부분적으로 정렬되게 하고, 연소 가스(186)가 연소 챔버(120a-120d)로부터 배기로서 유동하는 것을 시작할 수 있고; 그럼으로써, 연소 챔버(120a-120d) 안으로 유도된 추력(188)(공기역학적 추력)을 인가하고, 이는 연소 챔버 벽(180) 상에 가해져서, 연소 터빈(152)의 회전을 구동하는 토크(191)를 그곳으로 전달하며, 이는 차례로 구동 샤프트(104)의 회전을 구동한다. 제3 위치(706)는 또한, "배기 위치"로 본 명세서에서 지칭되며, 엔진의 배기 스테이지 동안에 상부 및 하부 고정 및 회전 플레이트들의 위치이다.
제4 위치(708)에서, 흡기 단부 및 배기 단부는 일지점으로 회전되어서, 배출구(176)가 하부 고정 플레이트(110)에서 배출구(101)와 더 완전히 정렬되게 하고, 제3 위치(706)에 대하여, 유입구(166)가 상부 고정 플레이트(108)에서 유입구(136)와 더 완전히 정렬되게 한다. 이와 같이 공급 공기(118)는 다시 연소 챔버(120a-120d) 안과 밖으로 유동하고; 그럼으로써, 핀휠, 윈드 터빈(wind turbine), 또는 터보차저 터빈의 행동과 동일하거나 유사한 방식으로 공기역학적 리프트를 통해 토크(192)를 연소 챔버 벽(180)에 인가한다. 따라서, 유입 공기(118)는 "윈드밀 효과(windmill effect)"를 생성하여, 연소 터빈(152)을 회전시킨다. 제4 위치에서 연소 챔버(120a-120d)로부터의 배기(193)는, 연소 챔버(120a-120d) 내의 임의의 잔존하는 연소 가스(186) 및 공급 공기(118)의 혼합물을 포함할 수 있는 스캐빈저(scavenger) 또는 스캐빈저 배기일 수 있다. 따라서, 제4 위치(706)는 또한, 본 명세서에서 "스캐빈지 위치", "스캐빈저 위치" 또는 "스캐빈징 위치"로 지칭될 수 있으며, 연소 가스의 스캐빈징 스테이지 동안에 상부 및 하부 고정 및 회전 플레이트들의 위치이다.
제4 위치(708) 이후에, 흡기 단부 및 배기 단부는 제1 위치(702)로 다시 회전하여서, 엔진 사이클이 다시 시작되도록 한다. 연소 블레이드(180)가 직선형의 각도진 블레이드로 도 12에 도시되지만, 연소 블레이드는 이러한 형상 및 구성으로 제한되지 않고, 가령 공기역학적 효율을 위해 만곡될 수 있다. 도 12에 도시되는 것처럼, 유입구 및 배출구(101, 136, 166, 176)는 내부의 가스 흐름을 지시하는 경사진(beveled) 및/또는 각진(angled) 표면을 가질 수 있고, 이는 도 20을 참조하여 아래에서 더 상세히 설명된다.
이상적인 엔진 사이클
일부 실시예에서, 본 명세서에 개시된 연소 터빈 엔진의 성능은, 압력 대 체적의 좌표를 도표로 표시(plot)하여 평가될 수 있다. 하나의 특정 실시예로, 본 명세서에 개시된 연소 터빈 엔진은, 이상적인(idealized) Brayton Cycle (가스 터빈)과 비교된다. 압력(P) 대 체적(V) 좌표는 각 엔진 프로세스 동안에 일의 전달에 대한 직접적인 표시를 제공한다. 일(work)은 체적의 변화를 압력에 곱한 것과 동일하거나, 달리 말하면 일은 P-V 다이어그램 내부의 면적이다. 도 13 및 14는 압력 대 체적의 그래프들이고, 여기서 그래프의 x-축 상의 체적은 "비체적"이다. "비체적(specific volume)"은, 기체의 질량에 대한 기체의 체적의 비율이다. 즉, 비체적은 밀도의 역수(inverse)이다. 즉, 비체적은 단위 체적당 질량이 아니라 단위 질량당 체적이다. 폐쇄된 연소 챔버의 경우와 같은 일부 실시예에서, 비체적 및 실제 물리적인 체적은 동등하다. 폐쇄된 연소 챔버 내의 연소 동안에, 기체의 압력 및 온도가 증가된다; 그러나, 밀도 및 비체적은 일정하게 유지된다.
본 명세서에 개시된 연소 터빈 엔진의 이상적인 프로세스들이 도 13에 도시된다. 도 13의 데이터에서, 가스 터빈 엔진과 유사한 압축기 섹션이 연소 터빈 엔진의 연소 챔버의 상류에 배치되는 것으로 가정한다. 도 13의 데이터에서, 팽창(보조 터빈) 스테이지가 연소 터빈 엔진의 배기 가스로부터 에너지를 복원하도록 연소 터빈 엔진의 하류에 배치되는 것으로 또한, 가정한다. 도 13을 참조하면, 주변 조건의 공기는 상태 1에서 엔진에 진입한다. 초기 압축이 엔진 프로세스의 상태 1에서 상태 2로 향할 때 압축기 블레이딩에서 발생한다. 도 13의 그래프에서, 플롯의 우측에서 좌측으로 향하는 이동은, 가스에 대해 이루어져야 하는 일을 표시하고, 일의 양은 프로세스 커브 아래의 면적에 의해 주어진다. 따라서, 상태 1에서 상태 2로 이동할 때 압축 스테이지는, 엔진으로부터의 일 입력(work input)을 요구한다. 압축의 완료 이후에, 상태 2, 공기 및 연료는 이후 엔진의 연소 챔버 안으로 전달된다. 엔진의 연소 챔버 내에서, 연소는 일정한 체적으로 발생한다; 그럼으로써, 상태 3으로 연소 챔버 내 압력 및 온도를 증가시킨다. 상태 2에서 상태 3으로, 프로세스 라인을 따라 이동하는 것은 수직이기 때문에(즉, 비체적 변화가 없음), 이상적인 엔진 프로세스의 이 단계 동안에 일이 존재하지 않는다. 배기 가스는 이후 연소 챔버를 빠져나가고 상태 3에서 상태 4로 이동하여 팽창 프로세스를 통과한다. 플롯 상에서 좌측으로부터 우측으로 이동하는 것은 추출되는 일을 표시하고, 추출된 일의 양은 프로세스 커브 아래의 면적에 의해 주어진다. 따라서, 일의 추출은 상태 3에서 상태 4를 향해 발생한다. 연소 챔버 통로의 설계는, 이 엔진 프로세스의 단계에서 추출될 수 있는 일의 양을 적어도 부분적으로 정의한다.
비교 목적을 위하여, 전형적인 이상적인 Brayton Cycle 가스 터빈 엔진의 일정한 압력의 연소 프로세스가 도 13에 또한, 도시된다. 도시되는 바와 같이, 상태 2로부터, 전형적 이상적인 Brayton Cycle 가스 터빈 엔진 프로세스 라인(점선)은 수직이 아니라 좌측에서 우측으로 이동한다. 이는, 전형적인 이상적 Brayton Cycle 가스 터빈 엔진에 비해 본 명세서에 개시된 회전 연소 터빈 엔진을 사용하여 추출되는 추가적인 일을 발생시킨다. Brayton Cycle 연소 프로세스 라인(점선) 위에 표시된 삼각형 섹션은, 본 명세서에 개시된 이상적인 회전 연소 터빈 엔진에 의해 획득되는 추가적인 일 출력을 표현한다. 이론에 결부되지 않고, 본 명세서에 개시된 회전 연소 터빈 엔진 내의 일정한 체적의 연소 프로세스의 조합은, 전형적인 가스 터빈(Brayton Cycle 가스 터빈)에 비하여, 연소로부터 더 많은 일을 추출하는 것을 허용한다.
이상적인 엔진 사이클의 이탈(deviations)
도 13은 이상적인 회전 연소 터빈 엔진 사이클을 도시한다. 그러나 모든 엔진은 이상적인 사이클에서 이탈한다. 이상적인 엔진 사이클에서 이탈을 최소화하면 일 추출 및 엔진 효율성이 향상된다.
이상적인 조건으로부터 벗어날 수 있는 엔진 사이클의 하나의 파라미터는, 연소 이전의 공기 흡입부의 압축량이다. 이론에 결부되지 않고, 엔진 사이클 효율은 엔진 사이클 프로세스들이 더 높은 압력에서 수행됨에 따라 증가되는 것으로 믿어진다. 압축 압력을 연소 이전에 증가시키는 것이 압축 일(compression work)을 증가시키는 한편, 이는 또한, 엔진의 터빈 섹션의 가스들의 후속적인 팽창 동안에 추출되는 일의 양을 증가시킨다. 압축에 의한 일 추출의 총 증가에 대한 일실시예가 도 14에 도시된다. 도 14에서, 점선은 초기 엔진 일 사이클을 도시하고, 실선은 흡기 공기의 더 높은 압축 비율에 기초하는, 일의 증가된 총 출력을 갖는 잠재적인 엔진 일 사이클을 도시한다. 일부 실시예에서, 연소 챔버의 상류에 배치된, 터보차저, 슈퍼차저, 노즐, 하나 이상의 압축기 또는 이들의 조합을 사용하는 것은, 본 명세서에 개시된 연소 터빈 엔진 내 공기 흡입부의 압축을 제공한다; 그럼으로써, 이것의 엔진 사이클 효율을 증가시킨다. 이론에 결부되지 않고, 압축 프로세스의 효율은 도 14의 압축 프로세스 커브의 형상에 영향을 주며, 이는 상태 1에서 상태 2로의 라인의 형상이다. 따라서, 압축 프로세스의 효율은 공기 흡입부의 압축에 대해 요구되는 일의 양(즉, 커브 아래의 면적)에 영향을 준다.
