CN100418888C - 高纯度一氧化铌的制备方法 - Google Patents

高纯度一氧化铌的制备方法 Download PDF

Info

Publication number
CN100418888C
CN100418888C CNB2004800118277A CN200480011827A CN100418888C CN 100418888 C CN100418888 C CN 100418888C CN B2004800118277 A CNB2004800118277 A CN B2004800118277A CN 200480011827 A CN200480011827 A CN 200480011827A CN 100418888 C CN100418888 C CN 100418888C
Authority
CN
China
Prior art keywords
niobium
nbo
powder
metal
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004800118277A
Other languages
English (en)
Other versions
CN1812935A (zh
Inventor
查理斯·A·莫特肯巴彻
詹姆斯·W·罗比森
布赖恩·J·希金斯
托马斯·J·丰维尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motchenbacher Charles A.
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN1812935A publication Critical patent/CN1812935A/zh
Application granted granted Critical
Publication of CN100418888C publication Critical patent/CN100418888C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及高纯度一氧化铌粉末(NbO),其通过一如下过程生产,将高价铌氧化物和金属铌粉末或颗粒的混合物混合;在控制的气压下加热和反应压实的混合物,温度达到约1945℃以上,在这个温度下NbO为液态;固化液态NbO形成一固体材料;以及粉碎该固体形成适于用作电容器阳极的NbO颗粒。所述NbO产品在组成和晶型方面异乎寻常的纯,可用在电容器和其它电子应用方面。生产所述NbO的方法是可靠的,不需要高纯度的原料,并且可以从与加工NbO电子元件有关的废液中回收利用。这种生产方法也可用于制备高纯度NbO2、金属铌/一氧化铌和一氧化铌/二氧化铌的混合物。该方法还适于向所述氧化物产品中掺入其它物质以增强所述材料的特定性能。该方法还允许生产单晶或定向固化的金属锭。与其它技术生产的海绵状,多孔团块相比,本发明生产的固体、无孔金属锭能被粉碎至细的、无孔的有角颗粒,适于在电子方面应用。

