CN100430719C - Rock Microelectronic Scanning Imaging System and Imaging Method - Google Patents
Rock Microelectronic Scanning Imaging System and Imaging Method Download PDFInfo
- Publication number
- CN100430719C CN100430719C CNB2005101169588A CN200510116958A CN100430719C CN 100430719 C CN100430719 C CN 100430719C CN B2005101169588 A CNB2005101169588 A CN B2005101169588A CN 200510116958 A CN200510116958 A CN 200510116958A CN 100430719 C CN100430719 C CN 100430719C
- Authority
- CN
- China
- Prior art keywords
- electrode
- rock
- plate
- sample
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011435 rock Substances 0.000 title claims abstract description 51
- 238000003384 imaging method Methods 0.000 title claims abstract description 40
- 238000004377 microelectronic Methods 0.000 title claims abstract description 14
- 238000005259 measurement Methods 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 14
- 238000012545 processing Methods 0.000 claims abstract description 10
- 238000005070 sampling Methods 0.000 claims abstract description 7
- 239000008151 electrolyte solution Substances 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 230000008054 signal transmission Effects 0.000 claims description 2
- 238000002791 soaking Methods 0.000 claims description 2
- 239000012530 fluid Substances 0.000 abstract description 2
- 229920006395 saturated elastomer Polymers 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000005755 formation reaction Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
本发明涉及一种岩石微电扫描成像系统及成像方法,该系统包括:一电极极板,该电极极板上分布设有多个相互绝缘的电极,电极极板及电极与信号发生装置连接,电极通过电流采样电阻与接口电路输入端连接;一回流极板,该回流极板与信号发生装置连接。该成像方法是将样品加工成饱和可导电流体,再把样品固定在回流极板与电极极板之间,由信号发生装置发送测量信号,系统采集各电极的电流数据,电流数据经系统归一化处理及重构图像处理后显示出来。本发明通过对已知的岩石样品模型进行相关的测量,建立岩石样品模型的图像裂缝宽度与实际样品裂缝宽度间的对应关系,为井场上成像仪器测量图像反算真实裂缝宽度提供计算依据。
The present invention relates to a rock microelectronic scanning imaging system and imaging method. The system includes: an electrode plate, on which a plurality of mutually insulated electrodes are distributed, and the electrode plate and the electrodes are connected to a signal generating device. The electrode is connected to the input end of the interface circuit through the current sampling resistor; a backflow plate is connected to the signal generating device. The imaging method is to process the sample into a saturated conductive fluid, then fix the sample between the reflow plate and the electrode plate, the signal generator sends the measurement signal, the system collects the current data of each electrode, and the current data is normalized by the system After processing and reconstructing the image, it will be displayed. The invention establishes the corresponding relationship between the image fracture width of the rock sample model and the actual sample fracture width by performing related measurement on the known rock sample model, and provides a calculation basis for back-calculating the real fracture width from the image measured by the imaging instrument on the well site.
Description
技术领域 technical field
本发明涉及一种岩石微电扫描成像系统及成像方法,尤其是一种在石油天然气勘探中,利用测量岩石样品来为井场上成像仪器提供反算真实裂缝宽度计算依据的岩石微电扫描成像系统及成像方法。The present invention relates to a rock microelectronic scanning imaging system and imaging method, in particular to a rock microelectric scanning imaging that uses rock samples to provide back calculation basis for real fracture width calculation basis for imaging instruments on the well site in oil and gas exploration Systems and imaging methods.
背景技术 Background technique
在石油天然气勘探中,需要对当地的地质岩层的理化特性进行相应的勘测,为今后的开采工作提供充足的地质资料依据。In oil and gas exploration, it is necessary to conduct corresponding surveys on the physical and chemical properties of the local geological rock formations, so as to provide sufficient geological data basis for future mining work.
对于在测井中岩石裂缝的分布研究,通常是采用全井眼地层微电阻率成像仪(FMI),在井场上直接进行勘测。For the research on the distribution of rock fractures in well logging, the full-bore formation micro-resistivity imager (FMI) is usually used to directly survey on the well site.