이상적인 조건으로부터 벗어날 수 있는 엔진 사이클의 다른 파라미터는, 연소 챔버에 진입하는 가스 전달 손실이다. 압력 강하는, 공기 흡입부 충전을 연소 챔버 내로 이전할 때에 발생되며, 이는 연소 챔버 안으로 유입구 포트를 통해 고압 보유 챔버로부터의 가스 흐름을 구동한다. 압력 강하 및 가스 전달 손실의 영향이 도 15의 이상적인(idealized) 프로세스에 도시된다. 도 15에서, 본래의 프로세스는 실선으로 도시되고, 연소 챔버 내 압력 손실을 감안한 프로세스는 점선으로 도시된다. 도 15에서 요구되는 압축 일(compression work)은 도 13 및 14로부터 변화되지 않는다. 하지만, 도 15에서 추출되는 팽창 일(expansion work)은, 연소 챔버 안으로 그리고 유입구 포트를 통과하는 압력 강하 및 가스 흐름 손실로 인하여, 도 13 및 14에 비교할 때 감소되게 된다. 일부 실시예에서, 밀봉 및 엄격한 허용오차가 전달 손실을 감소시키는데 사용된다.
이상적인 조건으로부터 벗어날 수 있는 엔진 사이클의 다른 파라미터는, 연소 챔버로부터의 누설(leakage) 및 연소 프로세스의 타이밍이다. 바람직하게는, 연소 타이밍은, 연소 챔버가 폐쇄되어 있는 동안에 연소의 완료를 위한 충분한 양의 시간을 보장하도록 구성된다. 즉, 상부 고정 플레이트의 유입구들 및 연소 터빈의 흡입구들이 언제 개방 또는 폐쇄된 구성에 있는지에 대한 타이밍과, 하부 고정 플레이트의 배출구들 및 연소 터빈의 배기구들이 언제 개방 또는 폐쇄된 구성에 있는지에 대한 타이밍은, 완전한 연소가 발생할 충분한 시간 동안에 흡입구들(136, 166)이 폐쇄되고 한편, 배기구들(176, 101)이 또한, 폐쇄되도록 바람직하게 구성된다.
도 16은 흡기 포트 폐쇄(즉, 유입구들(136, 166)이 폐쇄된 구성인 경우) 및 배기 포트 개방(즉, 배출구들(176, 101)이 폐쇄된 구성인 경우) 사이에서 발생하는 하나의 예시적인 이벤트들의 시퀀스를 도시한다. 일부 실시예에서, 연료 및 공기는, 연소 챔버 안으로의 연료 및 공기의 진입 이전에 혼합되어서, 흡기 포트 폐쇄 이후 즉시 점화가 발생하도록 허용한다. 도 16을 참조하면, 엔진 사이클 이벤트는 타임라인(timeline; 1900)에 걸쳐 발생하는 것으로 도시된다. 시간(1902)에서, 흡기 포트 폐쇄가 발생하고, 선택적으로 시간(1904)에서 동시에 연료 주입이 발생한다. 시간(1906)에서, 연료와 공기가 혼합된다. 시간(1904)에서 시간(1906)에 이르는 기간은, 연료 및 공기의 혼합 비율 및 연료의 기화에 의해 결정되며, 기체 연료의 사용 및/또는 연료 및 공기의 사전 혼합에 의해 감소될 수 있다. 시간(1908)에서, 연료/공기 혼합물의 점화가 발생한다. 시간(1910)은, 점화의 발생으로부터 점화의 완료까지의 이용가능한 잔존 시간을 표시한다. 이 시간 프레임은, 화염(flame) 속도에 의해 결정되며, 이는 연소 챔버의 기하학적 형상(예컨대, 점화기의 스파크 및 연소 챔버의 가장 먼 벽 사이의 거리)에 의해, 그리고, 연소 챔버 내의 난류의 정도에 의해, 공기 몇 연료의 혼합 비율 및 선택된 연료에 기초한다. 시간(1912)에서, 연소는, 바람직하게는 배기 포트가 시간(1914)에서 개방되기 이전에 완료된다. 시간(1916)에서, 흡기 포트 폐쇄의 시간(1902), 및 배기 포트 개방의 시간(1914) 사이의 시간은, 유입구 및 배출구의 밀봉 기하학적 형상 및 연소 터빈의 회전 속도에 의해 결정되는 것으로 표시된다.
본 명세서에 개시된 연소 터빈 엔진의 연소 지속시간에 대한 논의 이전에, 통상적인 스파크 연소된 피스톤 엔진 동안의 연소가 문맥을 위해 설명될 것이다. 통상적인 스파크 점화된 피스톤 엔진 동안의 연소는, 2500 RPM에서 동작하는 엔진에 대해 대략 15 내지 20 크랭크 정도(crank degree)이다. 이것은 연료의 10%가 연소된 시점부터 연료의 90%가 연소되는 시간인 10% - 90% 연소 지속시간을 가정한 것이다. 초기 점화 스파크 이벤트, 및 이용가능한 점화 에너지에 따르는, 5 내지 15도 범위에 있을 수 있는 연료의 10%가 연소되는 지점의 달성으로부터의 지연이 존재한다. 이 2개의 지연들은 누적된다. 연소 지연 및 10-90% 연소 지속시간은 충전 공기 움직임에 따르며, 여기서 충전 공기 움직임이 점화기의 스파크를 끄는 한계까지 더 많은 양의 충전 공기(charge air) 움직임이 있을수록 좋다. 스파크 점화된 엔진에서, 텀블(텀블 플랩(tumble flap))이 더 높은 충전 움직임(charge motion)을 제공하는데 일반적으로 사용된다.
도 12에 표현된 4개의 연소 챔버 엔진 사이클에서, 모든 90도의 크랭크샤프트 회전(구동 샤프트 회전)에 대하여 하나의 점화(firing) 이벤트(연소 이벤트)가 존재한다. 따라서, 도 12의 엔진 사이클에서, 엔진 사이클의 모든 스테이지 또는 스트로크는 샤프트의 90도 회전 내에서 발생한다. 비교를 위하여, 전형적인 4-스트로크 피스톤 엔진은, 신선한 공기 및 연료로 연소 챔버를 충전하는 것, 압축, 연소 및 팽창을 포함하는, 발생될 엔진 사이클의 모든 스테이지 또는 스트로크에 대하여 720도의 크랭크샤프트 회전(즉, 스트로크당 180도)을 요구한다.
일부 실시예에서, 유입구 및 배출구 포트의 개방 및 폐쇄의 타이밍은, 열역학적 고려사항에 기초하여 최적화된다. 예컨대, 연소 터빈 엔진의 열역학적 시뮬레이션은, 유입구 및 배출구 포트의 개방 및 폐쇄의 타이밍을 최적화하도록 수행될 수 있다. 이러한 일부 실시예에서, 연소 터빈 엔진의 연소 지속시간은, 연소 챔버에서 생성된 난류 움직임, 연소 챔버의 기하학적 형상 및 화염 속도의 상세한 계산 분석에 기초하여 결정될 수 있다. 이러한 일부 실시예에서, 연소 터빈 엔진은, 상대적으로 높은 난류를 달성하도록 설계된다. 이론에 결부되지 않고, 높은 난류는 짧은 연소 지속시간을 제공하는 것으로 여겨진다.
일부 실시예에서, 연소 챔버 및 배기(예컨대, 보조 터빈을 향함) 둘 모두를 향하는 연소 챔버로부터의 가스 누설의 발생은, 감소 또는 제거된다. 연소 터빈 엔진에서, 고정 플레이트 및 회전 연소 터빈 사이의 적어도 약간의 공간(clearance)이 존재한다. 이 공간은, 압력 차이, 가령 압축기 배출구 또는 보조 터빈 유입구 및 연소 챔버들 사이의 압력 차이가 존재하는 곳이며, 적어도 일부 가스가 2개의 플레이트들을 가로질러 누설되는 것을 허용한다. 이 가스 누설은 가령, 링들(164)을 제공함으로써, 고정 및 회전 플레이트들 사이의 정밀한 밀봉에 의해 최소화될 수 있다. 연소 이벤트 동안의 가스 누설은, 고압 가스가 임의의 일을 추출함이 없이 낮은 압력 영역으로 조절(throttled)되기 때문에, 직접적인 이용가능성의 손실이다. 본 명세서에서 사용되는 바와 같이, "이용가능성 손실"은 엔진 사이클의 나머지 부분 동안에 일을 더 이상 하는데 이용가능하지 않은 에너지를 의미한다.
고압 보유 챔버로부터 연소 챔버 내부로의 가스의 전달 동안의 조절 손실(throttling loss)와 유사하게, 압력 강하 손실이 가스가 연소 챔버를 빠져나감에 따라 배기 포트를 통해 발생할 수 있다. 연소 챔버로부터의 가스 누설과 마찬가지로, 이 압력 강하(또한, "조절 손실"로도 지칭됨)는 추출될 수 있는 일의 양을 감소시키는 직접적인 이용가능성 손실이다. 배기 가스의 높은 온도 및 압력은, 임의의 압력 강하 손실의 크기, 신뢰성 및 내구성을 악화시킬 수 있다. 이러한 손실의 일 출력에 대한 효과가 도 17에 도시된다. 그래프의 위쪽 실선은 이상적인 프로세스를 도시하는 한편, 점선은 연소 챔버로부터의 가스 누설뿐만 아니라, 배기 포트를 가로지르는 압력 강하의 효과를 설명한다.
이상적인 조건으로부터 벗어날 수 있는 엔진 사이클의 다른 파라미터는, 팽창 프로세스 효율에 있다. 일부 실시예에서, 연소 터빈 엔진은, 일을 생산하기 위하여, 연소 챔버와 일치하는 고효율의 일 추출을 제공한다. 일부 실시예에서, 연소 터빈 엔진에는, 추가적인 일을 생산하고, 압축 프로세스를 구동하며, 일을 생산하기 위한(예컨대, 도 13-15 및 17에서 2개의 커브 사이의 면적), 연소 챔버의 하류에 배치된고효율 일 추출 프로세스 또는 장치(예컨대, 팽창 보조 터빈)가 제공된다. 등엔트로피 효율 및 프로세스 라인의 길이(일 추출 동안에 얼마나 오랫동안 배기 압력 및 온도가 취해질 수 있는지)는 연소 터빈 엔진의 일 추출의 효율을 증가시키기 위해 최적화될 수 있다.