Description

高纯度一氧化铌的制备方法
本申请是2003年5月2日递交的申请序列号为10/428,430的接续申请。
技术领域
本发明涉及一种高纯度一氧化铌粉末的制备方法,及该一氧化铌粉末在制造电子管元件即电容器中的应用。
背景技术
人们已认识到一氧化铌(NbO)具备一些非同寻常的电学特性,这使其非常适合制造电容器。它与等量的钽粉末相比有更低的燃点、比钽成本低并且与钽比有更多的储量。然而,一氧化铌电容器粉末需要高纯度,不仅外来的其它元素如铁和铜是有害的,而且其它形式的铌,如铌金属、二氧化铌(NbO2)、三氧化二铌(Nb2O3)及五氧化二铌(Nb2O5)也是有害的。为了能应用在电子管中,一氧化铌必须是较细的分散形态,即细粉末或者优选由小颗粒形成的团块,该小颗粒典型的直径为1-2微米或者更小。为了达到这些要求,在电子工业中生产一氧化铌是通过将团块的和烧结的五氧化二铌或二氧化铌(由五氧化物选择性地预还原制得)与一金属还原剂在铌氧化物保持在固态的条件下反应得到。这使团块的原始氧化物的颗粒形态得以保留在该一氧化铌中。在这个过程的一个实例中,五氧化二铌在约1000℃的条件下与金属铌细粉反应,按照主要产物为一氧化铌确定其化学计量比。在另一个实例中,在约1000℃条件下,所述五氧化二铌或二氧化铌与气态镁反应,结果产生海绵状、多孔一氧化铌-氧化镁混合物。浸出氧化镁后,剩余产物是一个多孔、具有大表面积的一氧化铌团块。
由于在这些生产一氧化铌的方法中采用低加工温度,因此,包括在铌氧化物或还原剂原料中的杂质几乎没有机会除去。而且,在原料颗粒表面的杂质在固态加工过程中保留在表面,导致这些杂质在NbO颗粒表面达到可能的有害浓度。由这些表面污染的颗粒制造的电容器的电学特性会严重降低。一氧化铌的纯度要求决定了所用原料的纯度。一氧化铌产品表面积的要求确定该过程所需的五氧或二氧化铌和金属铌的颗粒尺寸分布和形态。这些要求严格限制了合适的原材料的可利用性。进一步讲,由于反应在固态条件下发生,反应缓慢并且经常反应不完全,这种产品含有一些铌的高氧化态以及常含有金属铌。
发明内容
本发明的目的是生产高纯度和有足够表面积,符合NbO电容器要求的一氧化铌(NbO)粉末,并且其对固态加工过程所要求的原料的纯度和颗粒的尺寸无限制,以及这种粉末在电容器生产中的应用。本发明也可用于生产高纯度二氧化铌,和生产大的(非微粒)无孔的一氧化铌和二氧化铌产物。由这种产物生产的粉末外形是无孔和有角的。
本发明涉及一种高纯度一氧化铌或二氧化铌粉末的制备方法,制造过程包括:
(a)将五氧化二铌,三氧化二铌,和/或二氧化铌与粗粒的铌金属粉末按计算的化学计量混合成一混合物,以产生铌与氧为固定原子比例的产品,如果生产一氧化铌,所述比例接近1∶1,或如果生产二氧化铌,所述比例接近1∶2;
(b)经过冷等静压或其它本领域人员知道的技术形成上述混合物的压实物;
(c)在一适于防止不受控制氧化的环境中,将所述压实物暴露于一足以将表面温度升高到一氧化铌或二氧化铌产品的熔点以上的热源,即,对一氧化铌来说高于1945℃,对二氧化铌来说高于1915℃;
(d)让所述混合物进行放热反应,生产所希望的一氧化铌;
(e)固化所述液体混合物形成一氧化铌固体;
(f)将所述固体粉碎形成所希望的尺寸的一氧化铌颗粒;
(g)利用通常的电容器工业技术,利用所述一氧化铌颗粒生产电容器阳极。
例如,为了由五氧化二铌生产一氧化铌,五氧化二铌和金属铌的混合物中重量比约为1∶1。为了由五氧化二铌生产二氧化铌,五氧化二铌和金属铌的混合物中重量比为5.7∶1。为了由二氧化铌生产一氧化铌,二氧化铌和金属铌的混合物中重量比约为1.3∶1。为了由三氧化二铌生产一氧化铌,三氧化二铌和金属铌的混合物中重量比约为2.5∶1。所述的热源为电子束熔炉、等离子弧熔炉、感应熔炉或真空弧重熔炉。所述的混合物还包括一氧化铌返料、金属铌导线或其它含铌废物。
附图说明
图1a-c显示的是应用本发明生产的NbO的X-射线衍射图(图1a-b)和工业的固态反应生产的NbO的X-射线衍射图(图1c)。
图2显示一种金属锭被还原成锋利的、有角的,基本无孔的独立碎片。
具体实施方式
本发明涉及一种制备一氧化铌粉末的方法,其包括将Nb2O5,Nb2O3和/或NbO2和金属铌的混合成一混合物;形成所述混合物压实块;将所述混合物在高于1945℃下反应;将反应产物固化;将固体粉碎形成一氧化铌粉末。本发明的一优选实施例中,五氧化二铌与金属铌的重量比约为1∶1。通过调整五氧化二铌与金属铌的重量比为5.7∶1,二氧化铌粉末也可用同样过程得到。
本发明还涉及利用不纯的五氧化二铌和/或二氧化铌,以及不纯的铌金属粉末通过这个过程生产高纯度一氧化铌或二氧化铌粉末的方法。在本发明中,高加工温度,控制的气压,和以液态方式的存在,能用于除去一些主要杂质,包括铁,铝,和其它大部分非难熔金属元素。原料(经过粉碎,研磨,细磨等)表面的杂质溶解于液态NbO中,在微粒中均一分布,因此降低了这些杂质的有害影响。这种液态加工也允许其它所需的元素加入该产品中。
本发明生产的固体金属锭可用本领域技术人员熟知的粉碎技术制成任何期望得到的尺寸。这使得制造尺寸大小从金属锭到次微米成为可能。而且,一氧化铌或二氧化铌的粗颗粒可以用作生产细粉末的研磨介质,而避免普通研磨介质带来的污染物。
实例1:
本发明在试验过程中,将工业上可获得的纯度为99.99%的Nb2O5和工业上可获得的经电子束三重精制的脱氢金属铌粉末的混合物(50×80US筛目)混合,经冷等静压形成一块状,其它压缩方法和形成的外形也可以满足要求。制备得到三条这样的块形物。
