CN100412518C - Laser detector made of oxide multilayer film material - Google Patents

Laser detector made of oxide multilayer film material Download PDF

Info

Publication number
CN100412518C
CN100412518C CNB2004100711743A CN200410071174A CN100412518C CN 100412518 C CN100412518 C CN 100412518C CN B2004100711743 A CNB2004100711743 A CN B2004100711743A CN 200410071174 A CN200410071174 A CN 200410071174A CN 100412518 C CN100412518 C CN 100412518C
Authority
CN
China
Prior art keywords
doped
oxide
electrode
film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100711743A
Other languages
Chinese (zh)
Other versions
CN1727854A (en
Inventor
吕惠宾
黄延红
何萌
郭海中
程波林
金奎娟
陈正豪
周岳亮
杨国桢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Physics of CAS
Original Assignee
Institute of Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Physics of CAS filed Critical Institute of Physics of CAS
Priority to CNB2004100711743A priority Critical patent/CN100412518C/en
Publication of CN1727854A publication Critical patent/CN1727854A/en
Application granted granted Critical
Publication of CN100412518C publication Critical patent/CN100412518C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明涉及利用氧化物多层膜材料制作的快响应宽频段激光探测器,包括:一由在氧化物单晶基片的衬底的一面上外延生长掺杂氧化物和光响应材料层作成的芯片,掺杂氧化物为外延生长在氧化物单晶衬底上的掺杂钛酸锶或掺杂钛酸钡;光响应层为掺杂锰酸镧薄膜层;第一电极设置在掺杂锰酸镧薄膜上,第二电极设置在掺杂氧化物上,两根电极引线的一端分别与第一电极和第二电极连接,电极引线的另一端是信号输出端。该探测器为光生伏特型光电探测器,当光照射后直接产生电压信号,不需要任何辅助的电源和电子电路。其响应波段从紫外到远红外,可响应飞秒脉宽的激光脉冲,激光脉冲产生电压脉冲的前沿小于1.5ns,半宽度小于2ns,脉冲全宽度仅为几个ns。

Figure 200410071174

The invention relates to a fast-response broadband laser detector made of oxide multilayer film material, comprising: a chip made by epitaxially growing doped oxide and photoresponsive material layers on one side of the substrate of an oxide single crystal substrate , the doped oxide is doped strontium titanate or doped barium titanate epitaxially grown on the oxide single crystal substrate; the photoresponsive layer is a doped lanthanum manganate thin film layer; On the lanthanum thin film, the second electrode is arranged on the doped oxide, one end of the two electrode leads is respectively connected to the first electrode and the second electrode, and the other end of the electrode lead is a signal output end. The detector is a photovoltaic photodetector, which directly generates a voltage signal when light is irradiated, without any auxiliary power supply and electronic circuit. Its response band ranges from ultraviolet to far infrared, and can respond to laser pulses with femtosecond pulse width. The leading edge of the voltage pulse generated by the laser pulse is less than 1.5ns, the half width is less than 2ns, and the full pulse width is only a few ns.

Figure 200410071174

Description

利用氧化物多层膜材料制作的激光探测器 Laser detector made of oxide multilayer film material

技术领域 technical field

本发明涉及一种激光探测器,特别涉及一种利用氧化物多层膜材料制作的快响应宽频段激光探测器。The invention relates to a laser detector, in particular to a fast-response broadband laser detector made of oxide multilayer film material.

背景技术 Background technique

对于激光能量、功率、脉宽和波形的探测,不仅对激光器件和科学研究是非常重要的,而且在军事、国防、生产和生活中也有非常广泛的应用。尽管人们已发展了如热电、光电、热释电等多种不同类型的激光探测器,但对于新型激光探测器的工作仍是人们感兴趣和一直在进行的工作,本申请人也在这方面获得以下几项激光探测器的专利,例如专利号:ZL89202869.6;专利号:ZL89220541.5;专利号:ZL90202337.3,专利号:ZL90205920.3;但是上述几项专利的探测器均采用压电材料制作的,该探测器光响应还不够快,响应波段也还不够宽。The detection of laser energy, power, pulse width and waveform is not only very important for laser devices and scientific research, but also has a very wide range of applications in military, national defense, production and life. Although people have developed many different types of laser detectors such as pyroelectricity, photoelectricity, pyroelectricity, etc., the work for novel laser detectors is still people's interest and ongoing work, and the applicant is also in this regard Obtained the following patents for laser detectors, such as patent number: ZL89202869.6; patent number: ZL89220541.5; patent number: ZL90202337.3, patent number: ZL90205920.3; Made of electrical materials, the photoresponse of the detector is not fast enough, and the response band is not wide enough.

对于掺杂锰酸镧材料的磁电阻特性人们已研究很多,近来人们也观测到掺杂锰酸镧薄膜的光电特性(如文献1、Time dependence of laser-inducedthermoelectric voltages in La1-xCaxMnO3 and YBa2Cu3O7-δthin films,P.X.Zhanget al.,Appl.Phys.Lett.,Vol.84,No.21,4026(2002)),但其光响应的脉宽是ms量级,因此无法用于探测和测量激光脉冲宽度小于ms的脉冲激光波形。The magnetoresistance properties of doped lanthanum manganate materials have been studied a lot, and recently people have also observed the photoelectric properties of doped lanthanum manganate films (such as literature 1, Time dependence of laser-inducedthermoelectric voltages in La 1-x Ca x MnO 3 and YBa 2 Cu 3 O 7-δ thin films, PX Zhang et al., Appl. Phys. Lett., Vol.84, No.21, 4026 (2002)), but the pulse width of its photoresponse is on the order of ms, Therefore, it cannot be used to detect and measure pulsed laser waveforms with a laser pulse width less than ms.

发明内容 Contents of the invention

本发明的目的在于克服上述探测器光响应速度慢和响应波段窄的缺陷;提供一种当光照射后直接产生电压信号,不需要任何辅助的电源和电子电路;并且可以探测激光的能量、功率和波形,其响应波段从紫外到远红外,可响应飞秒脉宽的激光脉冲,产生电压脉冲的半宽度可小于2ns,脉冲全宽度可达几个ns的利用氧化物多层膜材料制作的快响应宽频段激光探测器。The object of the present invention is to overcome the defects of slow photoresponse speed and narrow response band of the above-mentioned detector; provide a voltage signal directly generated after light irradiation, without any auxiliary power supply and electronic circuit; and can detect the energy and power of the laser And waveform, its response band is from ultraviolet to far infrared, it can respond to laser pulse with femtosecond pulse width, the half width of voltage pulse can be less than 2ns, and the full width of pulse can reach several ns. It is made of oxide multilayer film material Fast response broadband laser detector.

本发明的目的是这样实现的:The purpose of the present invention is achieved like this:

本发明提供的利用氧化物多层膜材料制作的激光探测器,包括:一氧化物单晶基片为衬底1、光响应材料层2、第一电极3、第二电极4和电极引线6;其特征在于:还包括一外延生长的掺杂氧化物薄膜7,该掺杂氧化物薄膜7设置在衬底1和光响应材料层2之间,该掺杂氧化物薄膜为掺杂钛酸锶或掺杂钛酸钡薄膜7,光响应材料层2为掺杂锰酸镧薄膜层,形成掺杂氧化物-掺杂锰酸镧两层结构的芯片;第一电极3设置在掺杂锰酸镧薄膜2上,第二电极4设置在掺杂氧化物薄膜7上;所述的电极引线6为2根,其中一根电极引线6的一端与第一电极3连接,另一根电极引线6的一端和第二电极4连接,该两根电极引线6的另一端为信号输出端。还包括一金属外壳,将上述芯片安装在一个金属外壳内,金属外壳对外界的电磁干扰起屏蔽作用。The laser detector made of oxide multilayer film material provided by the present invention includes: an oxide single crystal substrate is a substrate 1, a photoresponsive material layer 2, a first electrode 3, a second electrode 4 and electrode leads 6 ; It is characterized in that: it also includes an epitaxially grown doped oxide film 7, the doped oxide film 7 is arranged between the substrate 1 and the photoresponsive material layer 2, and the doped oxide film is doped strontium titanate Or doped barium titanate film 7, the photoresponsive material layer 2 is a doped lanthanum manganate film layer, forming a chip with a two-layer structure of doped oxide-doped lanthanum manganate; the first electrode 3 is arranged on the doped manganate On the lanthanum film 2, the second electrode 4 is arranged on the doped oxide film 7; the electrode leads 6 are two, one end of one electrode lead 6 is connected to the first electrode 3, and the other electrode lead 6 One end of the two electrode leads 6 is connected to the second electrode 4, and the other end of the two electrode leads 6 is a signal output end. It also includes a metal casing, the above-mentioned chip is installed in a metal casing, and the metal casing has a shielding effect on external electromagnetic interference.