압축 및 팽창 효율
Brayton 공기-표준 사이클과 관련되는 사이클에서 동작하는 전통적인 가스 터빈에서, 공기는, 일반적으로 다수의 스테이지들에서, 일정한-흐름의 회전 압축기 블레이딩을 사용하여, 주변 조건으로부터 상승 온도 및 압력으로 압축된다. 압축 이후에, 압축된 가스는, 연료가 일정한 압력으로 혼합 및 연소되지만, 온도 및 비체적의 큰 증가를 갖는 이동하지 않는 연소 섹션에 진입한다. 연소 가스들은 이후, 팽창이 전형적으로 다수의 스테이지 회전 터빈 섹션에 걸쳐 달성되는 터빈 스테이지에 진입한다. 본 명세서에 개시된 연소 터빈 엔진은, 일정한 흐름 및 일정한 압력의 연소 챔버를, 일정한 체적의 비정상적(non-steady) 흐름의 회전 연소 챔버로 교체한다. 본 명세서에 개시된 연소 터빈 엔진은, 연소실 벽 내부의 베인(vane), 블레이드 또는 다른 형상을 사용하여, 회전 연소 챔버로부터 일을 추출하여서, 출발하는 연소 가스가 구동 샤프트로 전달되는 힘을 생산하도록 한다.
이론에 결부되지 않고, 고온의 가압된 가스로부터 에너지를 직접 추출하는 2개의 방법들이 존재하는 것으로 여겨진다. 하나의 방법은 피스톤 엔진에서 수행되는 것과 같이 폐쇄된 챔버 이동 경계 팽창(closed chamber moving boundary expansion)을 제공하는 것이며, 여기서 가스는 피스톤에 대하여 팽창하고 팽창 또는 압력-체적(P-V) 일을 생성한다. 다른 방법은, 회전하는 터빈 블레이드를 가로질러 연속적인 흐름을 팽창시키는 것으로서, 여기서는 일반적으로 노즐을 통해 가속되는 가스에 의해 운동량 에너지(momentum energy)가 블레이드에 전달된다. 터빈 특성에는, 효율성에 대한 "블레이드 속도 비율" 효과가 포함된다. 블레이드 속도 비율(blade speed ratio; BSR)은, 블레이드 속도를 등엔트로피(isentropic) 가스 속도로 나눈 값으로 정의되며, 이는 가스가, 이용가능한 압력 비율에 걸쳐 등엔트로피 팽창될 경우 달성할 수 있는 속도이다. (상대적으로 고정된 블레이드 속도에서) BSR을 기체 속도의 역수에 비례한다고 생각하면 도움이 된다. 즉, 높은 가스 속도에서 BSR은 낮고, 그 반대도 마찬가지다. 따라서, 정상 흐름 환경에서는 최소한의 BSR 변동이 있는 반면에, 높은 맥동(pulsing) 흐름 환경에서는 높은 BSR 변동이 있다. BSR의 높은 맥동 수준과 변동은, 일반적으로 터빈 효율에 부정적인 영향을 주며, 이는 진입하는 가스가 현재 블레이드 속도 조건에 대하여 너무 빠른 속도와 너무 느린 속도 사이에서 교번하기 때문이다. 이는 도 18에 도시된 바와 같이 최적의 BSR에서 변화함에 따라 효율을 감소시키는 다른 문제뿐만 아니라, 가스와 블레이드 사이의 불량한 입사각(incidence angle)을 발생시킨다. 도 18에서 위쪽 화살표는 정규화된 1의 BSR에서 정상 흐름으로부터 사용할 수 있는 정규화된 효율을 나타내고, 아래쪽 화살표는 광범위하게 변화하는 BSR에 노출될 때 터빈에 의해 달성되는 평균적인 정규화된 효율을 나타낸다. 이 경우, 가능한 터빈 효율의 약 30%가 손실된다.
본 명세서에 개시된 연소 터빈 엔진에서, 연소 챔버는 연소 챔버 내부에 터빈과 유사한(turbine-like) 블레이드를 갖는다. 연소 챔버 환경에서, 폐쇄된 연소 챔버는, 대략 0의 속도(연소 후, 그러나 배기 포트가 열리기 전)의 고온 고압 가스를 포함한다. 배기 포트가 유한한 기간 동안 열리면, 연소 가스의 출구 경로가 제공된다. 유동 경로는, 작은 오리피스(orifice)로 시작하여, 전체 포트 크기로 성장한 후, 연소실이 고정 포트 플레이트에 대해 회전함에 따라 다시 작은 오리피스로 감소한다. 일부 실시예에서, 배기 포트(예컨대, 배출구들(176 및/또는 101))는 원하는 방향으로 연소 터빈을 회전시키기 위한 추력을 생성하도록, 배기가 배출되도록 연소 터빈에 원주 방향으로 지향된 노즐을 포함한다. 이론에 결부되지 않고, 이러한 배기 노즐로부터의 방출의 가속도는, 반대 방향으로 회전하는 연소 터빈에 동일한 크기의 힘을 전달하고; 그럼으로써 구동 샤프트에 토크를 가한다. 일부 실시예에서, 에너지는 또한, 연소 챔버의 출구에 위치된 보조 터빈에 의해, 연소 챔버의 배기 가스로부터 추출된다.
스캐빈징(scavenging)
연소 챔버의 스캐빈징은, 이전 사이클로부터의 연소 생성물을 신선한 공기 및/또는 연료/공기 혼합물로 교체하는 것을 포함한다. 본 명세서에 개시된 연소 터빈 엔진의 일부 실시예에서, 적어도 흡기 및 배기 포트가 모두 개방된 기간 동안 연소 챔버 유입구에서 연소 챔버 배출구로의 양의 압력차(positive pressure differential)가 존재한다. 흡기 포트와 배기 포트가 동시에 열리면, 양의 압력차가 신선한 공기를 밀어 넣고, 연소 챔버에서 연소 생성물을 제거한다.
일부 실시예에서, 본 명세서에 개시된 연소 터빈 엔진은, 스캐빈징을 용이하게 하기 위해 연소 챔버를 가로질러 양의 압력차를 갖고, 터빈 유입구 압력으로서 일정한 체적 연소로부터 발생하는 고압을 이용한다. 일부 실시예에서, 연소 배출구 압력은 압축기 방출 압력보다 높지 않다. 이러한 일부 실시예에서, 배기구들(예컨대, 노즐)은 연소 챔버 배출구들에 배치되어서, 가스 흐름 속도가 (예컨대, 보조 터빈 팽창 섹션을 향해) 증가되는 동안에 압력이 감소되도록 한다. 일부 실시예에서, 터빈 섹션에 대한 유입구는, 연소 챔버의 유입구측 상의 고압 보유 챔버 내의 압력 이나 유동 속도보다 더 높은 압력 또는 더 높은 유동 속도를 갖는다.
전력의 생성
이론에 결부되지 않고, 전력의 생성은 화학 에너지(예컨대, 가솔린 에너지)를 기계적인 움직임(즉, 기계적 에너지)로 변환하는 것을 요구한다. 전력을 생성하기 위해, 기계적인 에너지를 전류로 변환하기 위해 추가적인 단계가 요구되며, 이는 전형적으로 회전식 발전기를 사용하여 달성된다. 일(전기적이거나 기계적인 일)을 하기 위한 목적으로 사용되는 기계적인 움직임은, 회전 샤프트에 의해 제공될 수 있다. 예컨대, 전형적인 자동차 엔진은, 샤프트를 회전시키기 위해 선형 피스톤 운동을 이용하는 한편, 전형적인 가스 터빈 엔진은 샤프트를 직접 회전시킨다. 따라서, 이러한 엔진에서, 전력은 샤프트의 회전 속도 및 샤프트에 가해지는 토크에 의해 결정된다.
가스 터빈 엔진에서, 터빈의 고온 섹션(팽창기(expander))는 유체(즉, 연소된 공기 및 연료)로부터 에너지를 추출하여 기계적인 회전으로 변환한다. 도 19에 도시된 것처럼, 에너지는, 공기역학적 리프트(lift)(2202)를 생성하는 에어포일(airfoil; 2200)을 가로질러 고압, 고온의 유체(2204)를 팽창시킴으로써 추출된다. 에어포일(2200)의 고압측(2206) 및 저압측(2208)은 또한, 도 19에 표시된다. 유체 온도는, 연소기로 일반적으로 지칭되는 곳에서 발생되는 팽창기의 상류의 연료의 연소에 의해 증가된다. 가스 터빈 엔진에서, 연소는, 유체가 일정한 압력에 있는 동안에 발생한다. 토크의 주 원천은 터빈의 블레이드에 가해지는 공기역학적 리프트이다. 터빈 블레이드가 흐름을 다시 유도함에 따라, 유체의 에너지가 샤프트 토크로 전달된다. 터빈 블레이드의 상부측 및 하부측 사이의 압력의 차이는, 터빈에 적용되는 토크의 원천인, 에어포일을 가로질러 유체가 이동함에 따라 생성되는 공기역학적 리프트로 인한 것이다. 전형적인 가스 터빈은, 회전 팽창기 스테이지의 상류에 고정식 연소기를 구비함으로써, 가스 터빈 엔진 설계를 단순화하기 위해 분리된 연소기 및 팽창기 섹션들을 갖는다. 연소 이후에 연소된 가스로부터의 에너지가 하나 이상의 회전하는 팽창기 스테이지들에 걸쳐 추출되고, 각 스테이지는 고정된 세그먼트(스테이터 날개(stator vane)) 및 회전 세그먼트(로터 블레이드(rotor blade)) 둘 모두로 구성된다.
일부 실시예에서, 본 명세서에 개시된 연소 터빈 엔진은, 가스 터빈 엔진의 고정식 날개(vane) 및 고정식 연소기를 단일 회전 컴포넌트로 조합한다. 전형적인 가스 터빈 엔진과는 대조적으로, 본 명세서에 개시된 연소 터빈 엔진에서, 연소 프로세스는 일정한 체적에서 발생하는 한편, 전형적인 가스 터빈 엔진에서는 연소 프로세스가 일정한 압력에서 발생한다. 연소기 및 날개(vane)를 단일 회전 컴포넌트, 연소 터빈으로 조합함으로써, 연소 이후의 고압이 회전 구동 샤프트에 토크를 직접 전달하는데 사용될 수 있다.
