CN100419383C - 量子隧道效应传感装置 - Google Patents

量子隧道效应传感装置 Download PDF

Info

Publication number
CN100419383C
CN100419383C CNB2004800110472A CN200480011047A CN100419383C CN 100419383 C CN100419383 C CN 100419383C CN B2004800110472 A CNB2004800110472 A CN B2004800110472A CN 200480011047 A CN200480011047 A CN 200480011047A CN 100419383 C CN100419383 C CN 100419383C
Authority
CN
China
Prior art keywords
mentioned
substrate
electric
hinge
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004800110472A
Other languages
English (en)
Other versions
CN1809728A (zh
Inventor
马克雷·塔德乌什·米哈利维卡兹
齐格蒙特·雷穆察
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research limited liability company
Original Assignee
QUANTRUM PREC INSTR ASIA Pte L
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QUANTRUM PREC INSTR ASIA Pte L filed Critical QUANTRUM PREC INSTR ASIA Pte L
Publication of CN1809728A publication Critical patent/CN1809728A/zh
Application granted granted Critical
Publication of CN100419383C publication Critical patent/CN100419383C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0035Constitution or structural means for controlling the movement of the flexible or deformable elements
    • B81B3/0051For defining the movement, i.e. structures that guide or limit the movement of an element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0021Transducers for transforming electrical into mechanical energy or vice versa
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0894Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by non-contact electron transfer, i.e. electron tunneling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0285Vibration sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0109Bridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/05Type of movement
    • B81B2203/051Translation according to an axis parallel to the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/724Devices having flexible or movable element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/724Devices having flexible or movable element
    • Y10S977/725Nanomotor/nanoactuator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/724Devices having flexible or movable element
    • Y10S977/732Nanocantilever
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/724Devices having flexible or movable element
    • Y10S977/733Nanodiaphragm

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Remote Sensing (AREA)
  • Analytical Chemistry (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Chemical & Material Sciences (AREA)
  • Pressure Sensors (AREA)
  • Gyroscopes (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Micromachines (AREA)
  • Measuring Volume Flow (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Measuring Fluid Pressure (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

一种单块的微米或纳米的机电传感装置,包括一对分别安装一个或多个伸长的导电体(40)的基片(20,25);和弹性固态铰链装置(30,32),该装置与基片结合并连接基片以相对地定位基片,以致于基片的各伸长的导电体(40)以一定的间隔被对置,该间隔在跨过导体应用合适的电位差时允许导体之间可探测的量子隧道效应电流。固态铰链装置允许基片相对于伸长的导电体基片横向平行移动。