Nb2O5和金属铌的压实物(重量比为1∶1.05)分别相继加入到一电子束真空熔炉的融熔区域,在此每一压实物被所述电子束加热反应并液化,液体产物滴入用水冷却的铜制圆柱状铸模中。当电子束起始撞击到所述压缩物时,会立即发生熔融,熔融炉中压力略有升高。通过经验可知,每小时产率很容易达到100磅。在最后的压实物全部耗尽之前,反应终止,在残余压实物的表面留下一层部分反应的原料。
尽管本试验中采用的是一电子束熔炉,冶金领域的技术人员显然知道,其它能够加热所述材料到至少1945℃的能源也可以使用,包括但不限于水冷坩埚真空感应熔融,等离子惰性气体熔融,真空弧重熔,和电脉冲电阻熔炼。
本发明的方法提供了在压实之前向所述混合物中加入广范围的掺入物的机会,这些添加物在熔融反应过程中熔化为液态熔融物。这些掺入物包括但不限于钽,钛,钒,和铝。这些掺入物合计重量可以超过40%。尽管掺入物的通常目的是提高电容器材料的单位电容,它们还可以提供其它优点,比如长期稳定性的改善和DC渗漏的降低。
本发明的另一优点在于以本发明方法生产的金属锭的形状。通过应用众所周知的冶金原理,可生产一种单晶型或定向固化的金属锭,其可在应用方面提供传统电容器粉末所没有的优点。
产物金属锭在真空中冷却,然后设备中通入空气。金属锭为固态,无孔圆柱体。然后金属锭经碰撞粉碎。从金属锭顶部1英寸处取样(“顶部”样品),而“边缘”样品在金属锭内下部中间半径处取得。
随后用X-射线衍射对NbO产品样品的分析显示出NbO的清晰形状,无金属铌,NbO2或Nb2O3的附加线。在图1中,X-射线衍射图显示的是本发明生产的NbO(图1a-b),和工业上固态反应生产的NbO(图1c)。固态反应产品中具有大量非缘自NbO的线,表明其中存在其它不希望的相。重量分析表明所述材料是化学计量的NbO,其在分析精度限度内。
对本领域研究人员来说,通过变换初始粉末混合物,不仅可以生产出高纯度一氧化铌而且可以生产高纯度二氧化铌,以及金属铌/一氧化铌或一氧化铌/二氧化铌的均匀混合物,如铌氧相图所示(见“二元合金相图”,American Society for Metals,Metals Park,Ohio,1990,p.2749)。
然后利用传统的压碎,碾碎和研磨技术将金属锭逐步磨成粉末。经过压碎,金属锭缩小为锋利、有角的,无孔的独立碎片,如图2所示。这些碎片的形状在各个颗粒减小为亚微米尺寸时仍保持。产物NbO粉末的MicrotracD50为2.38微米和B.E.T.表面积为2.06m2/gram。在传统条件下(成型电压35V;成型电流150 mA/g,烧结温度1400℃)制成电容器阳极,该阳极显示在2伏偏压下其单位电容为60,337CV/g和DC漏电流为0.31nA/CV。在0伏偏压下检测,单位电容为78,258CV/g和DC漏电流为0.23nA/CV。这些值均在由固态反应产生的NbO制备的工业电容器以及一些钽电容器的正常范围内。
实例2:
采用较低纯度的原料和改变原料的尺寸制备所述压实物,进行了四次附加试验性生产。在每次试验中,产物NbO均不含其它化合物和金属铌。这表明该测试过程稳定性好,并且不依赖于特殊的氧化物与金属铌原料。在一次试验性生产中,含铁约400ppm的工业级五氧化二铌作为原料,并且金属铌中含铁低于50ppm。通过所述试验过程将原料转化为NbO后,分析NbO发现其含铁低于100ppm。这表示在试验过程中减少了至少50%的铁。这个试验过程也提供了从生产基于粉末的NbO产品相关的废液中回收NbO的机会,因为本发明精制作用可以有效去除或稀释大部分污染物,即使这些污染物是细微米级细粉末或颗粒。
将这四次附加试验性生产每次得到的NbO金属锭用传统的压碎,碾碎和细磨方法将尺寸减小到平均颗粒尺寸小于2.5微米,制造成待测阳极,进行电容检测和漏电流测定。各次试验结果与前述起始结果类似,其中包括上述由含有高铁的原料生产出的NbO制备的阳极。由这些金属锭制造的NbO粉末的单位电容与DC漏电流分别为69,200CV/g和0.34nA/CV。尽管通常认为铁含量水平过高会影响DC漏电流,然而在这些实例中铁均一再分布在颗粒中。这种再分布导致颗粒表面含铁量非常低,以至于铁不会损害NbO的漏电流特性。
实例3:
通过熔融相加工形成一氧化铌有助于回收和再熔融一氧化铌固体其形状为但并不限于粉末,碎片,固体颗粒,金属屑和泥状物。次级粉末,回收的电容器和粉末生产废物为可通过这个过程被转变为具有完全价值的一氧化铌的材料的一部分。由各种尺寸和产品状态的“废物”NbO粉末制造了一压实物。该压实物在电子束熔炉中熔融反应以产生完好的NbO金属锭。随后的金属锭测试结果表明其在晶体结构,纯度和电特性(单位电容,DC漏电流)方面均与前述由高纯度原材料制造的金属锭无差异。辉光放电质谱图显示与前述“高纯”金属锭比较其杂质水平无升高。
实例4:
将五氧化二铌和金属铌粉末按计算的比例混合以制造二氧化铌,以上述方法将该混合物压实并在电子束熔炉中进行熔融反应,产生的金属锭完好,固态,和无明显缺陷。从该金属锭取样分析氧与铌的比例。在分析精度限度内,为化学计量的NbO2。理论上,按重量比,NbO2中氧应占25.13%。本例中,经分析,氧占25.14%。
尽管本发明用其具体实施例进行描述和说明,但并不企图将本发明局限于这些解释的实施例。本领域技术人员应意识到,在不背离本发明精神的情况下作出变换和修改是可能的。因此,本发明意图包括所有这些落入附带的权利要求和其等同范围内的所有变换和修改。