全井眼地层微电阻率成像仪关键部件是四个相互垂直、推靠井壁的推靠臂,每个推靠臂带一个极板和一个翼板。每个极板与翼板上各有24个电极,用以获取192条微电阻率曲线。钮扣电极直径0.41cm,绝缘环外径0.61cm,电极排距0.76cm。测量时,整个极板保持等电位,总电流为固定值,测量每个钮扣电极的电流,然后根据极板电位及每个钮扣电极电流算出每个钮扣电极的接地电阻,对这些接地电阻进行归一化处理后转化为灰度值以图像形式显示出来。The key components of the full-bore formation micro-resistivity imager are four pushing arms that are perpendicular to each other and push against the well wall, and each pushing arm has a polar plate and a wing plate. There are 24 electrodes on each pole plate and wing plate to obtain 192 micro-resistivity curves. The diameter of the button electrode is 0.41cm, the outer diameter of the insulating ring is 0.61cm, and the electrode spacing is 0.76cm. During the measurement, the entire electrode plate maintains the same potential, and the total current is a fixed value. Measure the current of each button electrode, and then calculate the grounding resistance of each button electrode according to the plate potential and the current of each button electrode. After the resistance is normalized, it is converted into a gray value and displayed in the form of an image.
现有的全井眼地层微电阻率成像仪在测井中存在着一些不足,在其工作中,实际上测量的是钮扣电极附近探测范围内电阻率异常的分布情况,而不是井壁岩层本身的电阻率,因此,该全井眼地层微电阻率成像仪不能有效精确的获取岩层裂缝的分布参数。The existing full-bore formation micro-resistivity imager has some shortcomings in logging. In its work, it actually measures the distribution of resistivity anomalies in the detection range near the button electrode, not the rock formation on the borehole wall. Therefore, the full-bore formation micro-resistivity imager cannot effectively and accurately obtain the distribution parameters of rock formation fractures.
由于全井眼地层微电阻率成像仪极板具有弧度,测量电流具有较大的发散性,并且每个极板上的钮扣电极数目较少,因此,该全井眼地层微电阻率成像仪不能在实验室内对已知的岩石小样品模型进行相关的测量。Because the plates of the full-bore formation micro-resistivity imager have radians, the measured current has a large divergence, and the number of button electrodes on each plate is small, so the full-bore formation micro-resistivity imager Relevant measurements cannot be made in the laboratory on known small-sample models of rocks.
为解决这些问题,本发明可以在实验室中,对已知的岩石的小样品模型进行相关的测量,建立岩石小样品模型的图像裂缝宽度与实际样品裂缝宽度间的对应关系,为井场上成像仪器测量图像反算真实裂缝宽度提供计算依据,保证井场上成像仪器精确有效的获取岩层裂缝的分布参数。In order to solve these problems, the present invention can carry out relevant measurement to the small sample model of known rock in the laboratory, establishes the corresponding relationship between the image fracture width of the small sample model of rock and the actual sample fracture width, and provides the best results for the well site. The measurement image of the imaging instrument is back-calculated to provide a calculation basis for the real fracture width, ensuring that the imaging instrument on the well site can accurately and effectively obtain the distribution parameters of rock formation fractures.
发明内容 Contents of the invention
本发明的第一目的在于针对上述现有技术所存在的不足,提供一种岩石微电扫描成像系统,该系统能够在实验室中对岩石样品的裂缝分布状况进行扫描成像,为井场上成像仪器测量图像反算真实裂缝宽度提供计算依据。The first purpose of the present invention is to provide a rock microelectronic scanning imaging system for the above-mentioned deficiencies in the prior art. The real crack width is back-calculated from the instrument measurement image to provide calculation basis.
本发明的第二目的在于针对上述现有技术所存在的不足,提供一种岩石微电扫描成像方法,该方法通过在实验室中对岩石样品的加工处理以及对检测该岩石样品的电流信号的采集、处理,获取岩石样品的裂缝分布状况的图像。The second object of the present invention is to provide a rock microelectric scanning imaging method for the above-mentioned deficiencies in the prior art. Collect, process, and obtain images of the distribution of fractures in rock samples.