Description

量子隧道效应传感装置
技术领域
本发明涉及细微的相对运动或位移,例如线性或角度分离或者平移,的精确测量和监测。本发明在微米或纳米级位移的检测方面有特别的效用。特别,但非排他的,感兴趣的是对振动和位置转换产生的量的测量。
背景技术
已经有许多应用可检测的量子隧道效应电流的变化测量微米或纳米级的位移或运动的公开的提议。例如,Kobayashi et al,已经提出用于微观结构的位移探测器,如依赖于隧道效应电流对试样和尖锐的金属尖之间的1纳米级间隙长度的极度敏感性的原子力显微镜探针。由Kobayashi et al所作的早期相关的公开“集成的隧道效应装置”出现在1992年的MEMS刊(Proceedings of MEMS),Travemünde(德国),2月4-7,1992。在《设计工程(Design Engineering)》(Morgan Grampian有限公司,伦敦,英国),1997年11月1日,的名为“微传感器得到隧道效应(Microsensors get tunnelling)”的摘录中,公开了制造成绝缘硅(S.O.L.)片的依赖于隧道电流效应的加速度计。这个装置和在欧洲专利公开号262253中公开的微型-机械原子力传感器头均依赖于检测的量子隧道效应电流对间隙,通常是在尖端和相对的表面之间,的可变宽度的敏感性。也就是说,该尖端和该表面彼此相向和相背运动。
利用尖端和相对的表面之间的量子隧道效应的装置的其他公开可在美国专利号4,806,755和国际专利公开号WO 97/20189中找到。
本申请人的先前的国际专利公开WO 00/14476号公开了用于测量或监测两个元件相对位置或位移的微机械装置,其中一对伸长的导电体被相互分离布置,以致在跨该导电体施加电位差时,在导电体间存在可探测的量子隧道效应电流。这种装置对在对置导电体之间的横向或角度的对中度是敏感的。在该装置的一种形式中,各基片以在2至100埃范围的间隔安装伸长的导电体的相对阵列。所公开的用于精确保持此间隙的装置包括C60纳米支架或有机介质,如环己烷,的分隔膜的使用。
在公开号WO 00/14476中公开的概念和结构对微米或纳米级别的各种各样的申请具有重大的启示。本发明的目的是提供体现这些概念的一类的实用的装置。
发明内容
本发明实际主要涉及应用在国际专利公开号WO 00/14476中公开的概念的单块MEMS或NEMS,该结构允许一对对置的基片的平行移动。
因此本发明提供单块的微米或纳米的机电传感装置,包括:
一对分别安装一个或多个伸长的导电体的基片;以及
弹性固态铰链装置,其与上述基片结合成一体并连接上述基片以相对地定位基片,以使上述基片各自伸长的导电体以一定的间隔被对置,该间隔允许在跨该伸长的导电体应用合适的电位差时伸长的导电体之间可探测的量子隧道效应电流;
其中上述固态铰链装置允许上述基片在横向于上述伸长的导电体的第一方向上的相对平行移动。
优选地,安装在各基片上的对置的伸长的导电体基本上是平行的。
较佳地,上述的弹性固态铰链装置的外形形成为在所述第一方向上相对于与之正交的第二方向具有充分低的硬度。
在一种实施方式中,上述的固态铰链装置至少包括一个从上述基片中之一突出的支柱或柱子,和将支柱或柱子与另一个基片的边缘区域整体连接的连接板。为了检测线性位移,上述的铰链装置将适宜地包括一对固态铰链,而旋转的或角度的平移运动的检测通常需要一个或四个固态铰链。
在较佳的装置中,通常各个基片都是平的板或片,各个都是均匀厚度的且一个叠加在另一个的上面。矩形或正方形的板或片是较佳的,虽然在四个以角度间隔固态铰链的情况下,基片中的之一为圆盘形状是适宜的。
附图说明
现在本发明将参照附图,仅通过例子进一步描述,其中:
图1是按照本发明实施例的单块传感装置的立体图,该装置具有一对整体形成的固态铰链并特别适合测量线性振动;
图2和图3分别为图1所示装置的俯视图和侧面视图;
图4是与图1相似的但以不同角度观察的视图,是图1所描绘的装置的变型,具有四个整体形成的固态铰链;
图5描绘了图1所示装置的变型,具有一个铰链以致对旋转位移或振动是敏感的;以及
图6是具有等角度间隔布置在圆盘基片周围的四个固态铰链的装置的近似图。
具体实施方式
图1至3描绘的传感装置10是典型地适合于制造微米或纳米结构的类型的材料,例如硅或砷化镓,形成的集成的单块结构。该装置包括一对矩形的板或片20、25,一个20比另一个大并形成结构的基底,另一个25由一对弹性固态铰链结构30、32被悬置在基底板20上方。在这个特定的实施例中,各个板或片20、25都是均匀厚度的,板25中心对称地定位在基底板20之上。
铰链结构30、32与基片板20、25是一体的。各包括从基底板20直立的壁状的支柱34。在这个特定的实施例中,各支柱34在基底板20的边缘,支柱的外表面35与基底板的端面21齐平,当然其他的配置也是可能的。悬置的板25通过各伸长的铰链连接板36、38连接到支柱34,该铰链连接板以相互共面对齐的方式把板25的相对的侧面与支柱34的内表面接合在一起。在这个特定的构造中,铰链连接板36具有与板25的厚度相等的宽度,并布置成其上、下缘37分别与板25的上、下表面24齐平,并使连接板的上缘37与支柱34的上缘33齐平且相对于支柱34的上缘33正交地排列。