일부 실시예에서, 일은, 고압의 연소 터빈(152) 내 만곡된 블레이드(180)로부터 추출된다. 이러한 일부 실시예에서, 연소 터빈(152)을 빠져나가는 가스 흐름으로부터의 공기역학적 리프트는, 구동 샤프트(104)로 전달되는 토크를 생성하고, 가스 흐름으로부터 일을 추출한다.
일부 실시예에서, 본 명세서에 개시된 연소 터빈 엔진으로부터 순(net) 샤프트 동력을 생성하는 것은, 연소된 가스로부터 회전 컴포넌트(예를 들어, 구동 샤프트(104))로 에너지를 전달하는 것을 포함한다. 도 20은 연소 챔버 내의 예시적인 연소 이벤트를 도시한다. 연소 가스(186)는 벽들(180) 사이의 연소 챔버(120) 내에 도시되어 있다. 도시된 바와 같이, 상부 고정 플레이트(108), 상부 회전 플레이트(150), 하부 회전 플레이트(170) 및 하부 고정 플레이트(110)는 각각 경사진(beveled) 또는 각진(angled) 에지(165)를 포함한다. 이론에 결부되지 않고 , 경사진 에지(165)는, 배기 가스(186)를 연소 챔버(120) 내로 편향시킴으로써, 연소 가스(186)의 누출 발생을 감소 또는 지연시킬 수 있다. 일부 이러한 실시예에서, 연소 터빈 엔진으로부터 순 샤프트 동력을 생성하기 위해, 연소 터빈 엔진은 팽창기 스테이지 또는 고정식 연소기를 포함한다. 예를 들어, 추가적인 팽창기 스테이지(예를 들어, 보조 터빈(113))는, 고압 및 고온 가스를 샤프트 일(shaft work)로 변환하기 위해, 연소기(연소 챔버(120))의 하류에 위치될 수 있다. 연소 터빈 엔진(152)의 연소 프로세스가 주기적이기 때문에, 보조 터빈(113)으로의 배기 가스의 맥동 흐름이 생성될 수 있다. 다른 예시적인 실시예에서, 회전 연소 터빈(152)은 도 21에 도시된 바와 같이 고정식 연소기(152b)로 교체된다. 이러한 실시예에서, 연소 챔버(120)의 상부 및 하부를 정의하는 흡기 단부(150) 및 배기 단부(170)는, 정지되거나 고정되고(도 2에서와 같이 회전하는 것과 대조적임), 상부 플레이트(108) 및 하부 플레이트(110)는, 회전 플레이트이다(도 2에서와 같은 고정 플레이트 또는 고정 플레이트와는 대조적임). 도 21에 도시된 바와 같이, 플레이트(108, 110)의 기하학적 구조는, 회전 방향(2402)으로 공기역학적 추력을 제공하도록 구성될 수 있다. 예컨대, 플레이트(108)는, 연소 챔버(120)의 흡입구 포트가 개방되는 경우 연소 챔버로 공기 흐름을 지향시키는 노즐을 함께 정의하는 만곡된 표면들(2402)을 포함할 수 있고, 플레이트(110)는, 방향(2402)으로 플레이트들(108, 110)의 회전 및 하류의 회전 컴포넌트 상의 추력으로 인해 발생될 일의 추출을 야기하는 방향으로 연소 챔버(120)로부터 배기(186)를 지향시키는 노즐을 함께 정의한다. 이러한 실시예에서, 플레이트들(108, 110)은 구동 샤프트를 구동시키기 위해 구동 샤프트(미도시)와 결합될 수 있다.
일정한 체적의 연소
본 명세서에 개시된 연소 터빈 엔진은, 가스를 압축 및 팽창하기 위해 터보기계(turbomachinery)를 사용하는 동안 일정한 체적의 연소를 제공한다. 일정한 체적의 연소는, 연소된 가스의 압력의 상당한 상승을 제공하며, 이는 일정한 압력의 연소 프로세스보다 더 많은 일을 제공할 수 있다. 연소 동안의 압력의 부수적인 상승으로 인하여, 더 적은 압축 스테이지가 사용될 수 있고; 그럼으로써, 엔진의 전체 복잡성 및 크기를 감소시킨다. 일정한 체적의 연소와 함께, 본 명세서에 개시된 연소 터빈 엔진은, Otto 사이클, 디젤 사이클, Brayton 사이클 및 폭발 사이클이 압력 대 부피로 표시되는, 도 22a 내지 22d에 도시되는 바와 같은, 폭발 사이클과 유사한 사이클을 사용한다.
응용분야
전술한 바와 같이, 본 개시내용의 일부 실시예는 고압 공기를 공기역학적으로 형상화된 회전 연소 챔버 내로 강제하기 위한, 공기 압축 개념의 적용을 포함한다. 연소를 생성하는 에너지의 한 사이클은, 신선한 압축 공기가 회전하는 연소 챔버를 로딩(load)할 때 시작된다. 연소 챔버가 폐쇄된 구성으로 회전하면서, 연료가 분사되고 점화된다. 점화는 연소를 시작하기 위해 에너지를 추가한다. 연소 챔버의 바닥은, 먼저 개방된 위치로 회전하여, 고온, 고압의 연소 가스를 배기하고, 연소 챔버의 회전을 구동하여, 엔진의 사이클을 완료하고, 엔진의 사이클을 완료시키며, 연소 챔버 내부의 압력이 고압 맥동 댐퍼 및 보유 챔버(131)보다 더 낮게 하는 결과를 발생시켜서 스캐빈징을 용이하게 한다. 회전 챔버는 샤프트 일 출력을 생산하는 중심 구동 샤프트에 연결된다. 구동 샤프트의 샤프트 일 출력은, 임의의 개수의 사용, 가령 차량의 바퀴를 구동시키거나 다른 기계의 컴포넌트들을 이동시키는 것을 위하여 획득될 수 있다.
일부 실시예에서, 본 명세서에 개시된 연소 터빈 엔진은, 가령 자동차와 같이 피스톤 엔진이 전형적으로 사용되는 응용분야에서 사용될 수 있다. 다른 실시예에서, 본 명세서에 개시된 연소 터빈 엔진은, 종래의 가스 터빈 엔진들이 전형적으로 사용되는 응용분야에서 사용될 수 있다. 일부 실시예에서, 본 명세서에 개시된 연소 터빈 엔진은, 터보제트 엔진이 추력을 생성하기 위해 사용되는 응용분야, 터보팬(turbofan) 엔진이 추력을 제공하는 덕트 송풍기(ducted fan)에 동력을 공급하는데 사용되는 응용분야, 또는 터보프롭 엔진이 프로펠러에 동력을 공급하는데 사용되는 응용분야에서 사용될 수 있다.
일부 응용분야에서, 본 명세서에 개시된 연소 터빈 엔진은, 전력 발전기를 전력을 생성하게끔 회전시키는 샤프트를 구동하거나, 또는 선박의 프로펠러 샤프트를 회전시키는 샤프트를 구동하는데 사용될 수 있다. 따라서, 본 명세서에 개시된 연소 터빈 엔진은, 자동차(차량 트럭), 보트 및 항공기에 통합될 수 있다.
하이브리드 전력 생성
일부 응용분야에서, 본 명세서에 개시된 연소 터빈 엔진은, 풍력이나 태양광 에너지가 이용가능하지 않은 경우 동력을 제공하기 위해, 가령 바람이나 태양력과 같은 재생가능한 에너지원과 함께 사용될 수 있다. 이러한 실시예에서, 본 명세서에 개시된 엔진은, 상대적으로 짧은 시동 시간을 가질 수 있고, 부분 부하에서 상대적으로 낮은 배출량으로 효율적으로 동작할 수 있다. 추가적으로, 화염 유지를 위한 전형적인 터빈 연소기 요구사항을 갖지 않는 일정한 체적의 프로세스에서 발생하는 공기-연료 혼합물 연소 이벤트로 인하여, 본 명세서에 개시된 엔진은, 종래의 가스 터빈보다 더 넓은 동작 범위에 걸쳐서 보다 효율적일 수 있다.
열병합 발전과 수소 경제
일부 응용분야에서, 본 명세서에 개시된 연소 터빈 엔진은, 열병합 발전(combined heat and power; CHP) 시스템에서 사용될 수 있다. CHP는 기계(예: 샤프트) 또는 전기 에너지의 발전과, 배기에서 생성되는 열 모두에 엔진을 사용하는 시스템 및 프로세스 사이클을 지칭한다. CHP가 유용할 수 있는 일부 프로세스에는, 화학 처리, 섬유, 제지 및 펄프 산업이 포함된다. 일부 그러한 화학 공정은 수소를 생성하는데, 이는 일부 실시예에서 수소가 현장에서 이용가능하거나 및/또는 수소가 프로세스의 생성물이기 때문에, CHP에 대한 바람직한 연료이다. 여기서 개시된 엔진의 일정한 체적 연소, 및 소화(extinguish)될 수 있는 파일럿 화염의 부족과 함께, 본 명세서에 개시된 연소 터빈 엔진은 CHP로 통합될 수 있고, 비교적 높은 수소 함량을 함유하는 연료 혼합물을 사용할 수 있다. 일부 설비의 경우, 엔진의 위치가 국지적으로 이용가능하거나 국지적으로 생성된 천연 가스나 특정 산업 프로세스로부터의 다른 연료의 사용을 요구할 수 있다. 따라서, 수소나 메탄 또는 다른 국지적으로 이용가능한 연료를 사용할 수 있는 능력은, 현재 개시된 엔진에 대하여 원격의 위치에서도 사용될 수 있는 능력을 제공한다.
마이크로 터빈