为实现上述第一目的,本发明采用了一种岩石微电扫描成像系统,其包括计算机、信号发生装置以及接口电路;所述信号发生装置通过通用并行接口总线与该计算机连接;所述接口电路与所述计算机的信号输入端连接,还包括:In order to achieve the above-mentioned first purpose, the present invention adopts a rock microelectronic scanning imaging system, which includes a computer, a signal generating device and an interface circuit; the signal generating device is connected to the computer through a universal parallel interface bus; the interface circuit Connected with the signal input end of the computer, it also includes:
一电极极板,该电极极板上分布设有多个相互绝缘的电极,所述电极极板及所述电极与所述信号发生装置连接,所述电极通过电流采样电阻与所述接口电路输入端连接;具体地,所述电极采用平面阵列均匀排布在所述电极极板上,该电极极板为金属板;An electrode plate, a plurality of mutually insulated electrodes are distributed on the electrode plate, the electrode plate and the electrodes are connected to the signal generating device, and the electrodes are input to the interface circuit through a current sampling resistor terminal connection; specifically, the electrodes are uniformly arranged on the electrode pad in a planar array, and the electrode pad is a metal plate;
一回流极板,该回流极板与所述信号发生装置连接。A return plate, the return plate is connected with the signal generating device.
所述电极采用相邻两排之间相互错位方式均匀排布,电极为钮扣电极,其侧面裹覆有绝缘环。The electrodes are evenly arranged in the manner of dislocation between two adjacent rows, and the electrodes are button electrodes, and the sides of the electrodes are covered with insulating rings.
本发明的岩石微电扫描成像系统,采用多个钮扣电极以平面阵列均匀排布在电极极板上,且钮扣电极与周围电极之间相互绝缘,可使钮扣电极与被测样品充分接触,测量电流相对集中,能保证在验室内对岩石小样品的裂缝分布情况进行精确的扫描成像,通过对已知的小样品模型测量,建立图像裂缝宽度与实际样品裂缝宽度间的对应关系,从而为井场上成像仪器测量图像反算真实裂缝宽度提供计算公式。The rock microelectric scanning imaging system of the present invention adopts a plurality of button electrodes to be evenly arranged on the electrode plate in a plane array, and the button electrodes are insulated from the surrounding electrodes, so that the button electrodes and the sample to be tested can be fully Contact, the measurement current is relatively concentrated, which can ensure accurate scanning and imaging of the fracture distribution of small rock samples in the laboratory. By measuring the known small sample model, the corresponding relationship between the image crack width and the actual sample crack width is established. Therefore, a calculation formula is provided for back-calculating the real fracture width from the measurement image of the imaging instrument on the well site.
为实现上述第二目的,本发明采用了一种岩石微电扫描成像方法,其执行以下步骤:In order to achieve the above-mentioned second purpose, the present invention adopts a rock microelectronic scanning imaging method, which performs the following steps:
步骤1、把待测岩石加工成板状体,并浸泡在电解质溶液中达到饱和状态,制成被测样品;
步骤2、把所述被测样品设置在所述电极极板与回流极板之间;
步骤3、所述计算机给所述信号发生装置下达发送信号命令,该信号发生装置发射测量信号给所述电极极板及电极,使所述电极以相等的电位向被测样品发送测量电流;
步骤4、电流采样电阻采集所述电极上测量电流的信号,并将该信号传送给所述接口电路;
步骤5、所述计算机对采集到的信号进行实时归一化处理及重构图像处理。
本发明的成像方法充分利用电极极板上排布的钮扣电极与其周围的钮扣电极和极板具有相等的电压,可形成电流聚焦作用,使其供出的电流近乎垂直于接触面并穿透岩石样品而到达样品对面的回流极板,这样所采集的电流数值可精确反映的被测样品的电阻率,经相应处理后即可得到被测样品裂缝分布情况的成像图。The imaging method of the present invention fully utilizes that the button electrodes arranged on the electrode plate have equal voltages to the surrounding button electrodes and plates, and can form a current focusing effect, so that the supplied current is almost perpendicular to the contact surface and penetrates The rock sample reaches the return plate on the opposite side of the sample, so that the collected current value can accurately reflect the resistivity of the tested sample, and the imaging map of the crack distribution of the tested sample can be obtained after corresponding processing.
