CN100412518C - Laser detector made of oxide multilayer film material - Google Patents
Laser detector made of oxide multilayer film material Download PDFInfo
- Publication number
- CN100412518C CN100412518C CNB2004100711743A CN200410071174A CN100412518C CN 100412518 C CN100412518 C CN 100412518C CN B2004100711743 A CNB2004100711743 A CN B2004100711743A CN 200410071174 A CN200410071174 A CN 200410071174A CN 100412518 C CN100412518 C CN 100412518C
- Authority
- CN
- China
- Prior art keywords
- doped
- oxide
- electrode
- film
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims abstract description 44
- 239000010408 film Substances 0.000 claims abstract description 87
- HBAGRTDVSXKKDO-UHFFFAOYSA-N dioxido(dioxo)manganese lanthanum(3+) Chemical compound [La+3].[La+3].[O-][Mn]([O-])(=O)=O.[O-][Mn]([O-])(=O)=O.[O-][Mn]([O-])(=O)=O HBAGRTDVSXKKDO-UHFFFAOYSA-N 0.000 claims abstract description 61
- 239000000758 substrate Substances 0.000 claims abstract description 58
- 239000013078 crystal Substances 0.000 claims abstract description 24
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000010409 thin film Substances 0.000 claims abstract description 23
- 229910002113 barium titanate Inorganic materials 0.000 claims abstract description 15
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 10
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910002367 SrTiO Inorganic materials 0.000 claims description 25
- 229910052738 indium Inorganic materials 0.000 claims description 18
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 14
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 12
- 239000000395 magnesium oxide Substances 0.000 claims description 12
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 6
- -1 lanthanum aluminate Chemical class 0.000 claims description 5
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052712 strontium Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 238000003486 chemical etching Methods 0.000 claims description 4
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- 229910052788 barium Inorganic materials 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 238000010884 ion-beam technique Methods 0.000 claims description 3
- 229910052745 lead Inorganic materials 0.000 claims description 3
- 229910000679 solder Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 238000001771 vacuum deposition Methods 0.000 claims description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims 10
- 239000011572 manganese Substances 0.000 claims 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims 2
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical group O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 claims 2
- 229910001928 zirconium oxide Inorganic materials 0.000 claims 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims 1
- 239000002253 acid Substances 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 239000010936 titanium Substances 0.000 description 40
- 229910002182 La0.7Sr0.3MnO3 Inorganic materials 0.000 description 22
- 239000010949 copper Substances 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 229910002180 La0.8Ca0.2MnO3 Inorganic materials 0.000 description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- VIUKNDFMFRTONS-UHFFFAOYSA-N distrontium;niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Sr+2].[Sr+2].[Nb+5].[Nb+5] VIUKNDFMFRTONS-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- WFPQISQTIVPXNY-UHFFFAOYSA-N niobium strontium Chemical compound [Sr][Nb] WFPQISQTIVPXNY-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- LBSANEJBGMCTBH-UHFFFAOYSA-N manganate Chemical compound [O-][Mn]([O-])(=O)=O LBSANEJBGMCTBH-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- 230000007123 defense Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 230000005616 pyroelectricity Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910002244 LaAlO3 Inorganic materials 0.000 description 1
- 229910002370 SrTiO3 Inorganic materials 0.000 description 1
- CITQPMVCXGCDCU-UHFFFAOYSA-N [O-2].[Ti+4].[Sr+2].[Nb+5] Chemical compound [O-2].[Ti+4].[Sr+2].[Nb+5] CITQPMVCXGCDCU-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Images
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
本发明涉及利用氧化物多层膜材料制作的快响应宽频段激光探测器,包括:一由在氧化物单晶基片的衬底的一面上外延生长掺杂氧化物和光响应材料层作成的芯片,掺杂氧化物为外延生长在氧化物单晶衬底上的掺杂钛酸锶或掺杂钛酸钡;光响应层为掺杂锰酸镧薄膜层;第一电极设置在掺杂锰酸镧薄膜上,第二电极设置在掺杂氧化物上,两根电极引线的一端分别与第一电极和第二电极连接,电极引线的另一端是信号输出端。该探测器为光生伏特型光电探测器,当光照射后直接产生电压信号,不需要任何辅助的电源和电子电路。其响应波段从紫外到远红外,可响应飞秒脉宽的激光脉冲,激光脉冲产生电压脉冲的前沿小于1.5ns,半宽度小于2ns,脉冲全宽度仅为几个ns。
The invention relates to a fast-response broadband laser detector made of oxide multilayer film material, comprising: a chip made by epitaxially growing doped oxide and photoresponsive material layers on one side of the substrate of an oxide single crystal substrate , the doped oxide is doped strontium titanate or doped barium titanate epitaxially grown on the oxide single crystal substrate; the photoresponsive layer is a doped lanthanum manganate thin film layer; On the lanthanum thin film, the second electrode is arranged on the doped oxide, one end of the two electrode leads is respectively connected to the first electrode and the second electrode, and the other end of the electrode lead is a signal output end. The detector is a photovoltaic photodetector, which directly generates a voltage signal when light is irradiated, without any auxiliary power supply and electronic circuit. Its response band ranges from ultraviolet to far infrared, and can respond to laser pulses with femtosecond pulse width. The leading edge of the voltage pulse generated by the laser pulse is less than 1.5ns, the half width is less than 2ns, and the full pulse width is only a few ns.
