CN100413983C - 利用硫氧化细菌消除黄铜矿浸出过程钝化膜的方法 - Google Patents

利用硫氧化细菌消除黄铜矿浸出过程钝化膜的方法 Download PDF

Info

Publication number
CN100413983C
CN100413983C CNB2006100324608A CN200610032460A CN100413983C CN 100413983 C CN100413983 C CN 100413983C CN B2006100324608 A CNB2006100324608 A CN B2006100324608A CN 200610032460 A CN200610032460 A CN 200610032460A CN 100413983 C CN100413983 C CN 100413983C
Authority
CN
China
Prior art keywords
chalcopyrite
sulfur
oxidizing bacteria
leaching
oxidizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100324608A
Other languages
English (en)
Other versions
CN101016583A (zh
Inventor
邱冠周
周洪波
符波
曾伟民
柳建设
刘晰
刘飞飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CNB2006100324608A priority Critical patent/CN100413983C/zh
Publication of CN101016583A publication Critical patent/CN101016583A/zh
Application granted granted Critical
Publication of CN100413983C publication Critical patent/CN100413983C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明涉及到一种利用硫氧化细菌在微生物浸矿过程中消除黄铜矿表面钝化膜的方法。筛选嗜酸喜温硫杆菌,与嗜铁钩端螺旋菌复配形成复合菌种。该复合菌种与单纯的嗜铁钩端螺旋菌相比,对黄铜矿浸出速度和浸出率大大提高。铁氧化细菌代谢产生元素硫在黄铜矿表面聚集形成钝化膜阻止进一步的浸出,而在硫氧化细菌的存在下,元素硫不断被氧化成硫酸促进黄铜矿的溶解。该菌种复配技术有利于开发利用占我国铜矿资源70%以上的原生硫化矿(黄铜矿)。