통상적인 터보기계는 일반적으로 효율성, 제조 가능성 및 기계적 설계에 대한 상당한 영향 없이, 약 1MW 규모로 축소될 수 있다. 그러나, 1MW보다 작은 규모에서 종래의 터보 기계는 누설 경로를 나타낼 수 있으며, 이는 유동 경로가 더 작은 크기로 축소됨에 따른 공기 역학적 유동 영역의 더 큰 비율을 반영하게 된다. 종래의 터보 기계의 연소기는, 완전한 연소를 위한 충분한 체류 시간을 제공할 수 있을 만큼 충분히 커야 한다. 현재 개시된 연소 터빈 엔진의 일부 실시예에서, 일정한 체적의 연소 프로세스의 사용은, 체류 시간에 대한 제한을 감소시키고, 종래의 터보기계를 사용하여 달성할 수 있는 것보다 더 작은 마이크로 가스 터빈을 위한 연소기를 허용한다. 일부 실시예에서, 연소기 및 팽창기는, 단일 압축기 휠 상에 있으며, 연소기는 임펠러(impeller) 상에 위치된다.
고속 흡기 추진(air-breathing propulsion)
가령, 음속보다 빠르게 설계된 항공기와 같은, 항공기는 일반적으로 터보제트 엔진 또는 낮은 바이패스 비율의 터보팬을 포함한다. 대략 마하 3보다 빠른 비행에 대한 하나의 제한 요소는, 고유량 속도에 대한 연소기의 민감도이다. 종래의 항공기 엔진에 사용되는 일정한 압력의 연소 공정은, 연소기 크기가 필요한 연소 체류 시간에 적절하며, 연소기 파일럿 화염의 화염 정지 조건이 회피될 수 있도록, 공기가 압축되고, 공기가 아음속 속도(예컨대, 마하 < 1)로 감속될 것을 요구한다. 일부 실시예에서, 본 명세서에 개시된 연소 터빈 엔진은, 파일럿 화염을 요구하지 않는다. 일부 실시예에서, 본 명세서에 개시된 연소 터빈은 항공기의 터보제트 또는 터보팬에 통합될 수 있다.
다른 엔진 구성들
일부 실시예에서, 본 명세서에 개시된 연소 터빈 엔진은, 프로펠러를 구동하기 위해, 구동되는 프로펠러와 통합된다. 이러한 일부 실시예에서, 연소 터빈 엔진은 배기 스트림 내에 터보-차지를 포함하지 않고, 프로펠러로부터의 공기 흐름은 회전 연소 터빈 안으로 신선한 공기의 초기 흐름을 제공한다.
일부 실시예에서, 본 명세서에 개시된 연소 터빈은, 공급 공기에 압축을 제공하는 저압 및 고압 팬들을 갖는, 제트 및 터빈 엔진으로 통합된다.
도 2에 도시된 것처럼, 일부 실시예에서, 주변 공기가 본 명세서에 개시된 연소 터빈 엔진의 터빈 단부 또는 고온 단부에 진입하고, 사전 압축이 터보차저 또는 슈퍼차저에서 발생한다. 공기는 이후, 엔진의 다른 단부로 전달되며, 여기서 공기는 연소 터빈에 진입하기 이전에 고압 압축기 스테이지를 통과한다. 다른 실시예에서, 흡입 공기는, 엔진의 압축기 단부, 저온 단부로 직접 유동하고, 연소 터빈의 연소 챔버에 진입하기 이전에 다수의 압축 스테이지들을 통과한다.
실시예들
실시예 1. 연소 터빈 엔진으로서, 공기 흡입부; 연소 터빈 - 상기 연소 터빈은: 슈라우드 및 상기 슈라우드에 결합되거나 이와 일체형인 터빈 블레이드를 포함하고, 상기 터빈 블레이드는 상기 슈라우드 내에 배치되고, 인접한 터빈 블레이드 사이의 공간은 연소 챔버를 적어도 부분적으로 정의함 - ; 연소 챔버 안으로 향하는 흡입구를 포함하는 흡기 단부 및 연소 챔버 밖으로 향하는 배기구를 포함하는 배기 단부; 구동 샤프트 - 상기 연소 터빈은 구동 사프트와 결합되어서 연소 터빈의 회전이 상기 구동 샤프트를 회전시킴 - ; 상기 흡기 단부에 인접하여 배치된 흡입구를 포함하는 상부 고정 플레이트, 및 상기 배기 단부에 인접하여 배치된 배기구를 포함하는 하부 고정 플레이트를 포함하고, 상기 연소 터빈은 상기 상부 및 하부 고정 플레이트들 사이에 배치되며; 상기 연소 터빈은 상기 흡입구를 통하여 연소 챔버 안으로 흡입 공기의 통과를 허용하도록 상기 상부 고정 플레이트에 대해 회전가능하고, 상기 연소 터빈은 상기 배기구를 통해 연소 가스를 배기하도록 상기 하부 고정 플레이트에 대해 회전가능한, 연소 터빈 엔진.
실시예 2. 실시예 1의 엔진에 있어서, 공기 흡입부 및 상부 고정 플레이트 사이에 배치된 하나 이상의 공기 압축기(air compressor)를 더 포함하고, 상기 하나 이상의 공기 압축기는 공기 흡입부로부터 흡입 공기를 수용하고, 가압된 흡입 공기를 연소 터빈에 제공하도록 배치되는, 연소 터빈 엔진.
실시예 3. 실시예 2의 엔진에 있어서, 상기 공기 흡입부 및 상기 하나 이상의 공기 압축기 사이에 배치되고, 공기 흡입부로부터 흡입 공기를 수용하고, 흡입 공기를 상기 하나 이상의 공기 압축기에 제공하도록 배치되는 터보차저, 슈퍼차저 또는 트윈차저를 더 포함하는, 연소 터빈 엔진.
실시예 4. 실시예 2 또는 3의 엔진에 있어서, 상기 하나 이상의 공기 압축기는 직렬로 배열된 2개의 공기 압축기를 포함하는, 연소 터빈 엔진.
실시예 5. 실시예 1 내지 4 중 어느 하나의 엔진에 있어서, 상기 하부 고정 플레이트의 하류에, 상기 연소 터빈의 배기 스트림 내에 배치된 보조 터빈을 더 포함하는, 연소 터빈 엔진.
실시예 6. 실시예 5의 엔진에 있어서, 상기 보조 터빈은 상기 구동 샤프트에 결합되는, 연소 터빈 엔진.
실시예 7. 실시예 2 내지 6 중 어느 하나의 엔진에 있어서, 상기 하나 이상의 공기 압축기 및 상기 연소 터빈 사이에 배치되고, 공기를 상기 연소 터빈 안으로 지향시키도록 배치되는 공기 가압 노즐을 더 포함하는, 연소 터빈 엔진.
실시예 8. 실시예 1 내지 7 중 어느 하나의 엔진에 있어서, 연료를 상기 연소 챔버 내에 주입하도록 배치된 적어도 하나의 연료 주입기를 더 포함하는, 연소 터빈 엔진.
실시예 9. 실시예 1 내지 8 중 어느 하나의 엔진에 있어서, 상기 연소 챔버 내에서 연료 및 공기 혼합물을 점화하도록 배치된 적어도 하나의 점화 장치를 더 포함하는, 연소 터빈 엔진.
실시예 10. 실시예 1 내지 9 중 어느 하나의 엔진에 있어서, 상부 고정 플레이트, 하부 고정 플레이트, 연소 터빈 몸체 또는 이들의 조합 내의 공기 냉각 구멍을 더 포함하는, 연소 터빈 엔진.
실시예 11. 실시예 1 내지 10 중 어느 하나의 엔진에 있어서, 상기 연소 터빈은 엔진의 몸체 상의 블라스트 닙(blast nib)을 포함하는, 연소 터빈 엔진.
실시예 12. 실시예 1 내지 11 중 어느 하나의 엔진에 있어서, 상부 고정 플레이트 및 구동 샤프트 사이에 배치된 베어링과, 하부 고정 플레이트 및 구동 샤프트 사이에 배치된 베어링을 더 포함하는, 연소 터빈 엔진.
실시예 13. 실시예 1 내지 12 중 어느 하나의 엔진에 있어서, 연소 터빈의 흡기 단부 및 상부 고정 플레이트 사이에 그리고 하부 고정 플레이트 및 연소 터빈의 배기 단부 사이에 배치된 링들을 더 포함하는, 연소 터빈 엔진.
실시예 14. 실시예 1 내지 13 중 어느 하나의 엔진에 있어서, 구동 샤프트는 컴포넌트와 결합되고, 구동 샤프트가 상기 컴포넌트를 구동시키는, 연소 터빈 엔진.
실시예 15. 실시예 14의 엔진에 있어서, 구동 샤프트는 구동 샤프트의 제1 단부에서 제1 컴포넌트와 결합되고, 구동 샤프트의 제2 단부에서 제2 컴포넌트와 결합되는, 연소 터빈 엔진.
실시예 16. 실시예 14 또는 15의 엔진에 있어서, 상기 컴포넌트는 프로펠러, 펌프, 발전기, 터빈, 압축기 또는 휠(wheel)을 포함하는, 연소 터빈 엔진.
실시예 17. 실시예 1 내지 16 중 어느 하나의 엔진에 있어서, 공기 흡입부는, 흡입 공기가 상기 연소 터빈 안으로 통과하기 이전에 엔진의 배기에 의해 가열되도록 배치되는, 연소 터빈 엔진.
실시예 18. 실시예 1 내지 17 중 어느 하나의 엔진에 있어서, 혼합 구역(mixing zone)을 더 포함하고, 여기서 흡입 공기가 연소 터빈의 상류에서 연료와 혼합되는, 연소 터빈 엔진.
실시예 19. 실시예 1 내지 18 중 어느 하나의 엔진에 있어서, 엔진의 하우징을 적어도 부분적으로 정의하는 외부 실린더를 더 포함하는, 연소 터빈 엔진.
실시예 20. 실시예 2 내지 19 중 어느 하나의 엔진에 있어서, 각각의 공기 압축기는 구동 샤프트와 결합되고 구동 샤프트에 의해 구동되는, 연소 터빈 엔진.
실시예 21. 실시예 1 내지 20 중 어느 하나의 엔진에 있어서, 연소 터빈은 플라이휠(flywheel)로 기능하는, 연소 터빈 엔진.