Description
技术领域 technical field
本发明涉及一种激光探测器,特别涉及一种利用氧化物多层膜材料制作的快响应宽频段激光探测器。The invention relates to a laser detector, in particular to a fast-response broadband laser detector made of oxide multilayer film material.
背景技术 Background technique
对于激光能量、功率、脉宽和波形的探测,不仅对激光器件和科学研究是非常重要的,而且在军事、国防、生产和生活中也有非常广泛的应用。尽管人们已发展了如热电、光电、热释电等多种不同类型的激光探测器,但对于新型激光探测器的工作仍是人们感兴趣和一直在进行的工作,本申请人也在这方面获得以下几项激光探测器的专利,例如专利号:ZL89202869.6;专利号:ZL89220541.5;专利号:ZL90202337.3,专利号:ZL90205920.3;但是上述几项专利的探测器均采用压电材料制作的,该探测器光响应还不够快,响应波段也还不够宽。The detection of laser energy, power, pulse width and waveform is not only very important for laser devices and scientific research, but also has a very wide range of applications in military, national defense, production and life. Although people have developed many different types of laser detectors such as pyroelectricity, photoelectricity, pyroelectricity, etc., the work for novel laser detectors is still people's interest and ongoing work, and the applicant is also in this regard Obtained the following patents for laser detectors, such as patent number: ZL89202869.6; patent number: ZL89220541.5; patent number: ZL90202337.3, patent number: ZL90205920.3; Made of electrical materials, the photoresponse of the detector is not fast enough, and the response band is not wide enough.
对于掺杂锰酸镧材料的磁电阻特性人们已研究很多,近来人们也观测到掺杂锰酸镧薄膜的光电特性(如文献1、Time dependence of laser-inducedthermoelectric voltages in La1-xCaxMnO3 and YBa2Cu3O7-δthin films,P.X.Zhanget al.,Appl.Phys.Lett.,Vol.84,No.21,4026(2002)),但其光响应的脉宽是ms量级,因此无法用于探测和测量激光脉冲宽度小于ms的脉冲激光波形。The magnetoresistance properties of doped lanthanum manganate materials have been studied a lot, and recently people have also observed the photoelectric properties of doped lanthanum manganate films (such as
发明内容 Contents of the invention
本发明的目的在于克服上述探测器光响应速度慢和响应波段窄的缺陷;提供一种当光照射后直接产生电压信号,不需要任何辅助的电源和电子电路;并且可以探测激光的能量、功率和波形,其响应波段从紫外到远红外,可响应飞秒脉宽的激光脉冲,产生电压脉冲的半宽度可小于2ns,脉冲全宽度可达几个ns的利用氧化物多层膜材料制作的快响应宽频段激光探测器。The object of the present invention is to overcome the defects of slow photoresponse speed and narrow response band of the above-mentioned detector; provide a voltage signal directly generated after light irradiation, without any auxiliary power supply and electronic circuit; and can detect the energy and power of the laser And waveform, its response band is from ultraviolet to far infrared, it can respond to laser pulse with femtosecond pulse width, the half width of voltage pulse can be less than 2ns, and the full width of pulse can reach several ns. It is made of oxide multilayer film material Fast response broadband laser detector.