Description

利用硫氧化细菌消除黄铜矿浸出过程钝化膜的方法
[技术领域]
本发明涉及到一种利用硫氧化细菌和铁氧化细菌组成复合菌种,在微生物浸矿过程中消除因铁氧化细菌代谢而在黄铜矿表面形成的钝化膜,从而提高铜浸出速率和浸出率的方法。
[背景技术]
生物冶金现代工业应用主要有两个方面:硫化铜矿的生物浸出始于上个世纪五十年代;难处理金矿的预氧化技术广泛地应用于黄金工业已有20多年的历史。目前,铀、锰、铅、镍、钴、锌、砷、铁等几乎所有的硫化矿都可利用细菌浸出。占我国铜矿资源70%以上的黄铜矿是细菌最难氧化的原生硫化矿。特别是细菌浸出过程中某些硫化物形成在矿物表面的钝化膜影响了铜离子的进一步浸出。生物浸出黄铜矿反应速率低、浸出率低,限制了其工业化广泛应用。
[发明内容]
本发明的目的是提供一种利用硫氧化细菌消除因铁氧化微生物代谢而在黄铜矿表面形成的钝化膜的方法,从而得到能明显提高黄铜矿金属浸出速度和浸出率的复配菌种。
黄铜矿细菌氧化浸出时的化学过程是三价铁的氧化作用,可表示为:
MS+2Fe3++H+→M2++2Fe2++H2S+
初始硫产物的形态则与矿物酸溶与否的性质有关,酸可溶性的黄铜矿产生H2S+(H2S2)按多硫化物途径经化学氧化或细菌氧化,最终产出元素硫。元素硫在黄铜矿表面聚集形成钝化膜阻止进一步的浸出。在硫氧化细菌的存在下,元素硫不断被氧化成硫酸,硫酸和铁氧化细菌产生的Fe3+又能促进黄铜矿的溶解。
具体步骤如下:
利用硫氧化细菌消除黄铜矿浸出过程钝化膜的方法,将喜温硫杆菌和铁氧化细菌菌体分别用基本盐培养基悬浮后,采用中高温复合浸矿菌种对1%-5%矿浆浓度的黄铜矿进行浸出,浸矿温度40-55℃,初始pH值1.6,搅拌转速500-600rpm,每间隔一定时间取样用原子吸收光谱测定法测定黄铜矿浸出液的Cu2+含量。所述中高温复合浸矿菌种的细菌组成为:嗜铁钩端螺旋菌∶嗜酸喜温硫杆菌=1∶0.5~2。
所述硫氧化细菌和铁氧化细菌的筛选和培养方法为:
从酸性矿山废水、温泉等采集的样品用含元素1%元素硫培养基在45℃下富集15天,用梯度稀释法在Na2S2O3固体培养基上进行涂布,挑选培养基上生长出的乳白色单落,反复划线分离纯化,直至在显微镜下镜检菌体形态一致的纯菌株,分离出大量喜温硫杆菌菌株。对所筛选的细菌进行16S rRNA序列测定和生理生化鉴定,结果为中度嗜热嗜酸的喜温硫杆菌。采用1%元素硫培养基测定菌株氧化硫的能力,从中筛选出硫氧化能力最强的喜温硫杆菌菌株在45℃下采用5%硫代硫酸钠(Na2S2O3)培养基中添加0.1%的葡萄糖培养7天,得到大量硫氧化细菌,10000rpm离心10min收集菌体。
具有氧化亚铁能力的嗜铁钩端螺旋菌为生物冶金重点实验室分离得到保藏的菌株。采用测定亚铁氧化能力和测定黄铁矿、黄铜矿氧化能力的方法,从实验室分离得到的大量菌株中筛选出高效的铁氧化细菌。分别在45℃下采用9K培养基培养7d后10000rpm离心10min收集菌体。9K培养基(g/L):(NH4)2SO43;KCl 0.1;K2HPO4 0.5;MgSO4·7H2O 0.5;Ca(NO3)2 0.01g;FeSO4·7H2O 44.7。
本发明具有以下特点:
(1)广泛筛选铁和硫氧化细菌,分别测试对铁和硫的氧化能力,筛选出能力强的菌株进行组合。无需诱变或者进行基因工程技术等复杂操作,技术相对简单,周期短、成本低;与诱变育种和基因工程菌比较,复合菌种不会轻易发生退化或者回复突变以及质粒丢失等现象,遗传性状稳定,并且环境适应性好,易于在环境中定殖。
(2)筛选出的复合菌种兼有铁氧化和硫氧化能力,浸出体系中酸度更低,不易在黄铜矿浸出过程中形成明显的硫或黄钾铁矾覆盖在矿物表面,从而有效消除钝化膜。与单纯的铁氧化细菌相比,浸出速率更快,浸出率更高。
[具体实施方式]
实施例1.采用喜温硫杆菌细菌与嗜铁钩端螺旋菌细菌浓度比例为1∶1的复合菌种在35℃、40℃、45℃和50℃条件下对黄铜矿精矿(成分分析见表1)进行10L搅拌槽浸出实验。矿样铜含量为29.06%,铁含量25.96%,硫含量30.46%,以原生黄铜矿为主。矿浆浓度2%,接种后细菌浓度为1×107个/mL,初始pH值1.6,转速500rpm。原子吸收光谱测定法测定黄铜矿浸出液的Cu2+含量,并间隔一定时间用蒸馏水补充所蒸发水分。平行实验两组。20天后浸出结果如表2。
表1所用黄铜矿的主要成分的质量百分比含量
Figure C20061003246000051
表2不同温度下黄铜矿浸出率与浸出速率的比较
Figure C20061003246000052
结果表明,中高温复合菌种浸出黄铜矿45℃效果最佳。
实施例2.采用喜温硫杆菌细菌与嗜铁钩端螺旋菌细菌浓度比例分别为1∶1/2、1∶1和1∶2的中高温复合菌种对黄铜矿精矿进行10L搅拌槽浸出实验。矿样成分如上。矿浆浓度2%,接种后细菌浓度为1~2×107个/mL,浸矿温度45℃,初始pH值1.6,转速500-600rpm。原子吸收光谱测定法测定黄铜矿浸出液的Cu2+含量,并间隔一定时间用蒸馏水补充所蒸发水分。同时采用嗜铁钩端螺旋菌纯菌浸出黄铜矿作为对照。20天后浸出结果如表3。
表3复合菌种与纯菌浸出黄铜矿浸出率与浸出速率的比较
Figure C20061003246000053
结果表明,黄铜矿精矿的搅拌槽浸出过程,中高温复合浸矿菌种最佳组合为:嗜铁钩端螺旋菌∶喜温硫杆菌=1∶2。
实施例3.采用喜温硫杆菌细菌与嗜铁钩端螺旋菌细菌浓度比例为1∶2的中高温复合菌种对矿浆浓度为1%、3%和5%的黄铜矿精矿进行10L搅拌槽浸出实验。矿样成分如上。接种后细菌浓度为1~2×107个/mL,浸矿温度45℃,初始pH值1.6,转速500-600rpm。原子吸收光谱测定法测定黄铜矿浸出液的Cu2+含量,并间隔一定时间用蒸馏水补充所蒸发水分。20天后浸出结果如表4。
表4不同矿浆浓度下黄铜矿浸出率与浸出速率的比较
Figure C20061003246000062

Claims (1)

1. 利用硫氧化细菌消除黄铜矿浸出过程钝化膜的方法,其特征在于:将喜温硫杆菌和铁氧化细菌菌体分别用基本盐培养基悬浮后,采用中高温复合浸矿菌种对1%-5%矿浆浓度的黄铜矿进行浸出,浸矿温度40-55℃,初始pH值1.6,所述中高温复合浸矿菌种的细菌浓度比为:嗜铁钩端螺旋菌∶嗜酸喜温硫杆菌=1∶0.5~2。
CNB2006100324608A 2006-10-25 2006-10-25 利用硫氧化细菌消除黄铜矿浸出过程钝化膜的方法 Expired - Fee Related CN100413983C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100324608A CN100413983C (zh) 2006-10-25 2006-10-25 利用硫氧化细菌消除黄铜矿浸出过程钝化膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100324608A CN100413983C (zh) 2006-10-25 2006-10-25 利用硫氧化细菌消除黄铜矿浸出过程钝化膜的方法