실시예 22. 실시예 1 내지 21 중 어느 하나의 엔진에 있어서, 엔진의 사이클을 통해, 연소 터빈은 위치들에 순차적으로 진입하도록 회전하되: 상기 위치들은: 연소 터빈의 배기구가 하부 고정 플레이트의 배기구와 정렬되지 않아서, 배기가 연소 챔버로부터 탈출하는 것이 방지되게 하며, 연소 터빈 내 흡입구가 상부 고정 플레이트 내 흡입구와 부분적으로 정렬되어서, 가스가 연소 챔버 안으로 유동할 수 있게 하는 제1 위치; 연소 터빈의 흡입구가 상부 고정 플레이트의 흡입구와 정렬되지 않고, 연소 터빈의 배기구가 하부 고정 플레이트의 배기구와 정렬되지 않아서, 가스가 연소 챔버에 진입 또는 빠져나가는 것이 방지되는 제2 위치; 연소 터빈의 흡입구가 상부 고정 플레이트 내 개구와 정렬되지 않아서 가스가 연소 챔버에 진입하는 것이 방지되고, 연소 터빈의 배기구가 하부 고정 플레이트의 배기구와 적어도 부분적으로 정렬되어서, 배기 가스가 연소 챔버를 빠져나가는 제3 위치; 연소 터빈의 흡입구가 상부 고정 플레이트의 개구와 적어도 부분적으로 정렬되어서 공기가 연소 챔버 안으로 유동하게끔 허용되고, 연소 터빈의 배기구가 하부 고정 플레이트의 개구와 적어도 부분적으로 정렬되어서 배기 가스가 연소 챔버를 빠져나가도록 하는 제4 위치인, 연소 터빈 엔진.
실시예 23. 연소 터빈 엔진으로서, 공기 흡입부; 고정식 연소기 - 상기 고정식 연소기는 슈라우드 및 상기 슈라우드와 일체형이거나 이에 결합된 연소 챔버 벽을 포함하고, 상기 연소 챔버 벽은 슈라우드 내에 배치되고, 인접한 연소 챔버 벽 사이의 공간은 연소 챔버를 적어도 부분적으로 정의함 - ; 연소 챔버 안으로 향하는 흡입구를 포함하는 흡기 단부와, 연소 챔버 밖으로 향하는 배기구를 포함하는 배기 단부; 상기 흡기 단부에 인접하게 배치된 흡입구를 포함하는 상부 플레이트 및 상기 흡기 단부에 인접하여 배치된 배기구를 포함하는 하부 플레이트를 포함하고, 상기 고정식 연소기는 상부 및 하부 플레이트들 사이에 배치되고, 상부 플레이트는 연소 챔버 안으로 흡입 공기를 지향시키는 흡입구를 포함하고, 상기 하부 플레이트는, 상기 상부 및 하부 플레이트들을 회전시키는 추력을 생성하기 위해, 상기 고정식 연소기를 중심으로 원주방향으로 상기 연소 챔버 밖으로 배기를 지향시키도록 배치된 배기구를 포함하고, 상부 및 하부 플레이트들은 구동 샤프트와 결합되어서 상부 및 하부 플레이트의 회전이 상기 구동 샤프트를 회전시키도록 하며; 상기 상부 및 하부 플레이트들은, 상기 배기구를 통해 연소 가스를 배기하고, 상기 흡입구를 통해 연소 챔버 내로 흡입 공기의 통과를 허용하게끔 상기 고정식 연소기에 대하여 회전가능한, 연소 터빈 엔진.
실시예 24. 연소 터빈 엔진을 사용하여 원동력을 생성하는 방법으로서, 연소 챔버의 흡기 단부 안으로 연료 및 흡입 공기를 제공하는 단계 - 상기 연소 챔버는 연소 터빈의 블레이드 사이의 공간에 의해 적어도 부분적으로 정의되고, 상기 블레이드는 구동 샤프트와 결합됨 - ; 연소 챔버의 흡기 단부 및 배기 단부를 폐쇄하고, 상기 폐쇄된 연소 챔버 내에서 연료 및 흡입 공기 혼합물을 연소시키는 단계 - 상기 연소는 연소 가스들을 형성함 - ; 및 연소 챔버의 배기 단부를 개방하고 연소 챔버로부터 연소 가스들을 배기하는 단계를 포함하고, 상기 연소 가스들을 배기하는 단계는 블레이드의 회전을 구동하고, 상기 블레이드의 회전은 구동 샤프트의 회전을 구동하는, 원동력을 생성하는 방법.
실시예 25. 실시예 24의 방법에 있어서, 연소 챔버 안으로 흡입 공기를 제공하는 단계 이전에, 상기 흡입 공기를 터보차저, 슈퍼차저 또는 트윈차저에 통과시키는 단계를 더 포함하는, 원동력을 생성하는 방법.
실시예 26. 실시예 24 또는 25의 방법에 있어서, 연소 챔버 안으로 흡입 공기를 제공하는 단계 이전에, 흡입 공기를 압축하는 단계를 더 포함하는, 원동력을 생성하는 방법.
실시예 27. 실시예 24 내지 26 중 어느 하나의 방법에 있어서, 공기 가압 노즐을 통해 연소 챔버 안으로 흡입 공기를 지향시키는 단계를 더 포함하는, 원동력을 생성하는 방법.
실시예 28. 실시예 24 내지 27 중 어느 하나의 방법에 있어서, 연소 챔버 안으로 연료 및 흡입 공기를 제공하는 단계 이전에, 상기 연료 및 흡입 공기를 혼합하는 단계를 더 포함하는, 원동력을 생성하는 방법.
실시예 29. 실시예 24 내지 28 중 어느 하나의 방법에 있어서, 연소 챔버의 하류에 보조 터빈을 통해 배기된 연소 가스들을 통과시키는 단계를 더 포함하고, 상기 보조 터빈은 구동 샤프트와 결합되는, 원동력을 생성하는 방법.
실시예 30. 실시예 24 내지 29 중 어느 하나의 방법에 있어서, 상기 연소 터빈은 연소 터빈 엔진의 상부 고정 플레이트 및 하부 고정 플레이트 사이에 배치되어서, 상기 흡기 단부는 상기 상부 고정 플레이트에 인접하여 배치되고, 상기 배기 단부는 상기 하부 고정 플레이트에 인접하여 배치되며, 상기 상부 고정 플레이트는 흡입구를 포함하고 상기 하부 고정 플레이트는 배기구를 포함하며, 상기 연소 터빈의 흡기 단부를 개방하는 것은 상기 연소 터빈을 회전시키는 것을 포함하여서, 흡입구들이 연소 챔버와 유체 연통(in fluid communication)하게 하고, 상기 연소 터빈의 배기 단부를 개방하는 것은, 연소 터빈을 회전시키는 것을 포함하여서, 배기구가 연소 챔버와 유체 연통하게 하는 것인, 원동력을 생성하는 방법.
실시예 31. 실시예 24 내지 30 중 어느 하나의 방법에 있어서, 연소 터빈 엔진의 사이클은 적어도: 연소 챔버의 배기 단부가 폐쇄되고, 연소 챔버의 흡기 단부가 적어도 부분적으로 개방되며, 흡입 공기가 연소 챔버 안으로 제공되는 제1 상태; 연소 챔버가 폐쇄되고 연료 및 흡입 공기 혼합물이 연소되는 제2 상태; 상기 연소 챔버의 배기 단부가 적어도 부분적으로 개방되는 한편, 연소 챔버의 흡기 단부가 폐쇄되는 제3 상태; 및 연소 챔버의 흡기 단부 및 배기 단부 둘 모두가 적어도 부분적으로 개방되고, 연소 가스들이 연소 챔버로부터 배기되며, 연소 챔버의 스캐빈징(scavenging)이 발생하는 제4 상태를 포함하는 것인, 원동력을 생성하는 방법.
실시예 32. 실시예 24 내지 31 중 어느 하나의 방법에 있어서, 연소 챔버 내의 연소가 일정한 체적 내에서 발생하는 것인, 원동력을 생성하는 방법.
실시예 33. 연소 터빈 엔진을 사용하여 원동력을 생성하는 방법으로서, 연소 챔버의 흡기 단부 안으로 연료 및 흡입 공기를 제공하는 단계 - 연소 챔버는 고정식 연소기의 블레이드들 사이의 공간에 의해 적어도 부분적으로 정의됨 - ; 연소 챔버의 흡기 단부 및 배기 단부를 폐쇄하고 폐쇄된 연소 챔버 내에서 연료 및 흡입 공기 혼합물을 연소시키는 단계 - 상기 연소는 연소 가스들을 형성함 - ; 및 연소 챔버의 배기 단부를 개방하고, 연소 챔버로부터 연소 가스들을 배기하는 단계를 포함하고; 상기 고정식 연소기는 연소 터빈 엔진의 상부 플레이트 및 하부 플레이트 사이에 배치되고, 상기 상부 플레이트는 상기 흡기 단부에 인접하여 배치된 흡입구를 포함하고, 상기 하부 플레이트는 상기 배기 단부에 인접하여 배치된 배기구를 포함하며, 상기 상부 플레이트는 연소 챔버 안으로 흡입 공기를 지향시키도록 배치된 흡입구를 포함하고, 상기 하부 플레이트는, 상기 상부 및 하부 플레이트들을 회전시키기 위해 하류 컴포넌트 상에 추력을 생성하도록 상기 고정식 연소기를 중심으로 원주방향으로 상기 연소 챔버 밖으로 배기를 지향시키도록 배치된 배기구를 포함하고; 상기 상부 및 하부 플레이트들은 구동 샤프트와 결합되어서, 상기 상부 및 하부 플레이트들의 회전이 구동 샤프트를 회전시키고, 상기 상부 및 하부 플레이트들은, 흡입구를 통해 연소 챔버 안으로 흡입 공기의 통과를 허용하고, 배기구를 통해 연소 가스들을 배기하기 위해 상기 고정식 연소기에 대하여 회전가능한 것인, 원동력을 생성하는 방법.
본 발명의 실시예 및 이점들이 상세히 설명되었으나, 다양한 변경, 치환 및 변형이 본 개시내용의 범위 및 정신에 벗어나지 않고 본 명세서에서 이루어질 수 있음을 유의해야 한다. 본원의 범위는 본 명세서에 설명된 프로세스, 기계, 제조, 물질의 조성, 수단, 방법 및 단계의 특정 실시예로 제한되는 것으로 의도되지 않는다. 당업자가 본 개시내용으로부터 쉽게 인식할 것처럼, 본 명세서에 설명된 대응되는 실시예와 실질적으로 동일한 결과를 달성하거나 실질적으로 동일한 기능을 수행하는, 현존하거나 이후에 개발될 프로세스, 기계, 제조, 물질의 조성, 수단, 방법 또는 단계가 본 개시내용에 따라 이용될 수 있다. 따라서, 첨부되는 청구항들은 이러한 프로세스, 기계, 제조, 물질의 조성, 수단, 방법 또는 단계를 그들의 범위 내에 포함하는 것으로 의도된다.