本发明的目的是这样实现的:The purpose of the present invention is achieved like this:
本发明提供的利用氧化物多层膜材料制作的激光探测器,包括:一氧化物单晶基片为衬底1、光响应材料层2、第一电极3、第二电极4和电极引线6;其特征在于:还包括一外延生长的掺杂氧化物薄膜7,该掺杂氧化物薄膜7设置在衬底1和光响应材料层2之间,该掺杂氧化物薄膜为掺杂钛酸锶或掺杂钛酸钡薄膜7,光响应材料层2为掺杂锰酸镧薄膜层,形成掺杂氧化物-掺杂锰酸镧两层结构的芯片;第一电极3设置在掺杂锰酸镧薄膜2上,第二电极4设置在掺杂氧化物薄膜7上;所述的电极引线6为2根,其中一根电极引线6的一端与第一电极3连接,另一根电极引线6的一端和第二电极4连接,该两根电极引线6的另一端为信号输出端。还包括一金属外壳,将上述芯片安装在一个金属外壳内,金属外壳对外界的电磁干扰起屏蔽作用。The laser detector made of oxide multilayer film material provided by the present invention includes: an oxide single crystal substrate is a
还包括一电阻5,该电阻5的两端分别和两根电极引线6的输出端连接。所述的电阻5,主要是为了提高响应速度,由于异质结的结构具有电容特性,因此电阻5对激光照射后产生的电压起放电作用,其阻值为0.01~1MΩ。It also includes a
还包括在掺杂氧化物薄膜层7上外延生长一绝缘层8,掺杂锰酸镧薄膜2外延生长在绝缘层8上,形成掺杂氧化物-绝缘层-掺杂锰酸镧氧化物异质结。It also includes epitaxially growing an
还包括在衬底1的一面外延生长一层掺杂钛酸锶或掺杂钛酸钡或掺杂锰酸镧作为掺杂氧化物薄膜7,在氧化物单晶基片为底1的另一面外延生长掺杂锰酸镧薄膜,形成掺杂氧化物-氧化物衬底-掺杂锰酸镧氧化物异质结。It also includes growing a layer of doped strontium titanate or doped barium titanate or doped lanthanum manganate epitaxially on one side of the
所述的氧化物单晶基片衬底1包括:铝酸镧(LaAlO3)、钛酸锶(SrTiO3)、钛酸钡(BaTiO3)、氧化锆(ZrO2)、铝酸镧(LaAlO3)或氧化镁(MgO)。The oxide
所述的绝缘层7包括:铝酸镧(LaAlO3)、钛酸锶(SrTiO3)、钛酸钡(BaTiO3)、氧化锆(ZrO2)、锰酸镧(LaMnO3)或氧化镁(MgO),绝缘层的厚度为1nm~500nm。The
所述的掺杂的BaTiO3包括:n型钛酸钡BaAxTi1-xO3或Ba1-xLaxTiO3薄膜材料,其中A是Nb或Ta;p型钛酸钡BaBxTi1-xO3,其中B是In、Ga或Mn;所有x的取值范围为0.005~0.5。The doped BaTiO 3 includes: n-type barium titanate BaA x Ti 1-x O 3 or Ba 1-x La x TiO 3 film material, wherein A is Nb or Ta; p-type barium titanate BaB x Ti 1-x O 3 , wherein B is In, Ga or Mn; all x values range from 0.005 to 0.5.
所述的掺杂的SrTiO3包括:n型钛酸锶SrAxTi1-xO3或Sr1-xLaxTiO3薄膜材料,其中A是Nb或Ta;p型钛酸锶SrBxTi1-xO3,其中B是In、Ga或Mn;所有x的取值范围为0.005~0.5。The doped SrTiO 3 includes: n-type strontium titanate SrA x Ti 1-x O 3 or Sr 1-x La x TiO 3 film material, wherein A is Nb or Ta; p-type strontium titanate SrB x Ti 1-x O 3 , wherein B is In, Ga or Mn; all x values range from 0.005 to 0.5.