附图说明 Description of drawings
图1为本发明岩石微电扫描成像系统的一个具体实施例的构成框图;Fig. 1 is the constitution block diagram of a specific embodiment of rock microelectric scanning imaging system of the present invention;
图2为图1所示实施例中电极极板的结构示意图;Fig. 2 is the structural representation of electrode pad in the embodiment shown in Fig. 1;
图3为本发明岩石微电扫描成像方法的一个具体实施例流程图;Fig. 3 is a flow chart of a specific embodiment of the rock microelectronic scanning imaging method of the present invention;
图4为带裂缝的人工岩石样品示意图;Fig. 4 is the schematic diagram of the artificial rock sample with fracture;
图5为图3所示成像方法中步骤3的具体过程示意图;Fig. 5 is a schematic diagram of the specific process of
图6为对图4所示岩石样品进行扫描成像结果图。Fig. 6 is a diagram of the scanning imaging results of the rock sample shown in Fig. 4 .
具体实施方式 Detailed ways
本发明岩石微电扫描成像系统由计算机、信号发生装置、电极极板及其上电极与回流极板、接口电路等几部分顺次连接组成,图1为本发明岩石微电扫描成像系统的一个具体实施例的构成框图,该系统计算机1与信号源2之间采用通用并行接口总线GPIB总线相连,回流极板与电极极板3同信号源2输出端之间采用普通电线连接,电极极板上的电极与接口电路4输入端之间采用普通电线连接,接口电路4输出端与计算机1信号输入端之间采用普通电线连接。The rock microelectric scanning imaging system of the present invention is composed of a computer, a signal generating device, an electrode plate and its upper electrode, a return plate, an interface circuit and other parts connected in sequence, and Fig. 1 is a rock microelectric scanning imaging system of the present invention The block diagram of the specific embodiment, the
电极排布在电极极板上,电极的形状、大小、相互之间的距离、排布方式极为关键,直接影响成像的效果,本发明电极为钮扣电极,其侧面裹覆有绝缘环,钮扣电极采用平面阵列方式均匀排布在电极极板上,并且相邻两排之间相互错位。这种排布方式可使电极与被测样品充分接触,测量电流相对集中,保证测量的精确性。The electrodes are arranged on the electrode plate. The shape, size, distance and arrangement of the electrodes are extremely critical, which directly affect the imaging effect. The electrode of the present invention is a button electrode, and its side is covered with an insulating ring. The button electrodes are evenly arranged on the electrode plate in a planar array, and the two adjacent rows are misaligned with each other. This arrangement can make the electrodes fully contact with the sample to be tested, and the measurement current is relatively concentrated to ensure the accuracy of the measurement.
图2为图1所示实施例中电极极板的具体结构示意图,电极极板B为6cm×7cm的长方形金属板,钮扣电极D的直径为0.4cm,其外围紧包着的绝缘环J宽度为0.1cm,电极阵列采用平面阵列,由64个钮扣电极组成,成8排分布,每排8个,排与排之间的间距为0.76cm,排中电极之间的间距为0.59cm,相邻两排之间水平错位为0.25cm,且错位方向交替出现。电极阵列位于电极极板B中央,其长为5.92cm,宽为4.98cm,与电极极板B的上下边距为0.54cm,左右边距为0.51cm。Fig. 2 is the concrete structure diagram of electrode pad in the embodiment shown in Fig. 1, and electrode pad B is the rectangular metal plate of 6cm * 7cm, and the diameter of button electrode D is 0.4cm, and the insulating ring J that its periphery wraps tightly The width is 0.1cm, and the electrode array adopts a planar array, which is composed of 64 button electrodes, distributed in 8 rows, 8 in each row, the distance between rows is 0.76cm, and the distance between electrodes in a row is 0.59cm , the horizontal dislocation between two adjacent rows is 0.25cm, and the dislocation directions appear alternately. The electrode array is located in the center of the electrode pad B, with a length of 5.92 cm and a width of 4.98 cm. The upper and lower margins of the electrode pad B are 0.54 cm, and the left and right margins are 0.51 cm.