还包括一电阻5,该电阻5的两端分别和两根电极引线6的输出端连接。所述的电阻5,主要是为了提高响应速度,由于异质结的结构具有电容特性,因此电阻5对激光照射后产生的电压起放电作用,其阻值为0.01~1MΩ。It also includes a resistor 5, the two ends of the resistor 5 are respectively connected to the output ends of the two electrode leads 6. The resistor 5 is mainly for improving the response speed. Since the structure of the heterojunction has capacitive characteristics, the resistor 5 discharges the voltage generated after laser irradiation, and its resistance value is 0.01-1 MΩ.

还包括在掺杂氧化物薄膜层7上外延生长一绝缘层8,掺杂锰酸镧薄膜2外延生长在绝缘层8上,形成掺杂氧化物-绝缘层-掺杂锰酸镧氧化物异质结。It also includes epitaxially growing an insulating layer 8 on the doped oxide film layer 7, and the doped lanthanum manganate film 2 is epitaxially grown on the insulating layer 8 to form a doped oxide-insulating layer-doped lanthanum manganate oxide iso texture.

还包括在衬底1的一面外延生长一层掺杂钛酸锶或掺杂钛酸钡或掺杂锰酸镧作为掺杂氧化物薄膜7,在氧化物单晶基片为底1的另一面外延生长掺杂锰酸镧薄膜,形成掺杂氧化物-氧化物衬底-掺杂锰酸镧氧化物异质结。It also includes growing a layer of doped strontium titanate or doped barium titanate or doped lanthanum manganate epitaxially on one side of the substrate 1 as a doped oxide film 7, and on the other side of the oxide single crystal substrate as the bottom 1 The doped lanthanum manganate film is epitaxially grown to form a doped oxide-oxide substrate-doped lanthanum manganate oxide heterojunction.

所述的氧化物单晶基片衬底1包括:铝酸镧(LaAlO3)、钛酸锶(SrTiO3)、钛酸钡(BaTiO3)、氧化锆(ZrO2)、铝酸镧(LaAlO3)或氧化镁(MgO)。The oxide single crystal substrate 1 includes: lanthanum aluminate (LaAlO 3 ), strontium titanate (SrTiO 3 ), barium titanate (BaTiO 3 ), zirconia (ZrO 2 ), lanthanum aluminate (LaAlO 3 ) or magnesium oxide (MgO).

所述的绝缘层7包括:铝酸镧(LaAlO3)、钛酸锶(SrTiO3)、钛酸钡(BaTiO3)、氧化锆(ZrO2)、锰酸镧(LaMnO3)或氧化镁(MgO),绝缘层的厚度为1nm~500nm。The insulating layer 7 includes: lanthanum aluminate (LaAlO 3 ), strontium titanate (SrTiO 3 ), barium titanate (BaTiO 3 ), zirconia (ZrO 2 ), lanthanum manganate (LaMnO 3 ) or magnesium oxide ( MgO), the thickness of the insulating layer is 1 nm to 500 nm.

所述的掺杂的BaTiO3包括:n型钛酸钡BaAxTi1-xO3或Ba1-xLaxTiO3薄膜材料,其中A是Nb或Ta;p型钛酸钡BaBxTi1-xO3,其中B是In、Ga或Mn;所有x的取值范围为0.005~0.5。The doped BaTiO 3 includes: n-type barium titanate BaA x Ti 1-x O 3 or Ba 1-x La x TiO 3 film material, wherein A is Nb or Ta; p-type barium titanate BaB x Ti 1-x O 3 , wherein B is In, Ga or Mn; all x values range from 0.005 to 0.5.

所述的掺杂的SrTiO3包括:n型钛酸锶SrAxTi1-xO3或Sr1-xLaxTiO3薄膜材料,其中A是Nb或Ta;p型钛酸锶SrBxTi1-xO3,其中B是In、Ga或Mn;所有x的取值范围为0.005~0.5。The doped SrTiO 3 includes: n-type strontium titanate SrA x Ti 1-x O 3 or Sr 1-x La x TiO 3 film material, wherein A is Nb or Ta; p-type strontium titanate SrB x Ti 1-x O 3 , wherein B is In, Ga or Mn; all x values range from 0.005 to 0.5.

所述的掺杂锰酸镧薄膜层是R1-xAxMnO3,掺杂锰酸镧薄膜2的厚度为0.8nm~2μm;其中R为La;其中A包括:Sr、Ca、Ba、Pb、Sn、Te、Nb、Sb、Ta、Ce或Pr;其x值为0.05~0.4。The doped lanthanum manganate film layer is R 1-x A x MnO 3 , and the thickness of the doped lanthanum manganate film 2 is 0.8 nm to 2 μm; wherein R is La; wherein A includes: Sr, Ca, Ba, Pb, Sn, Te, Nb, Sb, Ta, Ce or Pr; the value of x is 0.05-0.4.

所述的电极3可以是一个点,或是一条线,也可以是围绕掺杂锰酸镧薄膜2边缘的一个圆圈。第二电极4连接在掺杂氧化物薄膜上,可以采用化学腐蚀或离子束刻蚀方法或在制膜时用档板等方法在样品的边缘显露出掺杂氧化物的一个点露出一条边,或留出外沿的一个圈,用于连接电极4。第一电极3和第二电极4可以用铟或焊锡直接焊接,也可以用真空镀膜或磁控溅射等方法蒸镀金、银或铝电极。The electrode 3 can be a point, a line, or a circle surrounding the edge of the doped lanthanum manganate film 2 . The second electrode 4 is connected on the doped oxide thin film, and a point of the doped oxide can be exposed at the edge of the sample by chemical etching or ion beam etching, or by using a baffle plate when forming the film, and an edge is exposed. Or leave a circle on the outer edge for connecting the electrode 4. The first electrode 3 and the second electrode 4 can be directly soldered with indium or solder, or gold, silver or aluminum electrodes can be vapor-deposited by methods such as vacuum coating or magnetron sputtering.

无论是掺杂氧化物-掺杂锰酸镧两层结构的激光探测器,还是掺杂氧化物-绝缘层-掺杂锰酸镧三层结构的激光探测器,或掺杂氧化物-氧化物衬底-掺杂锰酸镧结构的激光探测器,对于探测激光的效果是一致的。当脉冲激光照射到掺杂锰酸镧薄膜的表面时,掺杂锰酸镧薄膜吸收激光脉冲后,就会在掺杂氧化物7和掺杂锰酸镧2之间产生电压信号,此效应称之为光生伏特效应。无论是两层结构还是三层结构,在掺杂氧化物和掺杂锰酸镧之间都存在一个结电容,因此在掺杂氧化物7和掺杂锰酸镧2之间并联一个电阻5,起放电作用,减小放电时间和消除结电容对响应速度的影响。如果不考虑脉冲激光所产生脉冲电压信号的宽度,也可以不连接电阻5。Whether it is a laser detector with a two-layer structure of doped oxide-doped lanthanum manganate, a laser detector with a three-layer structure of doped oxide-insulating layer-doped lanthanum manganate, or a doped oxide-oxide The laser detector with substrate-doped lanthanum manganate structure has the same effect on detecting laser light. When the pulsed laser is irradiated on the surface of the doped lanthanum manganate film, after the doped lanthanum manganate film absorbs the laser pulse, a voltage signal will be generated between the doped oxide 7 and the doped lanthanum manganate 2. This effect is called It is the photovoltaic effect. Whether it is a two-layer structure or a three-layer structure, there is a junction capacitance between the doped oxide and the doped lanthanum manganate, so a resistor 5 is connected in parallel between the doped oxide 7 and the doped lanthanum manganate 2, It acts as a discharge, reducing the discharge time and eliminating the influence of the junction capacitance on the response speed. If the width of the pulse voltage signal generated by the pulsed laser is not considered, the resistor 5 may not be connected.