可以理解,因为铰链连接板36在平行于板20、25的方向上比较薄,但是在与板垂直的方向上具有相对大的尺寸,所以铰链是可高度弯曲的,即在平行方向上具有非常低的运动抗性但在垂直方向上具有高的硬度和对运动的抗性。
板20、25的相对面23、24是以高精确度平行的,并且以均匀的间隔或间隙50设置,以该间隔或间隙上述表面中可能存在相对的伸长的导电体之间的可检测的量子隧道效应电流。为用作微米或纳米机电装置,这些表面23、24已经嵌入与铰链连接板36的平面平行排列的直接对置的对的形式的伸长的导电体40。适宜的电触点42设置在金属板20、25上以跨过对置的伸长的导电体对施加适当的电位差而产生穿过间隙50的可检测的量子隧道效应电流。在触点42和伸长的导电体40之间的电连接能够通过铰链连接板36被整合。
正如在前述的国际专利公开号WO 00/14476中阐述的一样,此量子隧道效应电流极度地依赖于伸长的导电体之间的间隔,因为在伸长的导电体表面之外量子波作用以指数衰减,并且检测到的电流也是一对对置的伸长的导电体之间的任何横向重叠或相对角度的函数。该装置利用了隧道效应电流的检测值随着对置的伸长的导电体的失对准而变化的线性关系,在铰链连接板36弯曲时,板20、25横向于伸长的导电体的任何相对平行移动造成对置的伸长的导电体的失对准。
在图1至3所示的传感装置10的特别合适的应用中,在基底板20固定到表面上并且该表面中的振动引起铰链连接板36上的板25的相对振动的情况下,横向于铰链36的平面的线性振动可被检测。所示种类的微米或纳米尺寸的传感器能够通过在对置的伸长的导电体在对准和失对准状态间振荡时检测量子隧道效应电流的峰值以高频发挥作用,因此可作为高频振动的传感器。
图1至3中描绘的传感装置的另一个应用是作为流量计,其中板25伸入到流量中并响应流量。应该理解,此装置通常可被应用于测量源自位置转换的量。
图4至6进一步图示说明具有其它特性或应用的单块微米或纳米装置的实施例。图4所示的结构与图1所示的结构相似,除了在悬置的板125的任一侧具有两个铰链连接板130a、130b,132a、132b外。这种设计允许悬置的板125在板的尺寸大于图1所示的情况下相对于基底板120作线性运动。
相反地,图5所示的结构仅有一个连接板铰链230以致较小的板225从单一的支柱234以悬臂形式伸出。这种设计允许悬臂板相对于基底板的角位移。图6所示的结构也适用于板的相对角位移。此处,悬置板有四个等角度间隔、沿径向延伸的铰链连接板336以确保板更好、更精确的定位并提供完全不同的响应。
图示结构表明的示例性的尺寸范围将使悬置板尺寸(边长或直径)在100μm至100nm的范围内。典型的铰链尺寸将包括100μm至100nm的长度、50μm至50nm的宽度及50μm至10nm的厚度。
许多已知的加工方法中的任何一种都可被应用于本发明装置的制造。适宜的这类方法可能包括:
(1)用于大约15nm甚至更小的板间的间隙50的聚焦离子束(FIB)。
(2)用于5nm甚至更小的板间的间隙的绝缘体上硅结构(SOI)。
(3)使用活性离子腐蚀(RIE)的间隙材料的蚀除法。
(4)STM/AFM电化学腐蚀。
另一种选择是分别制造两块板,例如通过在底面上沉积自对准分子(SAM)层,然后,例如,通过FIB,焊接两块板形成铰链。之后蒸发该SAM层。在这种情况下,板间的间隙将与SAM材料的厚度有关。
对于1nm或更小的间隙,当前已知的加工方法是不适宜的。因此,在这种情况下板可以被分别加工,使其彼此适宜地相隔,并使用致动器使其接近。
使用植入或纳米印刻技术或任何合适的方法可应用伸长的导电体和触点。
固态的整合的铰链40是非常精确的,并具有非常高的耐受性。由弹性常数或连接板结构细节和材料的变化引起的误差能够被控制和减小到极低的值。图示说明的传感器能够在真空中、在极度侵蚀性的空气中、在强磁场和电场的情况下、在强放射性或宇宙辐射中和在极度低或高的温度下起作用。
在前述范围中从微米到纳米尺度减小传感装置的外形尺寸(即从MEMS到NEMS)将改善铰链的性能和可靠性,因此,正如通过许多研究所确立的一样,减小尺寸相应的伴随着减小许多缺陷。随着减小尺寸许多物理参数可以以更高的精度被控制。这样的参数包括弹性模量和数个其他的物理性质,特别是对于硅。固态的连接板铰链的可靠性是非常高的,具有通常超过10年的预计寿命或连续操作超过3×1011次的循环。
各种可选择构造的数值和结构分析,例如使用有限元方法,能够为特殊的应用提供最佳的解决方案。尤其对于板的最佳平移,在所选的运动范围和需要的频率下,选择传感器或固态的连接板铰链的几何结构、材料和尺寸是可能的。
该装置的应用包括测力计、流量计、陀螺仪、测振计和加速计。特别重要的一个应用是对测量环境的最低限度的干扰都是至关紧要的表面的应用,例如在飞机或轮船的设计中测量空气动力面和测试,或计算机磁盘驱动器测试。