Claims (33)

  1. 연소 터빈 엔진으로서,
    공기 흡입부(air intake);
    슈라우드(shroud) 및 상기 슈라우드에 결합되거나, 상기 슈라우드와 일체형인 터빈 블레이드 - 상기 터빈 블레이드는 상기 슈라우드 내에 배치되고, 인접한 터빈 블레이드 사이의 공간은 연소 챔버를 적어도 부분적으로 정의함 - ;
    연소 챔버 안으로 향하는 흡입구(intake inlet)를 포함하는 흡기 단부(intake end) 및 연소 챔버 밖으로 향하는 배기구(exhaust outlet)를 포함하는 배기 단부(exhaust end)
    를 포함하는, 연소 터빈;
    구동 샤프트 - 상기 연소 터빈은 상기 구동 사프트와 결합되어서, 상기 연소 터빈의 회전이 상기 구동 샤프트를 회전시킴 - ; 및
    상기 흡기 단부에 인접하여 배치된 흡입구를 포함하는 상부 고정 플레이트(top fixed plate), 및 상기 배기 단부에 인접하여 배치된 배기구를 포함하는 하부 고정 플레이트(bottom fixed plate)
    를 포함하고,
    상기 연소 터빈은, 상기 흡입구를 통해 상기 연소 챔버 안으로 흡입 공기의 통과를 허용하도록 상기 상부 고정 플레이트에 대해 회전가능하고, 상기 연소 터빈은, 상기 배기구를 통해 연소 가스를 배기하도록 상기 하부 고정 플레이트에 대해 회전가능한, 연소 터빈 엔진.
  2. 제1항에 있어서,
    상기 공기 흡입부 및 상부 고정 플레이트 사이에 배치된 하나 이상의 공기 압축기(air compressor)를 더 포함하고, 상기 하나 이상의 공기 압축기는 상기 공기 흡입부로부터 흡입 공기(intake air)를 수용하고, 가압된 흡입 공기를 상기 연소 터빈에 제공하도록 배치되는, 연소 터빈 엔진.
  3. 제2항에 있어서,
    상기 공기 흡입부 및 상기 하나 이상의 공기 압축기 사이에 배치되고, 상기 공기 흡입부로부터 흡입 공기를 수용하고, 흡입 공기를 상기 하나 이상의 공기 압축기에 제공하도록 배치되는 터보차저(turbocharger), 슈퍼차저(supercharger) 또는 트윈차저(twincharger)를 더 포함하는, 연소 터빈 엔진.
  4. 제2항에 있어서,
    상기 하나 이상의 공기 압축기는, 직렬로 배열된 2개의 공기 압축기를 포함하는, 연소 터빈 엔진.
  5. 제1항에 있어서,
    상기 하부 고정 플레이트의 하류에, 상기 연소 터빈의 배기 스트림 내에 배치된 보조 터빈(auxiliary turbine)을 더 포함하는, 연소 터빈 엔진.
  6. 제5항에 있어서,
    상기 보조 터빈은 상기 구동 샤프트에 결합되는, 연소 터빈 엔진.
  7. 제2항에 있어서,
    상기 하나 이상의 공기 압축기 및 상기 연소 터빈 사이에 배치되고, 공기를 상기 연소 터빈 안으로 지향시키도록 배치되는 공기 가압 노즐(air pressurization nozzle)을 더 포함하는, 연소 터빈 엔진.
  8. 제1항에 있어서,
    연료를 상기 연소 챔버 내에 주입하도록 배치된 적어도 하나의 연료 주입기를 더 포함하는, 연소 터빈 엔진.
  9. 제1항에 있어서,
    상기 연소 챔버 내에서 연료 및 공기 혼합물을 점화하도록 배치된 적어도 하나의 점화 장치를 더 포함하는, 연소 터빈 엔진.
  10. 제1항에 있어서,
    상기 상부 고정 플레이트, 상기 하부 고정 플레이트, 연소 터빈 몸체 또는 이들의 조합 내의 공기 냉각 구멍(air cooling hole)을 더 포함하는, 연소 터빈 엔진.
  11. 제1항에 있어서,
    상기 연소 터빈은, 상기 연소 터빈의 몸체 상의 블라스트 닙(blast nib)을 포함하는, 연소 터빈 엔진.
  12. 제1항에 있어서,
    상기 상부 고정 플레이트 및 상기 구동 샤프트 사이에 배치된 베어링과, 상기 하부 고정 플레이트 및 상기 구동 샤프트 사이에 배치된 베어링을 더 포함하는, 연소 터빈 엔진.
  13. 제1항에 있어서,
    상기 연소 터빈의 흡기 단부 및 상기 상부 고정 플레이트 사이에 그리고, 상기 하부 고정 플레이트 및 상기 연소 터빈의 배기 단부 사이에 배치된 링들을 더 포함하는, 연소 터빈 엔진.
  14. 제1항에 있어서,
    상기 구동 샤프트는 컴포넌트와 결합되고, 상기 구동 샤프트가 상기 컴포넌트를 구동시키는, 연소 터빈 엔진.
  15. 제14항에 있어서,
    상기 구동 샤프트는, 상기 구동 샤프트의 제1 단부에서 제1 컴포넌트와 결합되고, 상기 구동 샤프트는, 상기 구동 샤프트의 제2 단부에서 제2 컴포넌트와 결합되는, 연소 터빈 엔진.
  16. 제14항에 있어서,
    상기 컴포넌트는: 프로펠러, 펌프, 발전기, 터빈, 압축기 또는 휠(wheel)을 포함하는, 연소 터빈 엔진.
  17. 제1항에 있어서,
    상기 공기 흡입부는, 흡입 공기가, 상기 연소 터빈 안으로 통과하기 이전에 엔진의 배기에 의해 가열되도록 배치되는, 연소 터빈 엔진.
  18. 제1항에 있어서,
    흡입 공기가 연소 터빈의 상류의 연료와 혼합되는 혼합 구역(mixing zone)을 더 포함하는, 연소 터빈 엔진.
  19. 제1항에 있어서,
    엔진의 하우징을 적어도 부분적으로 정의하는 외부 실린더를 더 포함하는, 연소 터빈 엔진.
  20. 제2항에 있어서,
    각각의 공기 압축기는, 상기 구동 샤프트와 결합되고, 상기 구동 샤프트에 의해 구동되는, 연소 터빈 엔진.
  21. 제1항에 있어서,
    상기 연소 터빈은 플라이휠(flywheel)로 기능하는, 연소 터빈 엔진.
  22. 제1항에 있어서,
    엔진의 사이클을 통해, 상기 연소 터빈은 위치들에 순차적으로 진입하도록 회전하되, 상기 위치들은:
    상기 연소 터빈의 배기구가 상기 하부 고정 플레이트 내 배기구와 정렬되지 않아서, 배기가 상기 연소 챔버로부터 탈출하는 것이 방지되고, 상기 연소 터빈 내 흡입구가 상기 상부 고정 플레이트 내 흡입구와 부분적으로 정렬되어서, 가스가 연소 챔버 안으로 유동할 수 있게 하는, 제1 위치;
    상기 연소 터빈의 흡입구가 상기 상부 고정 플레이트의 흡입구와 정렬되지 않고, 상기 연소 터빈의 배기구가 상기 하부 고정 플레이트의 배기구와 정렬되지 않아서, 가스가 상기 연소 챔버에 진입 또는 상기 연소 챔버에서 빠져나가는 것이 방지되는, 제2 위치;
    상기 연소 터빈의 흡입구가 상기 상부 고정 플레이트 내 개구와 정렬되지 않아서, 가스가 상기 연소 챔버에 진입하는 것이 방지되고, 상기 연소 터빈의 배기구가 상기 하부 고정 플레이트의 배기구와 적어도 부분적으로 정렬되어서, 배기 가스가 상기 연소 챔버를 빠져나가는, 제3 위치; 및
    상기 연소 터빈의 흡입구가 상기 상부 고정 플레이트의 개구와 적어도 부분적으로 정렬되어서, 공기가 상기 연소 챔버 안으로 유동하도록 허용하고, 상기 연소 터빈의 배기구가 상기 하부 고정 플레이트의 개구와 적어도 부분적으로 정렬되어서, 배기 가스가 상기 연소 챔버를 빠져나가도록 하는, 제4 위치인, 연소 터빈 엔진.
  23. 연소 터빈 엔진으로서,
    공기 흡입부;
    슈라우드(shroud) 및 상기 슈라우드에 결합되거나, 상기 슈라우드와 일체형인 연소 챔버 벽 - 상기 연소 챔버 벽은 상기 슈라우드 내에 배치되고, 인접한 연소 챔버 벽 사이의 공간은 연소 챔버를 적어도 부분적으로 정의함 - ;
    상기 연소 챔버 안으로 향하는 흡입구를 포함하는 흡기 단부와, 상기 연소 챔버 밖으로 향하는 배기구를 포함하는 배기 단부
    를 포함하는, 고정식 연소기(stationary combustor);
    상기 흡기 단부에 인접하게 배치된 흡입구를 포함하는 상부 플레이트 및 상기 흡기 단부에 인접하여 배치된 배기구를 포함하는 하부 플레이트 - 상기 고정식 연소기는 상부 및 하부 플레이트들 사이에 배치되고, 상기 상부 플레이트는 상기 연소 챔버 안으로 흡입 공기를 지향시키는 흡입구를 포함하고, 상기 하부 플레이트는 상부 및 하부 플레이트들을 회전시키는 추력을 생성하기 위해, 상기 고정식 연소기를 중심으로 원주방향으로(circumferentially) 상기 연소 챔버 밖으로 배기를 지향시키도록 배치된 배기구를 포함함 - ; 및
    구동 샤프트 - 상부 및 하부 플레이트들은 상기 구동 샤프트와 결합되어서 상부 및 하부 플레이트의 회전이 상기 구동 샤프트를 회전시킴 - ;
    를 포함하고,
    상기 상부 플레이트 및 하부 플레이트는, 상기 배기구를 통해 연소 가스를 배기하고, 상기 흡입구를 통해 상기 연소 챔버 안으로 흡입 공기의 통과를 허용하도록, 상기 고정식 연소기에 대하여 회전가능한, 연소 터빈 엔진.
  24. 연소 터빈 엔진을 사용하여 원동력을 생성하는 방법으로서,
    연소 챔버의 흡기 단부 안으로 연료 및 흡입 공기를 제공하는 단계 - 상기 연소 챔버는, 연소 터빈의 블레이드 사이의 공간에 의해 적어도 부분적으로 정의되고, 상기 블레이드는 구동 샤프트와 결합됨 - ;
    상기 연소 챔버의 흡기 단부 및 배기 단부를 폐쇄하고, 상기 폐쇄된 연소 챔버 내에서 연료 및 흡입 공기 혼합물을 연소시키는 단계 - 상기 연소는 연소 가스들을 형성함 - ; 및
    상기 연소 챔버의 배기 단부를 개방하고, 상기 연소 챔버로부터 연소 가스들을 배기하는 단계
    를 포함하고,
    상기 연소 가스들을 배기하는 단계는, 블레이드의 회전을 구동하고, 상기 블레이드의 회전은 상기 구동 샤프트의 회전을 구동하는, 원동력을 생성하는 방법.
  25. 제24항에 있어서,
    상기 연소 챔버 안으로 흡입 공기를 제공하는 단계 이전에, 상기 흡입 공기를 터보차저, 슈퍼차저 또는 트윈차저에 통과시키는 단계를 더 포함하는, 원동력을 생성하는 방법.
  26. 제24항에 있어서,
    상기 연소 챔버 안으로 흡입 공기를 제공하는 단계 이전에, 상기 흡입 공기를 압축하는 단계를 더 포함하는, 원동력을 생성하는 방법.
  27. 제24항에 있어서,
    공기 가압 노즐을 통해 상기 연소 챔버 안으로 흡입 공기를 지향시키는 단계를 더 포함하는, 원동력을 생성하는 방법.
  28. 제24항에 있어서,
    상기 연소 챔버 안으로 연료 및 흡입 공기를 제공하는 단계 이전에, 상기 연료 및 흡입 공기를 혼합하는 단계를 더 포함하는, 원동력을 생성하는 방법.
  29. 제24항에 있어서,
    상기 연소 챔버의 하류의 보조 터빈을 통해 배기된 연소 가스들을 통과시키는 단계를 더 포함하고, 상기 보조 터빈은 상기 구동 샤프트와 결합되는, 원동력을 생성하는 방법.
  30. 제24항에 있어서,
    상기 연소 터빈은, 상기 연소 터빈 엔진의 상부 고정 플레이트 및 하부 고정 플레이트 사이에 배치되어서, 상기 흡기 단부는 상기 상부 고정 플레이트에 인접하여 배치되고, 상기 배기 단부는 상기 하부 고정 플레이트에 인접하여 배치되며, 상기 상부 고정 플레이트는 흡입구를 포함하고, 상기 하부 고정 플레이트는 배기구를 포함하며, 상기 연소 터빈의 흡기 단부를 개방하는 것은, 상기 연소 터빈을 회전시키는 것을 포함하여, 흡입구가 연소 챔버와 유체 연통(in fluid communication)하게 하고, 상기 연소 터빈의 배기 단부를 개방하는 것은, 상기 연소 터빈을 회전시키는 것을 포함하여, 상기 배기구가 상기 연소 챔버와 유체 연통하게 하는, 원동력을 생성하는 방법.
  31. 제24항에 있어서,
    상기 연소 터빈 엔진의 사이클은 적어도:
    상기 연소 챔버의 배기 단부가 폐쇄되고, 상기 연소 챔버의 흡기 단부가 적어도 부분적으로 개방되며, 흡입 공기가 상기 연소 챔버 안으로 제공되는, 제1 상태;
    상기 연소 챔버가 폐쇄되고, 연료 및 흡입 공기 혼합물이 연소되는, 제2 상태;
    상기 연소 챔버의 배기 단부가 적어도 부분적으로 개방되는 한편, 상기 연소 챔버의 흡기 단부가 폐쇄되고, 연소 가스가 상기 연소 챔버로부터 배기되는, 제3 상태; 및
    상기 연소 챔버의 흡기 단부 및 배기 단부 둘 모두가 적어도 부분적으로 개방되고, 연소 가스들이 상기 연소 챔버로부터 배기되며, 상기 연소 챔버의 스캐빈징(scavenging)이 발생하는, 제4 상태를 포함하는, 원동력을 생성하는 방법.
  32. 제24항에 있어서,
    상기 연소 챔버 내의 연소가 일정한 체적 내에서 발생하는 것인, 원동력을 생성하는 방법.
  33. 연소 터빈 엔진을 사용하여 원동력을 생성하는 방법으로서,
    연소 챔버의 흡기 단부 안으로 연료 및 흡입 공기를 제공하는 단계 - 상기 연소 챔버는 고정식 연소기의 블레이드 사이의 공간에 의해 적어도 부분적으로 정의됨 - ;
    상기 연소 챔버의 흡기 단부 및 배기 단부를 폐쇄하고, 폐쇄된 상기 연소 챔버 내에서 상기 연료 및 흡입 공기의 혼합물을 연소시키는 단계 - 상기 연소는 연소 가스들을 형성함 - ; 및
    상기 연소 챔버의 배기 단부를 개방하고, 상기 연소 챔버로부터 연소 가스들을 배기하는 단계
    를 포함하고,
    상기 고정식 연소기는, 연소 터빈 엔진의 상부 플레이트 및 하부 플레이트 사이에 배치되고, 상기 상부 플레이트는 상기 흡기 단부에 인접하여 배치된 흡입구를 포함하고, 상기 하부 플레이트는 상기 배기 단부에 인접하여 배치된 배기구를 포함하며, 상기 상부 플레이트는 상기 연소 챔버 안으로 흡입 공기를 지향시키도록 배치된 흡입구를 포함하고, 상기 하부 플레이트는, 상부 및 하부 플레이트들을 회전시키기 위해, 하류의 컴포넌트 상에 추력을 생성하도록 상기 고정식 연소기를 중심으로 원주방향으로 상기 연소 챔버 밖으로 배기를 지향시키도록 배치된 배기구를 포함하고;
    상기 상부 및 하부 플레이트들은 구동 샤프트와 결합되어서, 상기 상부 및 하부 플레이트들의 회전이 상기 구동 샤프트를 회전시키고,
    상기 상부 및 하부 플레이트들은, 상기 흡입구를 통해 상기 연소 챔버 안으로 흡입 공기의 통과를 허용하고, 상기 배기구를 통해 연소 가스들을 배기하기 위해, 상기 고정식 연소기에 대하여 회전가능한 것인, 원동력을 생성하는 방법.
KR1020217030019A 2019-02-20 2020-02-20 회전식 내연 기관 엔진 KR20210145740A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962808174P 2019-02-20 2019-02-20
US62/808,174 2019-02-20
PCT/US2020/019026 WO2020172399A1 (en) 2019-02-20 2020-02-20 Rotating internal combustion engine