本发明提供的利用氧化物多层膜材料制作的快响应宽频段激光探测器,其优点在于,可以用激光分子束外延、脉冲激光沉积、磁控溅射和粘胶法等制膜方法,直接把掺杂氧化物、绝缘层和光响应层掺杂锰酸镧外延生长在氧化物单晶基片衬底上,或直接把掺杂氧化物、掺杂锰酸镧绝缘层和一光响应材料层2作成的芯片,制作两电极就成为一光生伏特型光电探测器;该制备方法简单。该光电探测器当光照射后直接产生电压信号,不需要任何辅助的电源和电子电路。可以探测激光能量、激光功率、激光脉冲波形等多种激光参数。该光电探测器的响应波段从紫外到远红外,是一种快响应宽频段激光探测器。探测过程是一个超快过程,光生伏特所产生脉冲电压信号的前沿达到ns量级,不仅可探测飞秒脉宽的激光能量,而且可探测ns脉宽的激光波形。一个mJ的激光脉冲可产生上百mV的电压信号,具有很高的灵敏度。因此本发明提供的利用氧化物多层膜材料制作的激光探测器,在军事、国防、科研、生产和生活等方面均有广泛的应用。The fast-response broadband laser detector made of oxide multilayer film material provided by the present invention has the advantage that it can be directly Epitaxial growth of doped oxide, insulating layer and photoresponsive layer doped lanthanum manganate on the oxide single crystal substrate, or directly doped oxide, doped lanthanum manganate insulating layer and a photoresponsive material layer 2. The fabricated chip becomes a photovoltaic type photodetector by making two electrodes; the preparation method is simple. The photodetector directly generates a voltage signal when light is irradiated, without any auxiliary power supply and electronic circuit. It can detect various laser parameters such as laser energy, laser power, and laser pulse waveform. The response band of the photodetector is from ultraviolet to far infrared, and it is a fast-response broadband laser detector. The detection process is an ultra-fast process. The leading edge of the pulse voltage signal generated by photovoltaics reaches the ns level. Not only the laser energy with femtosecond pulse width can be detected, but also the laser waveform with ns pulse width can be detected. A mJ laser pulse can generate a voltage signal of hundreds of mV, which has high sensitivity. Therefore, the laser detector made of the oxide multilayer film material provided by the present invention is widely used in military affairs, national defense, scientific research, production and life.

附图说明 Description of drawings

图1.掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。Figure 1. Laser detector with doped oxide-doped lanthanum manganate two-layer structure.

图2.掺杂氧化物-绝缘层-掺杂锰酸镧三层结构的激光探测器。Figure 2. A laser detector with a three-layer structure of doped oxide-insulating layer-doped lanthanum manganate.

图3.掺杂氧化物-氧化物衬底-掺杂锰酸镧三层结构的激光探测器。Figure 3. A laser detector with a three-layer structure of doped oxide-oxide substrate-doped lanthanum manganate.

图4.用500兆示波器储存记录的La0.7Sr0.3MnO3/SrNb0.01Ti0.99O3两层结构激光探测器,测量YAG激光器输出波长1.06μm、脉宽25ps激光脉冲所产生的电压信号。Figure 4. The La 0.7 Sr 0.3 MnO 3 /SrNb 0.01 Ti 0.99 O 3 two-layer structure laser detector was stored and recorded with a 500M oscilloscope, and the voltage signal generated by the YAG laser output wavelength 1.06μm and pulse width 25ps laser pulse was measured.

图5.用500兆示波器储存记录的La0.7Sr0.3MnO3/SrTiO3/SrNb0.01Ti0.99O3三层结构激光探测器,测量YAG三倍频激光器输出波长355nm、脉宽15ps激光脉冲所产生的电压信号。Figure 5. La 0.7 Sr 0.3 MnO 3 /SrTiO 3 /SrNb 0.01 Ti 0.99 O 3 three-layer structure laser detector is stored and recorded with a 500M oscilloscope, and the laser pulse generated by the YAG triple frequency laser with an output wavelength of 355nm and a pulse width of 15ps is measured voltage signal.

图面说明如下:The illustrations are as follows:

1-氧化物单晶基片衬底;    2-光响应材料层;    3-第一电极;1-Oxide single crystal substrate; 2-Photoresponsive material layer; 3-First electrode;

4-第二电极;              5-电阻;            6-电极引线;4-the second electrode; 5-resistance; 6-electrode lead;

7-掺杂氧化物;            8-绝缘层。7-doped oxide; 8-insulating layer.

具体实施方式 Detailed ways

实施例1Example 1

参考图1,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器,下面结合具体制备过程,来对本发明利用氧化物多层膜材料制作的快响应宽频段激光探测器结构进行详细地说明。选用激光分子束外延设备,衬底1为3×3cm2大小的SrTiO3单晶基片,采用SrNb0.1Ti0.9O3掺铌钛酸锶的靶,将其SrNb0.1Ti0.9O3掺铌钛酸锶外延生长在衬底1上做为掺杂氧化物薄膜7,再在掺杂氧化物SrNb0.1Ti0.9O3薄膜层7上外延生长300nm厚的La0.7Sr0.3MnO3光响应材料层2,这样在SrTiO3氧化物衬底1上形成La0.7Sr0.3MnO3/SrNb0.1Ti0.9O3/SrTiO3掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。把制作好的样品切割1×1cm2大小片子作为探测器芯片,用离子束刻蚀技术在探测器芯的一个角把La0.7Sr0.3MnO3刻蚀出一个φ2mm的圆,刻蚀显露出掺铌钛酸锶膜面,用铟在掺铌钛酸锶薄膜7的边缘焊接约为φ1mm大小的第二电极4,用铟在La0.7Sr0.3MnO3薄膜的一个角表面焊接约为φ1mm的第一电极3;用两根φ0.1mm的铜线作电极引线6,并用铟把两根φ0.1mm铜电极引线6的一端分别焊接在第一电极3和第二电极4上;选用2Ω的电阻作电阻5,并将其两端分别与两根电极引线6的输出端焊接;这样探测器芯就制备完成,把探测器芯装入一个铝材的探测器外壳内,用同轴电缆接头引出输出端。Referring to Figure 1, a laser detector with a two-layer structure of doped oxide-doped lanthanum manganate is prepared, and the following is combined with the specific preparation process to carry out the fast-response broadband laser detector structure made of oxide multilayer film materials according to the present invention. Explain in detail. Laser molecular beam epitaxy equipment is selected, the substrate 1 is a SrTiO 3 single crystal substrate with a size of 3×3cm 2 , and a SrNb 0.1 Ti 0.9 O 3 doped strontium niobium titanate target is used, and its SrNb 0.1 Ti 0.9 O 3 doped niobium titanium Strontium oxide epitaxially grown on the substrate 1 as a doped oxide film 7, and then a 300nm-thick La 0.7 Sr 0.3 MnO 3 photoresponsive material layer 2 was epitaxially grown on the doped oxide SrNb 0.1 Ti 0.9 O 3 film layer 7 In this way, a laser detector with a La 0.7 Sr 0.3 MnO 3 /SrNb 0.1 Ti 0.9 O 3 /SrTiO 3 doped oxide-doped lanthanum manganate two-layer structure is formed on the SrTiO 3 oxide substrate 1 . The fabricated sample was cut into a 1×1cm 2 slice as a detector chip, and a φ2mm circle was etched out of La 0.7 Sr 0.3 MnO 3 at one corner of the detector core by ion beam etching technology, and the doped On the strontium niobate titanate film surface, use indium to weld the second electrode 4 with a size of about φ1mm on the edge of the strontium niobate titanate film 7, and use indium to weld a second electrode 4 with a size of about φ1mm on a corner surface of the La 0.7 Sr 0.3 MnO 3 film. An electrode 3; use two φ0.1mm copper wires as the electrode leads 6, and weld one end of the two φ0.1mm copper electrode leads 6 to the first electrode 3 and the second electrode 4 respectively with indium; select a resistance of 2Ω Make a resistor 5, and weld its two ends to the output ends of the two electrode leads 6 respectively; in this way, the detector core is prepared, put the detector core into an aluminum detector shell, and lead it out with a coaxial cable connector. output.