Claims (9)

1. 一种单块的微米或纳米机电传感装置,包括:
一对分别安装一个或多个伸长的导电体的基片;以及
弹性固态铰链装置,该装置与上述基片结合并连接上述基片以相对地定位基片,以致于上述基片的各伸长的导电体以一定的间隔被对置,该间隔在跨过伸长的导电体应用合适的电位差时基片允许伸长的导电体之间可探测的量子隧道效应电流;
其中上述固态铰链装置允许所述基片在横向于上述伸长的导电体的第一方向上的相对平行移动。
2. 按照权利要求1所述的机电传感装置,其特征在于,安装在各基片上的对置的伸长的导电体基本上是平行的。
3. 按照权利要求1或2所述的机电传感装置,其特征在于,上述的弹性固态铰链装置形成为在所述第一方向上相对于与之正交的第二方向具有基本较低的硬度。
4. 按照权利要求1或2所述的机电传感装置,其特征在于,上述的固态铰链装置至少包括一个由上述基片之一突出的支柱或柱子,和将支柱或柱子整体地连接到另一个基片的边缘区域的连接板。
5. 按照权利要求1或2所述的机电传感装置,其特征在于,为了检测线性位移,上述的铰链装置包括一对上述的弹性固态铰链。
6. 按照权利要求5所述的机电传感装置,其特征在于,上述的铰链包括相互共面对准的铰链连接板。
7. 按照权利要求1或2所述的机电传感装置,其特征在于,为检测旋转的或角度的平移运动,上述的铰链装置包括一个或多个以角度间隔的固态铰链。
8. 按照权利要求1或2所述的机电传感装置,其特征在于,各基片是平的板或片,一个叠置在另一个的上面。
9. 按照权利要求8所述的机电传感装置,其特征在于,上述的板或片是矩形的。
CNB2004800110472A 2003-04-22 2004-04-22 量子隧道效应传感装置 Expired - Fee Related CN100419383C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2003901914A AU2003901914A0 (en) 2003-04-22 2003-04-22 Quantum tunnelling transducer device
AU2003901914 2003-04-22