Claims (10)

1. 一种制造一氧化铌粉末的方法,其包括:
a)将从Nb2O5、NbO2和/或Nb2O3组成的组中选出的铌氧化物(1),和金属铌(2)混合成一混合物,其中所述铌氧化物和金属铌呈现粉末或颗粒状;
b)将所述混合物形成一压实物;
c)用一热源致使温度达到1945℃以上,使所述压实物发生反应;
d)固化已反应的压实物以形成一固体材料;及
e)粉碎所述固体以形成一氧化铌粉末。
2. 根据权利要求1所述方法,其中铌氧化物为Nb2O5,并且Nb2O5与金属铌粉末或颗粒在所述混合物中的质量比约为1∶1。
3. 根据权利要求1所述方法,其中铌氧化物为NbO2,并且NbO2与金属铌粉末或颗粒在所述混合物中的质量比约为1.3∶1。
4. 根据权利要求1所述方法,其中铌氧化物为Nb2O3,并且Nb2O3与金属铌粉末或颗粒在所述混合物中的质量比约2.5∶1。
5. 根据权利要求1所述方法,其中所述的铌氧化物为Nb2O5
6. 根据权利要求1所述方法,其中所述的热源为电子束熔炉。
7. 根据权利要求1所述方法,其中所述的热源为等离子弧熔炉。
8. 根据权利要求1所述方法,其中所述的热源为感应熔炉。
9. 根据权利要求1所述方法,其中所述的热源为真空弧重熔炉。
10. 根据权利要求1所述方法,其中所述的混合物还包括一氧化铌返料、金属铌导线或其它含铌废物。
CNB2004800118277A 2003-05-02 2004-04-29 高纯度一氧化铌的制备方法 Expired - Fee Related CN100418888C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/428,430 2003-05-02
US10/428,430 US7157073B2 (en) 2003-05-02 2003-05-02 Production of high-purity niobium monoxide and capacitor production therefrom