选用500兆示波器,用上述实施例1制备的两层氧化物薄膜材料激光探测器,测量YAG激光器输出波长1.06μm、脉宽25ps的激光脉冲,图4是用示波器储存记录探测器一个激光脉冲,所产生的电压信号波形。Select a 500M oscilloscope, use the two-layer oxide film material laser detector prepared in the above embodiment 1, and measure the laser pulse of the YAG laser output wavelength 1.06 μm and pulse width 25ps. Figure 4 is a laser pulse stored and recorded by the detector with an oscilloscope. The resulting voltage signal waveform.

电压信号的前沿上升时间仅为~1.5ns,半宽度仅为~3ns,1mJ的激光能量可上百mV的电压信号。因此,该探测器不仅是一个超快过程,而且具有很高的灵敏度。The rising time of the leading edge of the voltage signal is only ~1.5ns, the half width is only ~3ns, and the laser energy of 1mJ can reach a voltage signal of hundreds of mV. Therefore, the detector is not only an ultrafast process, but also very sensitive.

实施例2Example 2

按实施例1的结构制作,只是改用SrNb0.005Ti0.995O3代替SrNb0.1Ti0.9O3作掺杂氧化物薄膜7,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。Manufactured according to the structure of Example 1, except that SrNb 0.005 Ti 0.995 O 3 is used instead of SrNb 0.1 Ti 0.9 O 3 as the doped oxide film 7, and a laser detector with a two-layer structure of doped oxide-doped lanthanum manganate is prepared .

实施例3Example 3

按实施例1的结构制作,只是用SrNb0.5Ti0.95O3代替SrNb0.1Ti0.9O3作掺杂氧化物薄膜7,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。According to the structure of Example 1, except that SrNb 0.5 Ti 0.95 O 3 is used instead of SrNb 0.1 Ti 0.9 O 3 as the doped oxide film 7, a laser detector with a doped oxide-doped lanthanum manganate two-layer structure is prepared.

实施例4Example 4

按实施例1的结构制作,只是用BaNb0.1Ti0.9O3代替SrNb0.1Ti0.9O3作掺杂氧化物薄膜7,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。According to the structure of Example 1, except that BaNb 0.1 Ti 0.9 O 3 is used instead of SrNb 0.1 Ti 0.9 O 3 as the doped oxide film 7, a laser detector with a doped oxide-doped lanthanum manganate two-layer structure is prepared.

实施例5Example 5

按实施例1的结构制作,只是用BaIn0.1Ti0.9O3代替SrNb0.1Ti0.9O3作掺杂氧化物薄膜7,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。According to the structure of Example 1, except that BaIn 0.1 Ti 0.9 O 3 is used instead of SrNb 0.1 Ti 0.9 O 3 as the doped oxide film 7, a laser detector with a doped oxide-doped lanthanum manganate two-layer structure is prepared.

实施例6Example 6

按实施例1的结构制作,只是用La0.05Sr0.95MnO3代替La0.7Sr0.3MnO3作掺杂氧化物薄膜7,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。According to the structure of Example 1, except that La 0.05 Sr 0.95 MnO 3 is used instead of La 0.7 Sr 0.3 MnO 3 as the doped oxide film 7, a laser detector with a doped oxide-doped lanthanum manganate two-layer structure is prepared.

实施例8Example 8

按实施例1的结构制作,只是用La0.05Sr0.95MnO3代替La0.7Sr0.3MnO3作掺杂氧化物薄膜7,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。According to the structure of Example 1, except that La 0.05 Sr 0.95 MnO 3 is used instead of La 0.7 Sr 0.3 MnO 3 as the doped oxide film 7, a laser detector with a doped oxide-doped lanthanum manganate two-layer structure is prepared.

实施例9Example 9

按实施例1的结构制作,只是用La0.7Ba0.3MnO3代替La0.7Sr0.3MnO3作掺杂氧化物薄膜7,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。According to the structure of Example 1, except that La 0.7 Ba 0.3 MnO 3 is used instead of La 0.7 Sr 0.3 MnO 3 as the doped oxide film 7, a laser detector with a doped oxide-doped lanthanum manganate two-layer structure is prepared.

实施例10Example 10

按实施例1的结构制作,只是用La0.7Ga0.3MnO3代替La0.7Sr0.3MnO3作掺杂氧化物薄膜7,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。According to the structure of Example 1, except that La 0.7 Ga 0.3 MnO 3 is used instead of La 0.7 Sr 0.3 MnO 3 as the doped oxide film 7, a laser detector with a doped oxide-doped lanthanum manganate two-layer structure is prepared.

实施例11Example 11

按实施例1的结构制作,用化学腐蚀法在探测器芯的一个边把La0.7Sr0.3MnO3腐蚀出2mm宽的一条线,刻蚀显露出掺铌钛酸锶膜面,用铟在掺铌钛酸锶7的边缘焊接宽为1mm的第二电极4,制备出掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。Manufactured according to the structure of Example 1, the La 0.7 Sr 0.3 MnO 3 is etched into a line with a width of 2 mm on one side of the detector core by chemical etching, and the surface of the strontium niobium titanate film is exposed by etching, and the indium doped strontium titanate film surface is exposed. The edge of the strontium niobate titanate 7 is welded to the second electrode 4 with a width of 1mm, and a laser detector with a two-layer structure of doped oxide-doped lanthanum manganate is prepared.

实施例12Example 12

在实施例1的结构制作,用LaAlO3氧化物单晶基片代替SrTiO3氧化物单晶基片作为衬底1,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。In the fabrication of the structure in Example 1, a LaAlO 3 oxide single crystal substrate was used instead of a SrTiO 3 oxide single crystal substrate as the substrate 1 to prepare a laser detector with a doped oxide-doped lanthanum manganate two-layer structure.

实施例13Example 13

按实施例1的结构制作,用MgO单晶基片代替SrTiO3氧化物单晶基片作为衬底1,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。Manufactured according to the structure of Example 1, the SrTiO 3 oxide single crystal substrate was replaced by a MgO single crystal substrate as the substrate 1, and a laser detector with a doped oxide-doped lanthanum manganate two-layer structure was prepared.

实施例14Example 14

按实施例1的结构制作,用ZrO2单晶基片代替SrTiO3氧化物单晶基片作为衬底1,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。According to the structure of Example 1, a ZrO2 single crystal substrate is used instead of a SrTiO3 oxide single crystal substrate as the substrate 1, and a laser detector with a doped oxide-doped lanthanum manganate two-layer structure is prepared.

实施例15Example 15

按实施例1制作,用ZrO2单晶基片代替SrTiO3氧化物单晶基片作为衬底1,制备出掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。According to Example 1, a ZrO 2 single crystal substrate is used instead of a SrTiO 3 oxide single crystal substrate as the substrate 1, and a laser detector with a doped oxide-doped lanthanum manganate two-layer structure is prepared.

实施例16Example 16

按实施例11的结构制作,用化学腐蚀法在探测器芯的一个边把La0.7Sr0.3MnO3腐蚀出2mm宽的一条线,腐蚀显露出掺铌钛酸锶膜面,用磁控溅射装置,在2mm宽的La0.7Sr0.3MnO3膜面上溅射0.5mm宽的银作为第一电极3,制备出掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。Manufactured according to the structure of Example 11, the La 0.7 Sr 0.3 MnO 3 is etched into a line with a width of 2mm on one side of the detector core by chemical etching, and the surface of the niobium-doped strontium titanate film is exposed by etching, and magnetron sputtering is used. device, sputtering 0.5mm wide silver on a 2mm wide La 0.7 Sr 0.3 MnO 3 film surface as the first electrode 3, and preparing a laser detector with a two-layer structure of doped oxide-doped lanthanum manganate.