Publications (1)

Publication Number Publication Date
KR20210145740A true KR20210145740A (ko) 2021-12-02

Family

ID=72141579

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217030019A KR20210145740A (ko) 2019-02-20 2020-02-20 회전식 내연 기관 엔진

Country Status (7)

Country Link
US (1) US20200271047A1 (ko)
EP (1) EP3927952A4 (ko)
JP (1) JP2022520878A (ko)
KR (1) KR20210145740A (ko)
CA (1) CA3130896A1 (ko)
MX (1) MX2021010045A (ko)
WO (1) WO2020172399A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023121892A1 (en) * 2021-12-22 2023-06-29 Cnx Resources Corporation Expander systems for harnessing energy from pressurized fluid flow

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1319752A (en) * 1919-10-28 Engine
US2395404A (en) * 1939-10-18 1946-02-26 Daniel And Florence Guggenheim Aerial propulsion apparatus
US2705867A (en) * 1949-06-30 1955-04-12 Curtiss Wright Corp Engine having a rotor with a plurality of circumferentially-spaced combustion chambers
US3321911A (en) * 1965-02-12 1967-05-30 Myles Tommie Lynn Gas turbine engine with rotating combustion chamber
US3417564A (en) * 1967-04-19 1968-12-24 John G. Call Jet engine with relatively rotatable combustion means, intake manifold and exhaust manifold
US3811275A (en) * 1969-04-02 1974-05-21 A Mastrobuono Rotary turbine engine
US3639076A (en) * 1970-05-28 1972-02-01 Gen Electric Constant power control system for gas turbine
US3771311A (en) * 1971-02-01 1973-11-13 Exxon Research Engineering Co Power system
US4232515A (en) * 1978-03-06 1980-11-11 The Boeing Company Supersonic cruise airplane and engine
US4620414A (en) * 1983-07-27 1986-11-04 Dieter Christ Gas turbine engine
US5372005A (en) * 1992-09-14 1994-12-13 Lawler; Shawn P. Method and apparatus for power generation
AU7049200A (en) * 1999-04-26 2000-11-21 Advanced Research And Technology Institute, Inc. Wave rotor detonation engine
WO2004072451A1 (en) * 2003-02-12 2004-08-26 Ishikawajima-Harima Heavy Industries Co., Ltd. Pulse detonation engine system for driving turbine
US7150143B2 (en) * 2003-07-21 2006-12-19 General Electric Company Hybrid fuel cell-pulse detonation power system
US7278256B2 (en) * 2004-11-08 2007-10-09 United Technologies Corporation Pulsed combustion engine
WO2008070210A2 (en) * 2006-06-15 2008-06-12 Indiana University Research And Technology Corporation Pilot fuel injection for a wave rotor engine
JP2011102669A (ja) * 2009-11-10 2011-05-26 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器及びガスタービン
WO2012092495A1 (en) * 2010-12-30 2012-07-05 Rolls-Royce North American Technologies, Inc. Engine and combustion system
CN104718354A (zh) * 2012-07-24 2015-06-17 布兰特·W-T·李 内爆震引擎、包含内爆震引擎之复合式引擎及其制造与使用方法
WO2014133601A1 (en) * 2013-02-26 2014-09-04 Rolls-Royce Corporation Gas turbine engine and method for operating a gas turbine engine
US9920689B2 (en) 2013-03-15 2018-03-20 Indiana University Research And Technology Corporation Hybrid wave rotor propulsion system
EP3056713B1 (en) * 2015-02-11 2017-10-25 Rolls-Royce North American Technologies, Inc. Exhaust mixer for wave rotor assembly
US20170306846A1 (en) * 2016-04-22 2017-10-26 General Electric Company Ventilation system for turbomachine using bladeless airflow amplifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023121892A1 (en) * 2021-12-22 2023-06-29 Cnx Resources Corporation Expander systems for harnessing energy from pressurized fluid flow

Also Published As

Publication number Publication date
US20200271047A1 (en) 2020-08-27
EP3927952A1 (en) 2021-12-29
JP2022520878A (ja) 2022-04-01
CA3130896A1 (en) 2020-08-27
EP3927952A4 (en) 2023-05-31
WO2020172399A1 (en) 2020-08-27
MX2021010045A (es) 2021-11-17

Similar Documents

Publication Publication Date Title
EP1490587B1 (en) Engine system
AU2009287383B2 (en) Combustion turbine in which combustion is intermittent
JP6132979B2 (ja) 燃焼ガスを駆動力として噴出するエンジン
US20180356099A1 (en) Bulk swirl rotating detonation propulsion system
US7137243B2 (en) Constant volume combustor
US4873825A (en) Positive displacement engine compounded with a gas turbine engine
US20090272094A1 (en) Tangential Combustion Turbine
Piechna et al. Radial-flow wave rotor concepts, unconventional designs and applications
EP1992811B1 (en) Aircraft combination engines exhaust thrust recovery
US20200271047A1 (en) Rotating internal combustion engine
CN109139234B (zh) 带有中间冷却器的发动机组件
Akbari et al. Recent developments in wave rotor combustion technology and future perspectives: a progress review
US3574997A (en) High pressure hot gas generator for turbines
WO2000039440A1 (en) Rotary turbine engine of the reaction type
EP2531708B1 (en) Two-stage engine exhaust system
Rodgers et al. Advances in small turbopropulsion engine technology
RU2190107C2 (ru) Способ работы газового универсально-турбинного двигателя
WO2022124933A1 (ru) Двигатель прерывистого горения по антони циклу
Lohit et al. Green Engine
PORTER A modified-Brayton cycle pulse turbine engine

Legal Events

Date Code Title Description
A201 Request for examination