Publications (2)

Publication Number Publication Date
CN1812935A CN1812935A (zh) 2006-08-02
CN100418888C true CN100418888C (zh) 2008-09-17

Family

ID=33310401

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800118277A Expired - Fee Related CN100418888C (zh) 2003-05-02 2004-04-29 高纯度一氧化铌的制备方法

Country Status (13)

Country Link
US (5) US7157073B2 (zh)
EP (1) EP1622835A4 (zh)
JP (1) JP4382812B2 (zh)
KR (1) KR20060096180A (zh)
CN (1) CN100418888C (zh)
AR (1) AR044149A1 (zh)
BR (1) BRPI0410487A (zh)
CA (1) CA2523564A1 (zh)
IL (1) IL171666A (zh)
MY (1) MY140945A (zh)
RU (1) RU2346891C2 (zh)
TW (1) TWI329330B (zh)
WO (1) WO2004099080A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157073B2 (en) * 2003-05-02 2007-01-02 Reading Alloys, Inc. Production of high-purity niobium monoxide and capacitor production therefrom
EP2455340A1 (en) * 2003-05-19 2012-05-23 Cabot Corporation Valve metal sub-oxide powders and capacitors and sintered anode bodies made therefrom
PT1498391E (pt) * 2003-07-15 2010-06-21 Starck H C Gmbh Pó de subóxido de nióbio
US7099143B1 (en) * 2005-05-24 2006-08-29 Avx Corporation Wet electrolytic capacitors
EP1915764A1 (en) 2005-08-19 2008-04-30 Avx Limited Polymer based solid state capacitors and a method of manufacturing them
GB0517952D0 (en) * 2005-09-02 2005-10-12 Avx Ltd Method of forming anode bodies for solid state capacitors
US7511943B2 (en) * 2006-03-09 2009-03-31 Avx Corporation Wet electrolytic capacitor containing a cathode coating
GB0622463D0 (en) * 2006-11-10 2006-12-20 Avx Ltd Powder modification in the manufacture of solid state capacitor anodes
US20080253958A1 (en) * 2006-11-15 2008-10-16 Mccracken Colin G Production of high-purity titanium monoxide and capacitor production therefrom
US20080112879A1 (en) * 2006-11-15 2008-05-15 Mccracken Colin G Production of high-purity titanium monoxide and capacitor production therefrom
US7649730B2 (en) 2007-03-20 2010-01-19 Avx Corporation Wet electrolytic capacitor containing a plurality of thin powder-formed anodes
US7760487B2 (en) * 2007-10-22 2010-07-20 Avx Corporation Doped ceramic powder for use in forming capacitor anodes
US7852615B2 (en) * 2008-01-22 2010-12-14 Avx Corporation Electrolytic capacitor anode treated with an organometallic compound
US7760488B2 (en) * 2008-01-22 2010-07-20 Avx Corporation Sintered anode pellet treated with a surfactant for use in an electrolytic capacitor
US7768773B2 (en) * 2008-01-22 2010-08-03 Avx Corporation Sintered anode pellet etched with an organic acid for use in an electrolytic capacitor
US10583424B2 (en) * 2008-11-06 2020-03-10 Basf Corporation Chabazite zeolite catalysts having low silica to alumina ratios
US8203827B2 (en) * 2009-02-20 2012-06-19 Avx Corporation Anode for a solid electrolytic capacitor containing a non-metallic surface treatment
US9205131B2 (en) * 2011-03-30 2015-12-08 The Regents Of The University Of California Use of IL-17D for the treatment and prevention of cancers
KR101702790B1 (ko) * 2012-11-13 2017-02-06 제이엑스금속주식회사 NbO2 소결체 및 그 소결체로 이루어지는 스퍼터링 타깃 그리고 NbO2 소결체의 제조 방법
AT516081B1 (de) * 2014-07-16 2018-02-15 Lkr Leichtmetallkompetenzzentrum Ranshofen Gmbh Verfahren und Vorrichtung zum Reinigen eines porösen Werkstoffes
CN104445403B (zh) * 2014-11-10 2016-05-25 九江有色金属冶炼有限公司 一种二氧化铌的制备方法及其所制得的产品
CN106623981B (zh) * 2016-09-30 2018-11-06 九江波德新材料研究有限公司 一种利用等离子分解制备一氧化铌与铌粉混合物的方法
CN110963529B (zh) * 2018-09-30 2021-12-07 中国科学院上海硅酸盐研究所 一种纯相的铌的低价态氧化物纳米粉体及其制备方法和应用
RU2758401C1 (ru) * 2021-03-01 2021-10-28 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Способ получения монооксида ниобия
CN113800563B (zh) * 2021-10-26 2022-07-08 济南大学 一种NbO微球及其水热合成法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320103A (zh) * 1998-09-16 2001-10-31 卡伯特公司 部分还原铌金属氧化物的方法和脱氧的铌氧化物
WO2002093596A1 (fr) * 2001-05-15 2002-11-21 Showa Denko K.K. Poudre de monoxyde de niobium, produit fritte de monoxyde de niobium et condensateur utilisant ledit produit fritte de monoxyde de niobium