为能让被测样品与电极极板上的电极更好地接触,电极极板与回流极板上设有一夹持器,夹持器可将电极极板与回流极板相向夹紧。测量时在被测样品放置在电极极板与回流极板之间,这样可利用夹持器将被测样品固定在电极极板与回流极板之间,使被测样品与电极极板的相对位置不会发生改变,保证测量的准确性。In order to allow the tested sample to be in better contact with the electrode on the electrode pad, a holder is provided on the electrode pad and the return pad, and the holder can clamp the electrode pad and the backflow pad against each other. When measuring, the sample to be tested is placed between the electrode pad and the return pad, so that the sample to be tested can be fixed between the electrode pad and the backflow pad by using the holder, so that the relative distance between the measured sample and the electrode pad The position will not change, ensuring the accuracy of the measurement.
图3为本发明岩石微电扫描成像方法的一个具体实施例流程图,具体步骤为:Fig. 3 is a flow chart of a specific embodiment of the rock microelectronic scanning imaging method of the present invention, and the specific steps are:
步骤1、加工岩石样品,将岩石样品加工成长为8cm,宽为8cm,高为2.5~3.5cm的薄板,样品也可用天然岩石、人造岩石或导电橡胶。本例中,用人造岩石样品;如图4所示,图4为带裂缝的人工岩石样品示意图,其上有一条人工裂缝,样品高度H为8cm,宽度W为8cm,厚度T为3cm,图中阴影部分为电阻率异常体,其电阻率Rt=0.01Ω·m,阴影部分张开度APERTURE=0.2cm,深度DEPTH=1.5cm,非阴影部分电阻率Rb=30.3Ω·m,将加工好的岩石样品浸泡在电解质溶液中达到饱和状态,电解质溶液可为饱和的盐水溶液,把岩石样品做成饱和可导电的流体,作为被测样品;
步骤2、固定被测样品,把被测样品设置在电极极板与回流极板之间,这个过程分两步,首先,将被测样品设置在电极极板与回流极板之间,然后,利用夹持器使电极极板与回流极板和被测样品的表面紧密贴合,测量时夹持器可保证极板与样品接触良好并保持其相对位置不变;
步骤3、计算机给信号发生装置下达发送信号命令,信号发生装置发射测量信号给电极极板及电极,使电极以相等的电位向被测样品发送测量电流;信号的发射采用电极阵列,且各电极保持相等的电位向被测样品发射测量信号,发射信号同时到达各个电极和极板,系统可通过检测电极电压,控制发射信号电流的大小;对于某一电极而言,它与周围电极和极板具有相等的电压,因而形成了电流聚焦作用,使其供出的电流近乎垂直于接触面并穿透岩石样品而到达样品对面的回流极板;由于电极极板与各电极的电压恒定,因而,每个电极所流出的电流大小取决于所流经途径上的介质电阻的大小,这样因样品中有裂缝存在,并且其内含水,所以电阻比周围的小而导致与其对应的电极流出的电流大,这样就可用电流大小分布来反映岩石裂缝存在情况;电极发射测量信号过程中,计算机还需对电极电压进行检测;
图5为图3所示成像方法中步骤3的具体过程示意图,步骤3包括有:Fig. 5 is the specific process schematic diagram of
步骤3.1、计算机给信号发生装置下达发射信号命令;Step 3.1, the computer issues a signal transmission command to the signal generating device;
步骤3.2、计算机检测电极电压,如果超值,则继续执行步骤4;如果不超值,则调整测量信号,然后执行步骤3.1;Step 3.2, the computer detects the electrode voltage, if it exceeds the value, continue to step 4; if it does not exceed the value, adjust the measurement signal, and then perform step 3.1;
步骤4、电流采样电阻采集各电极上测量电流的信号,并将该信号传送给接口电路,每个电极通过其输入端串接的电流采样电阻把电流大小的信号传递出来,传送给接口电路输入端,经接口电路放大滤波后由计算机采样接收,计算机可对所述电极上测量电流的信号进行选择采样;
步骤5、计算机对采集到的电流值进行实时的归一化处理、重构图像处理,并根据需要进行循环测量,最后以灰度或彩色形式在屏幕上显示出来,这样就获得了被测样品的表面电阻率图像;
如图6所示,图6为对图4所示岩石样品进行扫描成像结果图,图像可为灰度图,也可为彩色图,灰度图像用灰度深浅来表示被测样品电阻率的大小,彩色图像则以不同颜色表示测样品电阻率的大小,在图6中部,有灰色程度明显不同的一条分界线,说明图4所示岩石样品有一条裂缝,证明本发明成像方法可以检测出宽度为2mm的裂缝。As shown in Figure 6, Figure 6 is the result of scanning and imaging the rock sample shown in Figure 4. The image can be a grayscale image or a color image, and the grayscale image represents the resistivity of the measured sample with the grayscale The color image represents the size of the sample resistivity in different colors. In the middle part of Fig. 6, there is a dividing line with significantly different gray levels, indicating that there is a crack in the rock sample shown in Fig. 4, which proves that the imaging method of the present invention can detect A crack with a width of 2mm.