所述的掺杂锰酸镧薄膜层是R1-xAxMnO3,掺杂锰酸镧薄膜2的厚度为0.8nm~2μm;其中R为La;其中A包括:Sr、Ca、Ba、Pb、Sn、Te、Nb、Sb、Ta、Ce或Pr;其x值为0.05~0.4。The doped lanthanum manganate film layer is R 1-x A x MnO 3 , and the thickness of the doped
所述的电极3可以是一个点,或是一条线,也可以是围绕掺杂锰酸镧薄膜2边缘的一个圆圈。第二电极4连接在掺杂氧化物薄膜上,可以采用化学腐蚀或离子束刻蚀方法或在制膜时用档板等方法在样品的边缘显露出掺杂氧化物的一个点露出一条边,或留出外沿的一个圈,用于连接电极4。第一电极3和第二电极4可以用铟或焊锡直接焊接,也可以用真空镀膜或磁控溅射等方法蒸镀金、银或铝电极。The
无论是掺杂氧化物-掺杂锰酸镧两层结构的激光探测器,还是掺杂氧化物-绝缘层-掺杂锰酸镧三层结构的激光探测器,或掺杂氧化物-氧化物衬底-掺杂锰酸镧结构的激光探测器,对于探测激光的效果是一致的。当脉冲激光照射到掺杂锰酸镧薄膜的表面时,掺杂锰酸镧薄膜吸收激光脉冲后,就会在掺杂氧化物7和掺杂锰酸镧2之间产生电压信号,此效应称之为光生伏特效应。无论是两层结构还是三层结构,在掺杂氧化物和掺杂锰酸镧之间都存在一个结电容,因此在掺杂氧化物7和掺杂锰酸镧2之间并联一个电阻5,起放电作用,减小放电时间和消除结电容对响应速度的影响。如果不考虑脉冲激光所产生脉冲电压信号的宽度,也可以不连接电阻5。Whether it is a laser detector with a two-layer structure of doped oxide-doped lanthanum manganate, a laser detector with a three-layer structure of doped oxide-insulating layer-doped lanthanum manganate, or a doped oxide-oxide The laser detector with substrate-doped lanthanum manganate structure has the same effect on detecting laser light. When the pulsed laser is irradiated on the surface of the doped lanthanum manganate film, after the doped lanthanum manganate film absorbs the laser pulse, a voltage signal will be generated between the doped
本发明提供的利用氧化物多层膜材料制作的快响应宽频段激光探测器,其优点在于,可以用激光分子束外延、脉冲激光沉积、磁控溅射和粘胶法等制膜方法,直接把掺杂氧化物、绝缘层和光响应层掺杂锰酸镧外延生长在氧化物单晶基片衬底上,或直接把掺杂氧化物、掺杂锰酸镧绝缘层和一光响应材料层2作成的芯片,制作两电极就成为一光生伏特型光电探测器;该制备方法简单。该光电探测器当光照射后直接产生电压信号,不需要任何辅助的电源和电子电路。可以探测激光能量、激光功率、激光脉冲波形等多种激光参数。该光电探测器的响应波段从紫外到远红外,是一种快响应宽频段激光探测器。探测过程是一个超快过程,光生伏特所产生脉冲电压信号的前沿达到ns量级,不仅可探测飞秒脉宽的激光能量,而且可探测ns脉宽的激光波形。一个mJ的激光脉冲可产生上百mV的电压信号,具有很高的灵敏度。因此本发明提供的利用氧化物多层膜材料制作的激光探测器,在军事、国防、科研、生产和生活等方面均有广泛的应用。The fast-response broadband laser detector made of oxide multilayer film material provided by the present invention has the advantage that it can be directly Epitaxial growth of doped oxide, insulating layer and photoresponsive layer doped lanthanum manganate on the oxide single crystal substrate, or directly doped oxide, doped lanthanum manganate insulating layer and a
附图说明 Description of drawings
图1.掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。Figure 1. Laser detector with doped oxide-doped lanthanum manganate two-layer structure.
图2.掺杂氧化物-绝缘层-掺杂锰酸镧三层结构的激光探测器。Figure 2. A laser detector with a three-layer structure of doped oxide-insulating layer-doped lanthanum manganate.
图3.掺杂氧化物-氧化物衬底-掺杂锰酸镧三层结构的激光探测器。Figure 3. A laser detector with a three-layer structure of doped oxide-oxide substrate-doped lanthanum manganate.
图4.用500兆示波器储存记录的La0.7Sr0.3MnO3/SrNb0.01Ti0.99O3两层结构激光探测器,测量YAG激光器输出波长1.06μm、脉宽25ps激光脉冲所产生的电压信号。Figure 4. The La 0.7 Sr 0.3 MnO 3 /SrNb 0.01 Ti 0.99 O 3 two-layer structure laser detector was stored and recorded with a 500M oscilloscope, and the voltage signal generated by the YAG laser output wavelength 1.06μm and pulse width 25ps laser pulse was measured.