Publications (2)

Publication Number Publication Date
CN1809728A CN1809728A (zh) 2006-07-26
CN100419383C true CN100419383C (zh) 2008-09-17

Family

ID=31500951

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800110472A Expired - Fee Related CN100419383C (zh) 2003-04-22 2004-04-22 量子隧道效应传感装置

Country Status (7)

Country Link
US (1) US8033091B2 (zh)
EP (1) EP1623188B1 (zh)
JP (1) JP4474624B2 (zh)
CN (1) CN100419383C (zh)
AT (1) ATE519095T1 (zh)
AU (1) AU2003901914A0 (zh)
WO (1) WO2004094956A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7552636B2 (en) * 2007-04-17 2009-06-30 Ut-Battelle, Llc Electron/hole transport-based NEMS gyro and devices using the same
US8544324B2 (en) * 2007-08-24 2013-10-01 Pilsne Research Co., L.L.C. Quantum tunnelling sensor device and method
CN101776434B (zh) * 2010-03-10 2011-12-14 南开大学 基于隧道电流反馈瞄准的小盲孔测量方法及测量装置
AT513634B1 (de) * 2012-12-05 2015-02-15 Tech Universität Wien MEMS-Sensor zur Detektion von Umgebungsparametern
AU2015255601B2 (en) 2014-05-09 2020-02-27 Quantum Numbers Corp. Method for generating random numbers and associated random number generator
CN104291263B (zh) * 2014-08-25 2017-02-01 厦门脉科优芯电子科技有限公司 一种金刚石桥膜结构微型红外光源芯片及制备方法
US10168996B1 (en) 2018-01-15 2019-01-01 Quantum Numbers Corp. Method and system for generating a random bit sample
CN111397671A (zh) * 2020-04-09 2020-07-10 杜宏宇 非稳定多相流开放式液体流量计

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0262253A1 (en) * 1986-10-03 1988-04-06 International Business Machines Corporation Micromechanical atomic force sensor head
WO1997020189A1 (en) * 1995-11-28 1997-06-05 Smiths Industries Public Limited Company Rate sensors
CN1157910A (zh) * 1995-05-16 1997-08-27 三丰株式会社 感应电流位置传感器
WO2000014476A1 (en) * 1998-09-07 2000-03-16 Quantum Precision Instruments Pty Ltd Measurements using tunnelling current between elongate conductors
CN1085332C (zh) * 1994-05-14 2002-05-22 辛纳普蒂克斯(英国)有限公司 位置编码器