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3635693A (en) * 1969-01-27 1972-01-18 Starck Hermann C Fa Method of producing tantalum or niobium powder from compact bodies
US5242481A (en) * 1989-06-26 1993-09-07 Cabot Corporation Method of making powders and products of tantalum and niobium
US5993513A (en) * 1996-04-05 1999-11-30 Cabot Corporation Method for controlling the oxygen content in valve metal materials
EP1075884A3 (en) 1996-11-07 2005-10-05 Cabot Corporation Niobium powders and niobium electrolytic capacitors
US6268054B1 (en) 1997-02-18 2001-07-31 Cabot Corporation Dispersible, metal oxide-coated, barium titanate materials
US6071486A (en) 1997-04-09 2000-06-06 Cabot Corporation Process for producing metal oxide and organo-metal oxide compositions
US6051326A (en) 1997-04-26 2000-04-18 Cabot Corporation Valve metal compositions and method
US6051044A (en) 1998-05-04 2000-04-18 Cabot Corporation Nitrided niobium powders and niobium electrolytic capacitors
GB9812169D0 (en) 1998-06-05 1998-08-05 Univ Cambridge Tech Purification method
US6322912B1 (en) * 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6391275B1 (en) * 1998-09-16 2002-05-21 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
JP2004500480A (ja) 1999-03-19 2004-01-08 キャボット コーポレイション 粉砕によるニオビウムおよびその他の金属粉末の製造
US6667012B1 (en) 1999-03-26 2003-12-23 Cabot Corporation Catalytic converter
US6375704B1 (en) 1999-05-12 2002-04-23 Cabot Corporation High capacitance niobium powders and electrolytic capacitor anodes
JP4049964B2 (ja) 2000-02-08 2008-02-20 キャボットスーパーメタル株式会社 窒素含有金属粉末およびその製造方法ならびにそれを用いた多孔質焼結体および固体電解コンデンサー
RU2246376C2 (ru) 2000-03-01 2005-02-20 Кабот Корпорейшн Азотированные вентильные металлы и способы их получения
US6576099B2 (en) * 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
WO2001071738A2 (en) 2000-03-23 2001-09-27 Cabot Corporation Oxygen reduced niobium oxides
IL155746A0 (en) * 2000-11-06 2003-12-23 Cabot Corp Modified oxygen reduced valve metal oxides
US7149074B2 (en) 2001-04-19 2006-12-12 Cabot Corporation Methods of making a niobium metal oxide
US20030104923A1 (en) * 2001-05-15 2003-06-05 Showa Denko K.K. Niobium oxide powder, niobium oxide sintered body and capacitor using the sintered body
US7157073B2 (en) * 2003-05-02 2007-01-02 Reading Alloys, Inc. Production of high-purity niobium monoxide and capacitor production therefrom