Publications (2)

Publication Number Publication Date
CN101016583A CN101016583A (zh) 2007-08-15
CN100413983C true CN100413983C (zh) 2008-08-27

Family

ID=38725808

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100324608A Expired - Fee Related CN100413983C (zh) 2006-10-25 2006-10-25 利用硫氧化细菌消除黄铜矿浸出过程钝化膜的方法

Country Status (1)

Country Link
CN (1) CN100413983C (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102659219B (zh) * 2012-05-07 2013-08-21 四川大学 一种脱除铁炭微电解反应器中填料表层硫化亚铁钝化膜的方法
MX2019012039A (es) * 2017-04-06 2020-02-12 Tech Resources Pty Ltd Lixiviacion de minerales que contienen cobre.
CN107858507B (zh) * 2017-11-15 2019-03-19 江南大学 一种提高硫氧化菌种浸出黄铜矿效率的复合方法
CN107794368B (zh) * 2017-11-15 2019-03-01 江南大学 一种基于微生物生长和化学调控增强黄铜矿浸出的方法
CN110863117B (zh) * 2019-11-22 2021-05-04 江南大学 一种促进贫辉铜矿生物柱浸方法
CN111321294B (zh) * 2020-03-05 2021-07-09 中国地质大学(武汉) 一种定向调控土著微生物群落提高黄铜矿浸出效率的方法
CN112391527B (zh) * 2020-11-16 2021-10-08 中南大学 一种综合利用三价铁离子与亚铁离子强化铜蓝生物浸出的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1401769A (zh) * 2002-09-06 2003-03-12 中南大学 硫化矿浸矿菌株的原生质体融合技术

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1401769A (zh) * 2002-09-06 2003-03-12 中南大学 硫化矿浸矿菌株的原生质体融合技术

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
低品位硫化铜矿细菌浸出. 柳建设,夏海波,王海东.中国有色金属学报,第14卷第2期. 2004
低品位硫化铜矿细菌浸出. 柳建设,夏海波,王海东.中国有色金属学报,第14卷第2期. 2004 *
黄铜矿的细菌氧化. 胡岳华,康自珍,王军,柳建设,邱冠周.国外金属矿选矿,第08期. 1997
黄铜矿的细菌氧化. 胡岳华,康自珍,王军,柳建设,邱冠周.国外金属矿选矿,第08期. 1997 *

Also Published As

Publication number Publication date
CN101016583A (zh) 2007-08-15

Similar Documents

Publication Publication Date Title
CN100413983C (zh) 利用硫氧化细菌消除黄铜矿浸出过程钝化膜的方法
CN100471947C (zh) 用于浸出含有金属硫化物矿成分的矿石或精矿的菌株及其浸出方法
CN101538540B (zh) 一种复合浸矿菌群及其在生物冶金中的应用
Wang et al. Bioleaching of low-grade copper sulfide ores by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans
AU2007203580B2 (en) Recovery of molybdenum from molybdenum bearing sulfide materials by bioleaching in the presence of iron
CN103993171B (zh) 一种添加非离子表面活性剂促进黄铜矿生物浸出的方法
Xia et al. Relationships among bioleaching performance, additional elemental sulfur, microbial population dynamics and its energy metabolism in bioleaching of chalcopyrite
CN1260376C (zh) 铜矿石的联合堆浸工艺
CN103131650B (zh) 一株嗜酸硫杆菌属及其在黄铜矿浸出中的应用
Mousavi et al. The effects of Fe (II) and Fe (III) concentration and initial pH on microbial leaching of low-grade sphalerite ore in a column reactor
Zhang et al. Bioleaching of pyrite by A. ferrooxidans and L. ferriphilum
ZENG et al. Isolation and identification of moderately thermophilic acidophilic iron-oxidizing bacterium and its bioleaching characterization
AU2004297289B2 (en) Improved bacterial oxidation of sulphide ores and concentrates
CN103184336B (zh) 高砷高碳微细粒难处理金矿生物提金工艺及所用微生物
CN109957649A (zh) 一种复杂硫精矿制备高品质铁精矿并协同回收铜锌的方法
CN101805829B (zh) 高硫/铜比次生硫化铜矿选择性生物浸出工艺
Ilyas et al. Bioleaching of metal ions from low grade sulphide ore: Process optimization by using orthogonal experimental array design
CN100362116C (zh) 浸取矿物硫化物的微生物和方法
CN103173356A (zh) 用于黄铜矿浸出的中温浸矿复合菌系
Wu et al. Bioleaching of chalcopyrite by mixed culture of moderately thermophilic microorganisms
CN102618472A (zh) 一种高砷氧化菌的选育与分离方法
Sukla et al. Recovery of copper values from bio-heap leaching of low grade Malanjkhand chalcopyrite ore
CN1204691A (zh) 一种微生物及其应用
Bakhshoude et al. Thermoacidophilic bioleaching of copper sulfide concentrate in the presence of chloride ions
Doshi et al. Bioleaching of lateritic nickel ore using chemolithotrophic micro organisms (Acidithiobacillus ferrooxidans)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080827

Termination date: 20091125