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3396317A (en) * 1965-11-30 1968-08-06 Texas Instruments Inc Surface-oriented high frequency diode
JPS5220317B2 (zh) * 1974-12-25 1977-06-02
US4373165A (en) * 1979-11-07 1983-02-08 Texas Instruments Incorporated Very high density punch-through read-only-memory
US5265470A (en) * 1987-11-09 1993-11-30 California Institute Of Technology Tunnel effect measuring systems and particle detectors
US5203208A (en) * 1991-04-29 1993-04-20 The Charles Stark Draper Laboratory Symmetrical micromechanical gyroscope
WO1993000589A1 (en) * 1991-06-25 1993-01-07 Sundstrand Corporation Coriolis rate sensor using tunnel-effect displacement sensor
EP0535536B1 (en) * 1991-09-30 2001-12-05 Texas Instruments Incorporated Depletion controlled isolation stage
US5461916A (en) * 1992-08-21 1995-10-31 Nippondenso Co., Ltd. Mechanical force sensing semiconductor device
US5673139A (en) * 1993-07-19 1997-09-30 Medcom, Inc. Microelectromechanical television scanning device and method for making the same
US5367136A (en) * 1993-07-26 1994-11-22 Westinghouse Electric Corp. Non-contact two position microeletronic cantilever switch
US5389182A (en) * 1993-08-02 1995-02-14 Texas Instruments Incorporated Use of a saw frame with tape as a substrate carrier for wafer level backend processing
JPH07113645A (ja) * 1993-10-15 1995-05-02 Toyota Motor Corp 振動ジャイロ
JP3182301B2 (ja) * 1994-11-07 2001-07-03 キヤノン株式会社 マイクロ構造体及びその形成法
NL1000698C2 (nl) * 1995-06-29 1996-12-31 Karel Jan Vollers Bevestigingsinrichting voor het aan een gebouw bevestigen van gevel panelen, en gebouw voorzien van met die bevestigingsinrichting bevestig de gevelpanelen.
US5756895A (en) * 1995-09-01 1998-05-26 Hughes Aircraft Company Tunneling-based rate gyros with simple drive and sense axis coupling
EP0822415B1 (en) * 1996-07-31 2003-03-26 STMicroelectronics S.r.l. Semiconductor integrated capacitive acceleration sensor and relative fabrication method
US6137206A (en) * 1999-03-23 2000-10-24 Cronos Integrated Microsystems, Inc. Microelectromechanical rotary structures
US6534839B1 (en) * 1999-12-23 2003-03-18 Texas Instruments Incorporated Nanomechanical switches and circuits
US6630367B1 (en) * 2000-08-01 2003-10-07 Hrl Laboratories, Llc Single crystal dual wafer, tunneling sensor and a method of making same
US6674141B1 (en) * 2000-08-01 2004-01-06 Hrl Laboratories, Llc Single crystal, tunneling and capacitive, three-axes sensor using eutectic bonding and a method of making same
US6555404B1 (en) * 2000-08-01 2003-04-29 Hrl Laboratories, Llc Method of manufacturing a dual wafer tunneling gyroscope
US6548841B2 (en) * 2000-11-09 2003-04-15 Texas Instruments Incorporated Nanomechanical switches and circuits
US7330271B2 (en) * 2000-11-28 2008-02-12 Rosemount, Inc. Electromagnetic resonant sensor with dielectric body and variable gap cavity
SG103276A1 (en) * 2001-01-03 2004-04-29 Inst Materials Research & Eng Vibratory in-plane tunnelling gyroscope
US6740922B2 (en) * 2001-08-14 2004-05-25 Agere Systems Inc. Interdigitated capacitor and method of manufacturing thereof
JP2003240797A (ja) * 2002-02-18 2003-08-27 Mitsubishi Electric Corp 半導体加速度センサ
SE0200868D0 (sv) * 2002-03-20 2002-03-20 Chalmers Technology Licensing Theoretical model för a nanorelay and same relay
US6895818B2 (en) * 2002-12-20 2005-05-24 Robert Bosch Gmbh Differential in-plane tunneling current sensor
JP3792675B2 (ja) * 2003-06-05 2006-07-05 ファナック株式会社 微細位置決め装置及び工具補正方法
US7177505B2 (en) * 2004-03-04 2007-02-13 Rosemount Inc. MEMS-based actuator devices using electrets
JP2005283393A (ja) * 2004-03-30 2005-10-13 Fujitsu Media Device Kk 慣性センサ
US7225674B2 (en) * 2004-04-30 2007-06-05 The Regents Of The University Of California Self-stabilizing, floating microelectromechanical device
US7355318B2 (en) * 2004-06-12 2008-04-08 Auburn University Micromachined device utilizing electrostatic comb drives to filter mechanical vibrations
US20070163346A1 (en) * 2006-01-18 2007-07-19 Honeywell International Inc. Frequency shifting of rotational harmonics in mems devices
JP4874067B2 (ja) * 2006-02-07 2012-02-08 セイコーインスツル株式会社 角速度センサ
EP1879034B1 (en) * 2006-07-14 2009-11-18 STMicroelectronics S.r.l. Microelectromechanical inertial sensor, in particular for free-fall detection applications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0262253A1 (en) * 1986-10-03 1988-04-06 International Business Machines Corporation Micromechanical atomic force sensor head
CN1085332C (zh) * 1994-05-14 2002-05-22 辛纳普蒂克斯(英国)有限公司 位置编码器
CN1157910A (zh) * 1995-05-16 1997-08-27 三丰株式会社 感应电流位置传感器
WO1997020189A1 (en) * 1995-11-28 1997-06-05 Smiths Industries Public Limited Company Rate sensors
WO2000014476A1 (en) * 1998-09-07 2000-03-16 Quantum Precision Instruments Pty Ltd Measurements using tunnelling current between elongate conductors