实施例17Example 17

参考图2,制备掺杂氧化物-绝缘层-掺杂锰酸镧三层结构的激光探测器,下面结合具体制备过程对本实施例的结构进行详细地说明。选用激光分子束外延设备,在2cm×2cm大小的SrTiO3衬底1上,先外延500nm厚的SrNb0.1Ti0.9O3薄膜作掺杂氧化物7,在SrNb0.1Ti0.9O3掺杂氧化物7上外延生长200nm厚的SrTiO3作绝缘层8,再在绝缘层SrTiO3薄膜8上外延生长300nm厚的La0.7Sr0.3nO3薄膜作为光响应材料层2,在钛酸锶衬底1上形成La0.7Sr0.3MnO3/SrTiO3/SrNb0.1Ti0.9O3三层结构的激光探测器样品,再将其切割成尺寸为1×0.5cm2的探测器芯片;用离子束刻蚀技术在探测器芯片的一个角把光响应材料层2La0.7Sr0.3MnO3和绝缘层8SrTiO3两层薄膜刻蚀出φ2mm的一个圆,刻蚀显露出SrNb0.1Ti0.9O3掺铌钛酸锶膜面,用铟在掺铌钛酸锶薄膜7的φ2mm圆面上焊接约为φ1mm铟的第二电极4,用铟在La0.7Sr0.3MnO3薄膜层2一个角表面处焊接约为φ1mm圆的第一电极3;用两根φ0.2mm的铜线作电极引线6,并用铟把两根φ0.1mm铜电极引线6的一端分别焊接在第一电极3和第二电极4上;选用0.01Ω的导线作电阻5,并将其两端分别与两根电极引线6的输出端焊接;这样探测器芯就制备完备,把探测器芯装入一个铜探测器外壳内,用同轴电缆接头引出输出端。Referring to FIG. 2 , a laser detector with a three-layer structure of doped oxide-insulating layer-doped lanthanum manganate is prepared. The structure of this embodiment will be described in detail below in conjunction with the specific preparation process. Using laser molecular beam epitaxy equipment, on a SrTiO 3 substrate 1 with a size of 2cm×2cm, epitaxially epitaxially 500nm thick SrNb 0.1 Ti 0.9 O 3 film as doped oxide 7, doped oxide 7 on SrNb 0.1 Ti 0.9 O 3 Epitaxially grow 200nm thick SrTiO 3 on the insulating layer 8 as the insulating layer 8, and then epitaxially grow a 300nm thick La 0.7 Sr 0.3 nO 3 thin film on the insulating layer SrTiO 3 thin film 8 as the photoresponsive material layer 2, on the strontium titanate substrate 1 Form a laser detector sample with a three-layer structure of La 0.7 Sr 0.3 MnO 3 /SrTiO 3 /SrNb 0.1 Ti 0.9 O 3 , and then cut it into a detector chip with a size of 1×0.5cm 2 ; At one corner of the detector chip, the photoresponsive material layer 2La 0.7 Sr 0.3 MnO 3 and the insulating layer 8SrTiO 3 are etched into a circle of φ2mm, and the etching reveals the SrNb 0.1 Ti 0.9 O 3 doped strontium niobium titanate film surface , use indium to weld the second electrode 4 of about φ1mm indium on the φ2mm round surface of the strontium niobate titanate thin film 7, and weld the second electrode 4 of about φ1mm circle at one corner surface of the La 0.7 Sr 0.3 MnO 3 thin film layer 2 with indium An electrode 3; use two φ0.2mm copper wires as electrode leads 6, and weld one end of the two φ0.1mm copper electrode leads 6 to the first electrode 3 and the second electrode 4 respectively with indium; select 0.01Ω The wire is used as resistance 5, and its two ends are respectively welded to the output ends of two electrode leads 6; in this way, the detector core is prepared completely, and the detector core is put into a copper detector shell, and the output is led out with a coaxial cable connector. end.

选用500兆示波器,用本实施例在钛酸锶衬底上外延生长的La0.7Sr0.3MnO3/SrTiO3/SrNb0.1Ti0.9O3三层结构激光探测器,测量YAG三倍频激光器输出波长355nm、脉宽15ps的激光脉冲。图4是用示波器储存记录探测器一个激光脉冲,所产生的电压信号波形。从图4可看出,脉冲激光所产生电压信号的前沿上升时间仅为~1.5ns,半宽度仅为~3ns,1mJ的激光能量可上百mV的电压信号。因此,三层结构的探测器和两层结构的探测器一样,不仅是一个超快过程,而且具有很高的灵敏度。Select a 500M oscilloscope, use the La 0.7 Sr 0.3 MnO 3 /SrTiO 3 /SrNb 0.1 Ti 0.9 O 3 three-layer structure laser detector epitaxially grown on the strontium titanate substrate in this embodiment, and measure the output wavelength of the YAG triple frequency laser 355nm laser pulse with a pulse width of 15ps. Figure 4 is the voltage signal waveform generated by storing and recording a laser pulse of the detector with an oscilloscope. It can be seen from Figure 4 that the rising time of the leading edge of the voltage signal generated by the pulsed laser is only ~1.5ns, the half width is only ~3ns, and the laser energy of 1mJ can reach a voltage signal of hundreds of mV. Therefore, the three-layer detector, like the two-layer detector, is not only an ultrafast process, but also has a high sensitivity.

实施例18Example 18

按实施例17的结构制作,在掺杂氧化物薄膜层7上生长一层1nm厚的LaAlO3薄膜作为绝缘层8,其余结构同实施例17,即在钛酸锶衬底1上制备La0.7Sr0.3MnO3/LaAlO3/SrNb0.1Ti0.9O3三层结构激光探测器。Made according to the structure of Example 17, a layer of 1nm thick LaAlO3 film was grown on the doped oxide film layer 7 as the insulating layer 8, and the rest of the structure was the same as that of Example 17, that is, La0.7 was prepared on the strontium titanate substrate 1. Sr 0.3 MnO 3 /LaAlO 3 /SrNb 0.1 Ti 0.9 O 3 three-layer laser detector.

实施例19Example 19

按实施例17的结构制作,用500nm厚的ZrO薄膜作为绝缘层8,即在钛酸锶衬底1上制备La0.7Sr0.3MnO3/ZrO/SrNb0.1Ti0.9O3三层结构激光探测器。According to the structure of Example 17, a 500nm thick ZrO film is used as the insulating layer 8, that is, a laser detector with a three-layer structure of La 0.7 Sr 0.3 MnO 3 /ZrO/SrNb 0.1 Ti 0.9 O 3 is prepared on the strontium titanate substrate 1 .

实施例20Example 20

按实施例17的结构制作,用50nm厚的MgO薄膜作绝缘层8,即在钛酸锶衬底1上制备La0.7Sr0.3MnO3/MgO/SrNb0.1Ti0.9O3三层结构激光探测器。According to the structure of Example 17, a 50nm thick MgO film is used as the insulating layer 8, that is, a laser detector with a three-layer structure of La 0.7 Sr 0.3 MnO 3 /MgO/SrNb 0.1 Ti 0.9 O 3 is prepared on the strontium titanate substrate 1 .

实施例21Example 21

采用脉冲激光制膜方法,按实施例17的结构制作,制作在钛酸锶衬底上外延生长的La0.7Sr0.3MnO3/SrTiO3/SrNb0.1Ti0.9O3三层结构激光探测器。Using the pulsed laser film forming method, according to the structure of Example 17, a laser detector with a three-layer structure of La 0.7 Sr 0.3 MnO 3 /SrTiO 3 /SrNb 0.1 Ti 0.9 O 3 epitaxially grown on a strontium titanate substrate was fabricated.

实施例22Example 22

采用磁控溅射制膜方法,按实施例17的结构制作,制作在钛酸锶衬底上外延生长的La0.7Sr0.3MnO3/SrTiO3/SrNb0.1Ti0.9O3三层结构激光探测器。Using the magnetron sputtering film-forming method, according to the structure of Example 17, a laser detector with a three-layer structure of La 0.7 Sr 0.3 MnO 3 /SrTiO 3 /SrNb 0.1 Ti 0.9 O 3 epitaxially grown on a strontium titanate substrate was fabricated .

实施例23Example 23

按实施例17的结构制作,用400nm厚的La0.7Sr0.3MnO3代替500nm厚的SrNb0.1Ti0.9O3薄膜作掺杂氧化物7,在钛酸锶衬底1上制备La0.7Sr0.3MnO3/SrTiO3/La0.7Sr0.3MnO3三层结构激光探测器。Fabricate according to the structure of Example 17, replace the 500nm thick SrNb 0.1 Ti 0.9 O 3 thin film with 400nm thick La 0.7 Sr 0.3 MnO 3 as the doped oxide 7, and prepare La 0.7 Sr 0.3 MnO on the strontium titanate substrate 1 3 /SrTiO 3 /La 0.7 Sr 0.3 MnO 3 three-layer structure laser detector.