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320103A (zh) * 1998-09-16 2001-10-31 卡伯特公司 部分还原铌金属氧化物的方法和脱氧的铌氧化物
WO2002093596A1 (fr) * 2001-05-15 2002-11-21 Showa Denko K.K. Poudre de monoxyde de niobium, produit fritte de monoxyde de niobium et condensateur utilisant ledit produit fritte de monoxyde de niobium

Also Published As

Publication number Publication date
US20050002854A1 (en) 2005-01-06
WO2004099080A1 (en) 2004-11-18
TW200511338A (en) 2005-03-16
AR044149A1 (es) 2005-08-24
EP1622835A1 (en) 2006-02-08
JP2006525222A (ja) 2006-11-09
RU2005137576A (ru) 2006-04-27
JP4382812B2 (ja) 2009-12-16
BRPI0410487A (pt) 2006-06-13
US20070092434A1 (en) 2007-04-26
EP1622835A4 (en) 2013-02-27
RU2346891C2 (ru) 2009-02-20
TWI329330B (en) 2010-08-21
KR20060096180A (ko) 2006-09-08
US20070081937A1 (en) 2007-04-12
US7585486B2 (en) 2009-09-08
CA2523564A1 (en) 2004-11-18
MY140945A (en) 2010-02-12
IL171666A (en) 2011-06-30
US20040219094A1 (en) 2004-11-04
US7157073B2 (en) 2007-01-02
CN1812935A (zh) 2006-08-02
US20080226488A1 (en) 2008-09-18

Similar Documents

Publication Publication Date Title
CN100418888C (zh) 高纯度一氧化铌的制备方法
JP5008524B2 (ja) 気体状マグネシウムを用いる酸化物の還元により製造される金属粉末
US6558447B1 (en) Metal powders produced by the reduction of the oxides with gaseous magnesium
EP1144147B8 (en) METHOD FOR PRODUCING METAL POWDERS BY REDUCTION OF THE OXIDES, Nb AND Nb-Ta POWDERS AND CAPACITOR ANODE OBTAINED THEREWITH
AU2008246253B2 (en) Metalothermic reduction of refractory metal oxides
WO2000067936A1 (en) Metal powders produced by the reduction of the oxides with gaseous magnesium
US4727928A (en) Process for the preparation of refined tantalum or niobium
CA2331707C (en) Reduction of nb or ta oxide powder by a gaseous light metal or a hydride thereof
CN102952969A (zh) 大尺寸Zr基准晶材料及其制备方法
CA2525259C (en) Metal powders produced by the reduction of the oxides with gaseous magnesium
MXPA00010861A (en) Metal powders produced by the reduction of the oxides with gaseous magnesium
JPH07188799A (ja) 水素吸蔵合金の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CI01 Publication of corrected invention patent application

Correction item: Inventor fourth inventor

Correct: Fonville Thomas J.

False: Fonville Thomas J.

Number: 31

Page: 680

Volume: 22

CI02 Correction of invention patent application

Correction item: Inventor fourth inventor

Correct: Fonville Thomas J.

False: Fonville Thomas J.

Number: 31

Page: The title page

Volume: 22

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR ^ THE FOURTH INVENTOR; FROM: ^ THOMAS J FONTELL TO: ^ FUNG J, THOMAS NEVILLE

ERR Gazette correction

Free format text: CORRECT: INVENTOR ^ THE FOURTH INVENTOR; FROM: ^ THOMAS J FONTELL TO: ^ FUNG J, THOMAS NEVILLE

ASS Succession or assignment of patent right

Owner name: READING ALLOY CO.,LTD.

Free format text: FORMER OWNER: MOTCHENBACHER CHARLES A.; APPLICANT

Effective date: 20070817

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20070817

Address after: American Pennsylvania

Applicant after: Motchenbacher Charles A.

Address before: American Pennsylvania

Applicant before: Motchenbacher Charles A.

Co-applicant before: James W. Robison

Co-applicant before: Brian J. Higgins

Co-applicant before: Thomas J. Fungville

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080917

Termination date: 20150429

EXPY Termination of patent right or utility model