Also Published As

Publication number Publication date
WO2004094956A1 (en) 2004-11-04
EP1623188A1 (en) 2006-02-08
ATE519095T1 (de) 2011-08-15
AU2003901914A0 (en) 2003-05-08
US8033091B2 (en) 2011-10-11
JP4474624B2 (ja) 2010-06-09
EP1623188A4 (en) 2009-05-27
CN1809728A (zh) 2006-07-26
US20060285789A1 (en) 2006-12-21
JP2006524320A (ja) 2006-10-26
EP1623188B1 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
US8789425B2 (en) Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer
US20130037512A1 (en) Mems-based micro and nano grippers with two axis force sensors
CN100419383C (zh) 量子隧道效应传感装置
US20100306885A1 (en) Cantilevers with Integrated Actuators for Probe Microscopy
WO2008054476A2 (en) Electrostatic nanolithography probe actuation device and method
US9535086B2 (en) Interface of a microfabricated scanning force sensor for combined force and position sensing
Daniel et al. A microaccelerometer structure fabricated in silicon-on-insulator using a focused ion beam process
US20090207404A1 (en) System and Method for Surface Inspection of Micro- and Nanomechanical Structures
US7683634B2 (en) Micromachined capacitive sensor and linkage
US8544324B2 (en) Quantum tunnelling sensor device and method
SE531775C2 (sv) Anordning och komponent för parallell detektion i realtid av individuella nanomekaniska rörelser hos en samling/array av individuella och oberoende oscillerande balkar
Lee et al. Fabrication and characterization of 3-Dimensional MOS transistor tip integrated micro cantilever
JP2022528431A (ja) 物体に作用する力を測定するための装置
JP2986280B2 (ja) トンネル電流検知マイクロデバイス
DelRio et al. Van der Waals and capillary adhesion of microelectromechanical systems
Gao et al. A comb-drive scanning-head array for fast scanning-probe microscope measurements
GB2426341A (en) Measuring nano-scale mechanical displacements by the compression or expansion of a compliant insulator
de Boer et al. Van der Waals and Capillary Adhesion of Microelectromechanical Systems.
Gorman MEMS nanopositioners
Brugger et al. Micromachined silicon tools for nanometer-scale science
Kashamolla et al. Mode I and mixed mode I and II measurements for stiction failed MEMS devices
Cullinan et al. Design and fabrication of a multi-axis MEMS force sensor with integrated carbon nanotube based piezoresistors
Qu et al. Multi-physical Characterization of Micro-and Nanomaterials: A Review
Shaporin et al. Design, Fabrication and Characterization of High-G Acceleration Sensors for Automotive Industry and Test Structures for the Process Characterization
JP5525377B2 (ja) 高ダイナミックレンジプローブ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: PSINI RESEARCH CO., LTD.

Free format text: FORMER OWNER: QUANTRUM PREC INSTR ASIA PTE L.

Effective date: 20120517

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20120517

Address after: Delaware

Patentee after: Research limited liability company

Address before: Singapore Singapore

Patentee before: Quantrum Prec Instr Asia Pte L.

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080917

Termination date: 20130422