实施例24Example 24

按实施例17的结构制作,用400nm厚的BaNb0.3Ti0.7O3代替500nm厚的SrNb0.1Ti0.9O3薄膜作掺杂氧化物7,在钛酸锶衬底1上制备La0.7Sr0.3MnO3/SrTiO3/BaNb0.3Ti0.7O3三层结构激光探测器。Fabricate according to the structure of Example 17, replace the 500nm thick SrNb 0.1 Ti 0.9 O 3 thin film with 400nm thick BaNb 0.3 Ti 0.7 O 3 as the doped oxide 7, and prepare La 0.7 Sr 0.3 MnO on the strontium titanate substrate 1 3 /SrTiO 3 /BaNb 0.3 Ti 0.7 O 3 three-layer structure laser detector.

实施例25Example 25

参考图3,制备掺杂氧化物-氧化物衬底-掺杂锰酸镧三层结构的激光探测器,结合下面具体制备过程,对本实施例的结构进行详细地说明。选用激光分子束外延设备,在双面抛光的2英寸大小的SrTiO3衬底1的一个面上,外延500nm厚的SrNb0.3Ti0.7O3薄膜作掺杂氧化物7,在SrTiO3衬底1的另一个面上外延生长300nm厚的La0.8Ca0.2MnO3薄膜光响应材料层2,形成La0.8Ca0.2MnO3/SrTiO3/SrNb0.3Ti0.7O3掺杂氧化物-氧化物衬底-掺杂锰酸镧三层结构的激光探测器样品,将其切割成尺寸为1×1cm2的探测器芯片。用铟在SrNb0.3Ti0.7O3掺铌钛酸锶7的面上焊接约为φ2mm的第二电极4,用铟在La0.8Ca0.2MnO3薄膜光响应层2一个角表面处焊接约为φ1mm的第一电极3;用两根φ0.2mm的铜线作电极引线6,并用铟把两根φ0.1mm铜电极引线6的一端分别焊接在第一电极3和第二电极4上;选用1KΩ的电阻作电阻5,并将其两端分别与两根电极引线6的输出端焊接;这样探测器芯就制备完备,把探测器芯装入一个铜探测器外壳内,用同轴电缆接头引出输出端。Referring to FIG. 3 , a laser detector with a three-layer structure of doped oxide-oxide substrate-doped lanthanum manganate is prepared, and the structure of this embodiment is described in detail in conjunction with the following specific preparation process. Using laser molecular beam epitaxy equipment, epitaxy a 500nm-thick SrNb 0.3 Ti 0.7 O 3 film on one side of a double-sided polished 2-inch SrTiO 3 substrate 1 as doped oxide 7, and on the SrTiO 3 substrate 1 Epitaxially grow a 300nm-thick La 0.8 Ca 0.2 MnO 3 thin film photoresponsive material layer 2 on the other surface of the , forming La 0.8 Ca 0.2 MnO 3 /SrTiO 3 /SrNb 0.3 Ti 0.7 O 3 doped oxide-oxide substrate- A laser detector sample doped with a three-layer structure of lanthanum manganate was cut into a detector chip with a size of 1×1cm 2 . Use indium to weld the second electrode 4 of about φ2mm on the surface of SrNb 0.3 Ti 0.7 O 3 doped strontium niobium titanate 7, and use indium to weld about φ1mm at one corner surface of the La 0.8 Ca 0.2 MnO 3 thin film photoresponsive layer 2 the first electrode 3; use two φ0.2mm copper wires as the electrode leads 6, and weld one end of the two φ0.1mm copper electrode leads 6 to the first electrode 3 and the second electrode 4 respectively with indium; select 1KΩ The resistor is used as the resistor 5, and its two ends are respectively welded to the output ends of the two electrode leads 6; in this way, the detector core is prepared completely, and the detector core is put into a copper detector shell, and the coaxial cable connector is used to lead out output.

实施例26Example 26

按实施例25的结构制作,选用LaAlO3氧化物单晶基片作为衬底1,在用LaAlO3衬底1上制备La0.8Ca0.2MnO3/LaAlO3/SrNb0.3Ti0.7O3掺杂氧化物-氧化物衬底-掺杂锰酸镧三层结构的激光探测器。According to the structure of Example 25, the LaAlO 3 oxide single crystal substrate was selected as the substrate 1, and La 0.8 Ca 0.2 MnO 3 /LaAlO 3 /SrNb 0.3 Ti 0.7 O 3 doped oxide substrate was prepared on the LaAlO 3 substrate 1. A laser detector with a three-layer structure of object-oxide substrate-doped lanthanum manganate.

实施例27Example 27

按实施例25的结构制作,用MgO代替SrTiO3作氧化物衬底1,在用MgO衬底1上制备La0.8Ca0.2MnO3/MgO/SrNb0.3Ti0.7O3掺杂氧化物-氧化物衬底-掺杂锰酸镧三层结构的激光探测器。According to the structure of Example 25, MgO is used instead of SrTiO 3 as oxide substrate 1, and La 0.8 Ca 0.2 MnO 3 /MgO/SrNb 0.3 Ti 0.7 O 3 doped oxide-oxide is prepared on MgO substrate 1 Substrate-doped lanthanum manganate three-layer laser detector.

实施例28Example 28

按实施例25的结构制作,用400nm厚的BaNb0.3Ti0.7O3代替500nm厚的SrNb0.3Ti0.7O3薄膜作掺杂氧化物7,制备La0.8Ca0.2MnO3/SrTiO3/BaNb0.3Ti0.7O3掺杂氧化物-氧化物衬底-掺杂锰酸镧三层结构的激光探测器样品。According to the structure of Example 25, use 400nm thick BaNb 0.3 Ti 0.7 O 3 instead of 500nm thick SrNb 0.3 Ti 0.7 O 3 film as doped oxide 7 to prepare La 0.8 Ca 0.2 MnO 3 /SrTiO 3 /BaNb 0.3 Ti 0.7 O 3 doped oxide-oxide substrate-doped lanthanum manganate triple layer structure laser detector sample.

实施例29Example 29

按实施例25的结构制作,用200nm厚的La0.8Ca0.2MnO3代替500nm厚的

Figure C20041007117400131
薄膜作掺杂氧化物7,制备
Figure C20041007117400132
/SrTiO3/掺杂氧化物-氧化物衬底-掺杂锰酸镧三层结构的激光探测器样品。Make according to the structure of embodiment 25, replace 500nm thick La 0.8 Ca 0.2 MnO 3 with 200nm thick
Figure C20041007117400131
thin film as doped oxide 7, prepared
Figure C20041007117400132
/SrTiO 3 / Laser detector sample with doped oxide-oxide substrate-doped lanthanum manganate triple layer structure.

Claims (12)