如果不断改变裂缝宽度和电阻率,并与所成图像的裂缝显示宽度对比建立关系,则可以为石油天然气勘探中的井壁电成像测井的资料定量评价裂缝提供反演模型。If the fracture width and resistivity are constantly changed, and the relationship is established with the fracture display width of the formed image, an inversion model can be provided for the quantitative evaluation of fractures in the borehole electrical imaging logging data in oil and gas exploration.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005101169588A CN100430719C (en) | 2005-10-28 | 2005-10-28 | Rock Microelectronic Scanning Imaging System and Imaging Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005101169588A CN100430719C (en) | 2005-10-28 | 2005-10-28 | Rock Microelectronic Scanning Imaging System and Imaging Method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1955728A CN1955728A (en) | 2007-05-02 |
CN100430719C true CN100430719C (en) | 2008-11-05 |
Family
ID=38063181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005101169588A Expired - Fee Related CN100430719C (en) | 2005-10-28 | 2005-10-28 | Rock Microelectronic Scanning Imaging System and Imaging Method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100430719C (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102768370B (en) * | 2012-08-11 | 2015-10-28 | 吉林大学 | Based on hydraulically created fracture monitoring device and the monitoring method of dynamic electric coupling |
CN104931821A (en) * | 2015-06-05 | 2015-09-23 | 电子科技大学 | Sensor probe for measuring electrical parameters of underground rock |
CN111896581B (en) * | 2020-08-06 | 2022-03-25 | 西南石油大学 | Crack distribution detection method based on rock resistance change |
CN116559961B (en) * | 2023-05-08 | 2024-11-15 | 中国矿业大学 | A method for detecting cracks in pipe structures based on the principle of current directional focusing |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000019244A1 (en) * | 1998-09-30 | 2000-04-06 | The Government Of The United States Of America Represented By The Secretary, Department Of Health And Human Services | Ultrasound array and electrode array for hall effect imaging |
US6191588B1 (en) * | 1998-07-15 | 2001-02-20 | Schlumberger Technology Corporation | Methods and apparatus for imaging earth formation with a current source, a current drain, and a matrix of voltage electrodes therebetween |
CN2447785Y (en) * | 2000-09-12 | 2001-09-12 | 中国科学院力学研究所 | Electrode array sensor for resistance chromatographic imaging system |
US20020196028A1 (en) * | 1999-10-15 | 2002-12-26 | Quality Engineering Associates, Inc. | Semi-insulating material testing and optimization |
CN1680828A (en) * | 2004-04-06 | 2005-10-12 | 中国人民解放军沈阳军区司令部工程科研设计所 | Detector for shallow stratum fracture hole |
-
2005
- 2005-10-28 CN CNB2005101169588A patent/CN100430719C/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6191588B1 (en) * | 1998-07-15 | 2001-02-20 | Schlumberger Technology Corporation | Methods and apparatus for imaging earth formation with a current source, a current drain, and a matrix of voltage electrodes therebetween |
WO2000019244A1 (en) * | 1998-09-30 | 2000-04-06 | The Government Of The United States Of America Represented By The Secretary, Department Of Health And Human Services | Ultrasound array and electrode array for hall effect imaging |
US20020196028A1 (en) * | 1999-10-15 | 2002-12-26 | Quality Engineering Associates, Inc. | Semi-insulating material testing and optimization |