1. 一种利用氧化物多层膜材料制作的激光探测器,包括一氧化物单晶基片的衬底(1)、光响应材料层(2),第一电极(3)、第二电极(4)和电极引线(6);其特征在于:还包括一外延生长的掺杂氧化物薄膜(7),该掺杂氧化物薄膜(7)设置在衬底(1)和光响应材料层(2)之间;该掺杂氧化物薄膜为掺杂钛酸锶或掺杂钛酸钡薄膜(7),光响应材料层(2)为掺杂锰酸镧薄膜层,形成掺杂氧化物-掺杂锰酸镧两层结构的芯片;第一电极(3)设置在掺杂锰酸镧薄膜(2)上,第二电极(4)设置在掺杂氧化物薄膜(7)上;所述的电极引线(6)为2根,其中一根电极引线(6)的一端与第一电极(3)连接,另一根电极引线(6)的一端和第二电极(4)连接,该两根电极引线(6)的另一端为信号输出端。1. A laser detector made of an oxide multilayer film material, comprising a substrate (1) of an oxide single crystal substrate, a photoresponsive material layer (2), a first electrode (3), and a second electrode (4) and electrode leads (6); it is characterized in that: it also includes an epitaxially grown doped oxide film (7), and the doped oxide film (7) is arranged on the substrate (1) and the photoresponsive material layer ( 2); the doped oxide film is a doped strontium titanate or doped barium titanate film (7), and the photoresponsive material layer (2) is a doped lanthanum manganate film layer, forming a doped oxide- A chip with a two-layer structure doped with lanthanum manganate; the first electrode (3) is arranged on the doped lanthanum manganate film (2), and the second electrode (4) is arranged on the doped oxide film (7); the There are two electrode leads (6), one end of one electrode lead (6) is connected to the first electrode (3), and one end of the other electrode lead (6) is connected to the second electrode (4). The other end of the electrode lead wire (6) is a signal output end. 2. 一种利用氧化物多层膜材料制作的激光探测器,包括一氧化物单晶基片的衬底(1)、光响应材料层(2),第一电极(3)、第二电极(4)和电极引线(6);其特征在于:还包括在氧化物单晶基片衬底(1)上外延生长一掺杂氧化物薄膜层(7),所述的掺杂氧化物薄膜层(7)为掺杂钛酸锶或掺杂钛酸钡薄膜,在所述的掺杂氧化物薄膜层(7)上外延生长一绝缘层(8),作为光响应材料层(2)的掺杂锰酸镧薄膜外延生长在绝缘层(8)上,形成掺杂氧化物-绝缘层-掺杂锰酸镧三层结构的芯片;第一电极(3)设置在上面的掺杂锰酸镧薄膜(2)上,第二电极(4)设置在下面的掺杂氧化物薄膜(7)上;所述的电极引线(6)为2根,其中一根电极引线(6)的一端与第一电极(3)连接,另一根电极引线(6)的一端和第二电极(4)连接,该两根电极引线(6)的另一端为信号输出端;电阻(5)的两端分别和电极引线(6)的输出端连接。2. A laser detector made of an oxide multilayer film material, comprising a substrate (1) of an oxide single crystal substrate, a photoresponsive material layer (2), a first electrode (3), and a second electrode (4) and electrode lead wire (6); It is characterized in that: also comprise epitaxially growing a doping oxide thin film layer (7) on the oxide single crystal substrate substrate (1), described doping oxide thin film The layer (7) is doped strontium titanate or doped barium titanate thin film, and an insulating layer (8) is epitaxially grown on the doped oxide thin film layer (7), as the photoresponsive material layer (2) The doped lanthanum manganate film is epitaxially grown on the insulating layer (8), forming a chip with a three-layer structure of doped oxide-insulating layer-doped lanthanum manganate; the first electrode (3) is arranged on the doped manganese acid On the lanthanum film (2), the second electrode (4) is arranged on the doped oxide film (7) below; the electrode leads (6) are two, and one end of one electrode lead (6) is connected to the The first electrode (3) is connected, and one end of another electrode lead wire (6) is connected with the second electrode (4), and the other end of the two electrode lead wires (6) is a signal output end; the two ends of the resistance (5) They are respectively connected to the output ends of the electrode leads (6). 3. 一种利用氧化物多层膜材料制作的激光探测器,包括一氧化物单晶基片的衬底(1)、光响应材料层(2),第一电极(3)、第二电极(4)和电极引线(6);其特征在于:还包括在氧化物单晶基片衬底(1)的一面上外延生长一掺杂氧化物薄膜层(7),所述的掺杂氧化物薄膜层(7)为掺杂钛酸锶或掺杂钛酸钡薄膜;在该氧化物单晶基片衬底(1)的另一面上外延生长一作为光响应材料层(2)的掺杂锰酸镧薄膜,形成掺杂氧化物-氧化物衬底-掺杂锰酸镧三层结构的芯片;第一电极(3)设置在上面的掺杂锰酸镧薄膜(2)上,第二电极(4)设置在下面的掺杂氧化物薄膜(7)上,所述的电极引线(6)为2根,其中一根电极引线(6)的一端与第一电极(3)连接,另一根电极引线(6)的一端和第二电极(4)连接,该两根电极引线(6)的另一端为信号输出端;电阻(5)的两端分别和电极引线(6)的输出端连接。3. A laser detector made of an oxide multilayer film material, comprising a substrate (1) of an oxide single crystal substrate, a photoresponsive material layer (2), a first electrode (3), and a second electrode (4) and electrode leads (6); it is characterized in that: also comprise epitaxially growing a doping oxide thin film layer (7) on one side of oxide single crystal base substrate (1), described doping oxide Thin film layer (7) is doped strontium titanate or doped barium titanate thin film; on the other side of the oxide single crystal substrate (1) epitaxially grows a doped as photoresponsive material layer (2) The mixed lanthanum manganate film forms a chip with a three-layer structure of doped oxide-oxide substrate-doped lanthanum manganate; the first electrode (3) is arranged on the upper doped lanthanum manganate film (2), and the second The two electrodes (4) are arranged on the doped oxide film (7) below, and there are two electrode leads (6), one end of one electrode lead (6) is connected to the first electrode (3), One end of another electrode lead wire (6) is connected to the second electrode (4), and the other end of the two electrode lead wires (6) is a signal output end; the two ends of the resistor (5) are respectively connected to the electrode lead wire (6) output connection. 4. 按权利要求1所述的利用氧化物多层膜材料制作的激光探测器,其特征在于:还包括一电阻(5);电阻(5)的两端分别和两根电极引线(6)的信号输出端连接。4. The laser detector utilizing oxide multilayer film material to make according to claim 1, is characterized in that: also comprise a resistance (5); The two ends of resistance (5) and two electrode leads (6) respectively The signal output terminal connection. 5. 按权利要求1、2、3、或4所述的任一项利用氧化物多层膜材料制作的激光探测器,其特征在于:所述的氧化物单晶基片衬底为钛酸锶、钛酸钡、铝酸镧、氧化镁或氧化锆。5. According to any one of claim 1, 2, 3, or 4, the laser detector made of oxide multilayer film material is characterized in that: the oxide single crystal substrate substrate is titanic acid Strontium, barium titanate, lanthanum aluminate, magnesium oxide or zirconium oxide. 6. 按权利要求1、2、3、或4所述的任一项利用氧化物多层膜材料制作的激光探测器,其特征在于:所述的掺杂锰酸镧薄膜层是R1-xAxMnO3,其中R为La;A为Sr、Ca、Ba、Pb、Sn、Te、Nb、Sb、Ta、Ce或Pr;其x值为0.05~0.4;掺杂锰酸镧薄膜(2)的厚度为0.8nm~2μm。6. according to any one of claim 1, 2, 3, or 4, the laser detector utilizing oxide multilayer film material to make, it is characterized in that: the described doped lanthanum manganate film layer is R 1- x A x MnO 3 , where R is La; A is Sr, Ca, Ba, Pb, Sn, Te, Nb, Sb, Ta, Ce or Pr; its x value is 0.05-0.4; doped lanthanum manganate film ( 2) The thickness is 0.8 nm to 2 μm. 7. 按权利要求2所述的利用氧化物多层膜材料制作的激光探测器,其特征在于:所述的绝缘层(7)为铝酸镧、钛酸锶、钛酸钡、氧化锆、锰酸镧或氧化镁;绝缘层(7)的厚度为10nm~500nm。7. The laser detector utilizing oxide multilayer film material to make according to claim 2, characterized in that: the insulating layer (7) is lanthanum aluminate, strontium titanate, barium titanate, zirconium oxide, Lanthanum manganate or magnesium oxide; the thickness of the insulating layer (7) is 10nm-500nm. 8. 按权利要求1、2、3、或4所述的任一项利用氧化物多层膜材料制作的激光探测器,其特征在于:所述的掺杂氧化物薄膜层是掺杂钛酸锶薄膜或掺杂钛酸钡薄膜,其中掺杂的BaTiO3为n型钛酸钡BaAxTi1-xO3或Ba1-xLaxTiO3薄膜材料,A是Nb或Ta;8. According to any one of claim 1, 2, 3, or 4, the laser detector made of oxide multilayer film material is characterized in that: the doped oxide film layer is doped titanic acid Strontium thin film or doped barium titanate thin film, wherein doped BaTiO 3 is n-type barium titanate BaA x Ti 1-x O 3 or Ba 1-x La x TiO 3 thin film material, A is Nb or Ta; 或者掺杂的BaTiO3为p型钛酸钡BaBxTi1-xO3,B是In、Ga或Mn,x的取值范围为0.005~0.5;Or doped BaTiO 3 is p-type barium titanate BaB x Ti 1-x O 3 , B is In, Ga or Mn, and the value of x ranges from 0.005 to 0.5; 其中掺杂的SrTiO3为n型钛酸锶SrAxTi1-xO3或Sr1-xLaxTiO3薄膜材料,A是Nb或Ta;The doped SrTiO 3 is n-type strontium titanate SrA x Ti 1-x O 3 or Sr 1-x La x TiO 3 film material, A is Nb or Ta; 或者掺杂的SrTiO3为p型钛酸锶SrBxTi1-xO3,B是In、Ga或Mn,x的取值范围为0.005~0.5。Alternatively, the doped SrTiO 3 is p-type strontium titanate SrB x Ti 1-x O 3 , B is In, Ga or Mn, and x ranges from 0.005 to 0.5. 9. 按权利要求2或3所述的任一项利用氧化物多层膜材料制作的激光探测器,其特征在于:所述的掺杂锰酸镧La1-xAxMnO3,A为Sr、Ca、Ba、Pb、Sn、Te、Nb、Sb、Ta、Ce或Pr,其x值为0.05~0.4。9. According to any one of claim 2 or 3, the laser detector made of oxide multilayer film material is characterized in that: the doped lanthanum manganate La 1-x A x MnO 3 , A is For Sr, Ca, Ba, Pb, Sn, Te, Nb, Sb, Ta, Ce or Pr, the value of x is 0.05-0.4. 10. 按权利要求1、2或3所述的任意一项利用氧化物多层膜材料制作的激光探测器,其特征在于:所述的第一电极(3)为用铟或焊锡直接焊接,或用真空镀膜或磁控溅射方法作成一个点、一条线,或是围绕掺杂锰酸镧薄膜边缘的一个圈的金、银或铝电极。10. According to any one of claim 1, 2 or 3, the laser detector made of oxide multilayer film material is characterized in that: the first electrode (3) is directly welded with indium or solder, Or use vacuum coating or magnetron sputtering to make a point, a line, or a circle of gold, silver or aluminum electrodes around the edge of the doped lanthanum manganate film. 11. 按权利要求1、2或3所述的任意一项利用氧化物多层膜材料制作的激光探测器,其特征在于:所述的第二电极(4)连接在掺杂氧化物薄膜上,采用化学腐蚀方法、离子束刻蚀方法或在制膜时用档板在样品的边缘显露出掺杂氧化物薄膜的一个点,露出一条边,或留出外沿的一个圈,用于连接第二电极(4);第二电极(4)用铟或焊锡直接焊接,或用真空镀膜或磁控溅射方法蒸镀金、银或铝电极。11. According to any one of claims 1, 2 or 3, the laser detector made of oxide multilayer film material is characterized in that: the second electrode (4) is connected to the doped oxide film , using chemical etching method, ion beam etching method or using a baffle to expose a point of the doped oxide film on the edge of the sample during film formation, exposing an edge, or leaving a ring on the outer edge for connection The second electrode (4); the second electrode (4) is directly welded with indium or solder, or evaporated with gold, silver or aluminum electrodes by vacuum coating or magnetron sputtering. 12. 按权利要求4所述的利用氧化物多层膜材料制作的激光探测器,其特征在于:电阻(5)其阻值为0.01~1MΩ。12. The laser detector made of oxide multilayer film material according to claim 4, characterized in that: the resistance value of the resistor (5) is 0.01-1 MΩ.
CNB2004100711743A 2004-07-30 2004-07-30 Laser detector made of oxide multilayer film material Expired - Fee Related CN100412518C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100711743A CN100412518C (en) 2004-07-30 2004-07-30 Laser detector made of oxide multilayer film material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100711743A CN100412518C (en) 2004-07-30 2004-07-30 Laser detector made of oxide multilayer film material

Publications (2)

Publication Number Publication Date
CN1727854A CN1727854A (en) 2006-02-01
CN100412518C true CN100412518C (en) 2008-08-20

Family

ID=35927247

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100711743A Expired - Fee Related CN100412518C (en) 2004-07-30 2004-07-30 Laser detector made of oxide multilayer film material

Country Status (1)

Country Link
CN (1) CN100412518C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2012120083A (en) * 2009-10-16 2013-11-27 Конинклейке Филипс Электроникс Н.В. PHOTOSENSITIVE LAYER AND LAYER ASSEMBLY
CN101871818B (en) * 2010-06-25 2012-05-23 清华大学 Infrared detector
CN115894025B (en) * 2022-11-10 2023-07-04 微集电科技(苏州)有限公司 Lanthanum manganate ceramic-based light absorber and application and preparation method thereof
CN115626825B (en) * 2022-11-10 2023-05-09 江苏大学 Alumina/lanthanide perovskite ceramic composite light absorber and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85200313U (en) * 1985-04-01 1985-12-20 中国科学院物理研究所 High sensitive, fast-response, calorimetry type and pulse laser detector
CN2050161U (en) * 1989-04-20 1989-12-27 吉林大学 Passing type ag-bi film laser detector
US5621238A (en) * 1994-02-25 1997-04-15 The United States Of America As Represented By The Secretary Of The Air Force Narrow band semiconductor detector
US20020121647A1 (en) * 2001-03-02 2002-09-05 Taylor Geoff W. Modulation doped thyristor and complementary transistor combination for a monolithic optoelectronic integrated circuit
CN2567553Y (en) * 2002-04-16 2003-08-20 中国科学院上海技术物理研究所 Three-band laser probe for photoelectric laser detecting system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85200313U (en) * 1985-04-01 1985-12-20 中国科学院物理研究所 High sensitive, fast-response, calorimetry type and pulse laser detector
CN2050161U (en) * 1989-04-20 1989-12-27 吉林大学 Passing type ag-bi film laser detector
US5621238A (en) * 1994-02-25 1997-04-15 The United States Of America As Represented By The Secretary Of The Air Force Narrow band semiconductor detector
US20020121647A1 (en) * 2001-03-02 2002-09-05 Taylor Geoff W. Modulation doped thyristor and complementary transistor combination for a monolithic optoelectronic integrated circuit
CN2567553Y (en) * 2002-04-16 2003-08-20 中国科学院上海技术物理研究所 Three-band laser probe for photoelectric laser detecting system

Also Published As

Publication number Publication date
CN1727854A (en) 2006-02-01

Similar Documents

Publication Publication Date Title
US7608467B2 (en) Switchable resistive perovskite microelectronic device with multi-layer thin film structure
JP4822287B2 (en) Nonvolatile memory device
US6204139B1 (en) Method for switching the properties of perovskite materials used in thin film resistors
US9349947B2 (en) Methods of using a two terminal multi-layer thin film resistance switching device with a diffusion barrier
US8687401B2 (en) Ferro-resistive random access memory (Ferro-RRAM), operation method and manufacturing method thereof
EP2147471B1 (en) Three-terminal metal-insulator transition switch, switching system including the same, and method of controlling metal-insulator transition of the same
CN100412518C (en) Laser detector made of oxide multilayer film material
US7932505B2 (en) Perovskite transition metal oxide nonvolatile memory element
CN100422702C (en) Fast Response Broadband Laser Detector Made of Heterojunction Materials
Hsu et al. Modification of OFF-and ON-resistances of SrTiO x WORM memories by thermal annealing processes
CN100437055C (en) Fast response broad band laser detector made by oxide heterojunction material
US6573526B1 (en) Single electron tunneling transistor having multilayer structure
CN100458381C (en) Super-fast wide-wave-band optical detector made by by doped oxide and silicon heterojunction material
CN100593110C (en) Photoelectric detector with high sensitivity
CN100458382C (en) Quick-responding high-sensitivity ultraviolet detector made by calcium-titanium oxide monocrystal material
JP6813844B2 (en) Tunnel junction element and non-volatile memory element
CN101261158B (en) Photodetector
CN100573060C (en) A kind of quick response broadband optical detector
US8409879B2 (en) Method of using a buffered electric pulse induced resistance device
Bian et al. Photovoltaic and resistance switching properties of NiO/Pb0. 92La0. 08 (Zr0. 52Ti0. 48) O3/LaNiO3
US20110151617A1 (en) Memory and methods of forming the same to enhance scalability of non-volatile two-terminal memory cells
CN110440831A (en) A kind of sensor and preparation method thereof
CN101493356A (en) Medium-infrared-to-far-infrared detector
CN101170147A (en) A detector for light from deep ultraviolet to far infrared and its preparation method
GAGOU et al. Chap. 26-Resistance Switching Effect in Octahedral framework oxide

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080820

Termination date: 20100730