CN2447785Y (en) * | 2000-09-12 | 2001-09-12 | 中国科学院力学研究所 | Electrode array sensor for resistance chromatographic imaging system |
CN1680828A (en) * | 2004-04-06 | 2005-10-12 | 中国人民解放军沈阳军区司令部工程科研设计所 | Detector for shallow stratum fracture hole |
Non-Patent Citations (4)
Title |
---|
利用FMI成像测井分析井旁构造形态. 贺洪举.天然气工业,第19卷第3期. 1999 |
利用FMI成像测井分析井旁构造形态. 贺洪举.天然气工业,第19卷第3期. 1999 * |
岩样电阻率成像系统. 傅锡天等.地球物理学保,第41卷第2期. 1998 |
岩样电阻率成像系统. 傅锡天等.地球物理学保,第41卷第2期. 1998 * |
Also Published As
Publication number | Publication date |
---|---|
CN1955728A (en) | 2007-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2772767A1 (en) | Earth ground tester with remote control | |
CN101432742B (en) | Two-axial pad formation resistivity imager | |
CN106093575A (en) | A kind of method measuring conductor resistivity at room temperature and temperature-coefficient of electrical resistance under alternating temperature | |
ATE519119T1 (en) | ELECTRICAL FEEDBACK DETECTION SYSTEM FOR MULTI-POINT PROBE | |
CN102854392A (en) | Method and device for measuring indoor resistivity of soil sample | |
US20090309602A1 (en) | Sequential resistivity imaging with asymmetric electrode arrays | |
CN100430719C (en) | Rock Microelectronic Scanning Imaging System and Imaging Method | |
CN109655495B (en) | In-situ rapid test probe, system and method for layered heat conductivity coefficient of soil | |
CN203849425U (en) | A ground crack three dimensional electrical method detection apparatus | |
CN205826750U (en) | Conductor resistivity at room temperature and the device of temperature-coefficient of electrical resistance is measured under a kind of alternating temperature | |
CN111239560B (en) | Partial discharge localization method based on multi-sensor | |
US9970969B1 (en) | Systems, methods, and software for determining spatially variable distributions of the dielectric properties of a heterogeneous material | |
CN110023769B (en) | Resistivity measurement unit for measuring resistivity anisotropy of unsaturated soils | |
CN107091861A (en) | A kind of device and method for measuring different depth water body resistivity under water | |
CN207424100U (en) | Current-conducting concrete electric impedance tomography imaging test device | |
CN206348292U (en) | Polluted Soil detection arrangement of measuring-line structure based on three-dimensional high-density resistivity method | |
CN201247216Y (en) | Apparatus for measuring liquid-carrying capability of foam | |
EA036449B1 (en) | Device for geoelectric profiling of soil-frozen complex | |
CN204086154U (en) | The anisotropy measurement system of rock | |
CN108577838A (en) | Multichannel electrical impedance tomography circuit and system | |
Mikulka et al. | A Fast and Low-cost Measuring System for Electrical Impedance Tomography | |
CN104215583A (en) | Rock anisotropy measurement device and application method thereof | |
CN117988401B (en) | Method and device for detecting anti-seepage effect of underground continuous wall | |
RU171586U1 (en) | Device for vertical electrical sensing | |
CN111239557A (en) | Partial discharge localization method based on online calibration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081105 Termination date: 20091130 |