图5.用500兆示波器储存记录的La0.7Sr0.3MnO3/SrTiO3/SrNb0.01Ti0.99O3三层结构激光探测器,测量YAG三倍频激光器输出波长355nm、脉宽15ps激光脉冲所产生的电压信号。Figure 5. La 0.7 Sr 0.3 MnO 3 /SrTiO 3 /SrNb 0.01 Ti 0.99 O 3 three-layer structure laser detector is stored and recorded with a 500M oscilloscope, and the laser pulse generated by the YAG triple frequency laser with an output wavelength of 355nm and a pulse width of 15ps is measured voltage signal.
图面说明如下:The illustrations are as follows:
1-氧化物单晶基片衬底; 2-光响应材料层; 3-第一电极;1-Oxide single crystal substrate; 2-Photoresponsive material layer; 3-First electrode;
4-第二电极; 5-电阻; 6-电极引线;4-the second electrode; 5-resistance; 6-electrode lead;
7-掺杂氧化物; 8-绝缘层。7-doped oxide; 8-insulating layer.
具体实施方式 Detailed ways
实施例1Example 1
参考图1,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器,下面结合具体制备过程,来对本发明利用氧化物多层膜材料制作的快响应宽频段激光探测器结构进行详细地说明。选用激光分子束外延设备,衬底1为3×3cm2大小的SrTiO3单晶基片,采用SrNb0.1Ti0.9O3掺铌钛酸锶的靶,将其SrNb0.1Ti0.9O3掺铌钛酸锶外延生长在衬底1上做为掺杂氧化物薄膜7,再在掺杂氧化物SrNb0.1Ti0.9O3薄膜层7上外延生长300nm厚的La0.7Sr0.3MnO3光响应材料层2,这样在SrTiO3氧化物衬底1上形成La0.7Sr0.3MnO3/SrNb0.1Ti0.9O3/SrTiO3掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。把制作好的样品切割1×1cm2大小片子作为探测器芯片,用离子束刻蚀技术在探测器芯的一个角把La0.7Sr0.3MnO3刻蚀出一个φ2mm的圆,刻蚀显露出掺铌钛酸锶膜面,用铟在掺铌钛酸锶薄膜7的边缘焊接约为φ1mm大小的第二电极4,用铟在La0.7Sr0.3MnO3薄膜的一个角表面焊接约为φ1mm的第一电极3;用两根φ0.1mm的铜线作电极引线6,并用铟把两根φ0.1mm铜电极引线6的一端分别焊接在第一电极3和第二电极4上;选用2Ω的电阻作电阻5,并将其两端分别与两根电极引线6的输出端焊接;这样探测器芯就制备完成,把探测器芯装入一个铝材的探测器外壳内,用同轴电缆接头引出输出端。Referring to Figure 1, a laser detector with a two-layer structure of doped oxide-doped lanthanum manganate is prepared, and the following is combined with the specific preparation process to carry out the fast-response broadband laser detector structure made of oxide multilayer film materials according to the present invention. Explain in detail. Laser molecular beam epitaxy equipment is selected, the
选用500兆示波器,用上述实施例1制备的两层氧化物薄膜材料激光探测器,测量YAG激光器输出波长1.06μm、脉宽25ps的激光脉冲,图4是用示波器储存记录探测器一个激光脉冲,所产生的电压信号波形。Select a 500M oscilloscope, use the two-layer oxide film material laser detector prepared in the
电压信号的前沿上升时间仅为~1.5ns,半宽度仅为~3ns,1mJ的激光能量可上百mV的电压信号。因此,该探测器不仅是一个超快过程,而且具有很高的灵敏度。The rising time of the leading edge of the voltage signal is only ~1.5ns, the half width is only ~3ns, and the laser energy of 1mJ can reach a voltage signal of hundreds of mV. Therefore, the detector is not only an ultrafast process, but also very sensitive.
实施例2Example 2
按实施例1的结构制作,只是改用SrNb0.005Ti0.995O3代替SrNb0.1Ti0.9O3作掺杂氧化物薄膜7,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。Manufactured according to the structure of Example 1, except that SrNb 0.005 Ti 0.995 O 3 is used instead of SrNb 0.1 Ti 0.9 O 3 as the doped
实施例3Example 3
按实施例1的结构制作,只是用SrNb0.5Ti0.95O3代替SrNb0.1Ti0.9O3作掺杂氧化物薄膜7,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。According to the structure of Example 1, except that SrNb 0.5 Ti 0.95 O 3 is used instead of SrNb 0.1 Ti 0.9 O 3 as the doped
实施例4Example 4
按实施例1的结构制作,只是用BaNb0.1Ti0.9O3代替SrNb0.1Ti0.9O3作掺杂氧化物薄膜7,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。According to the structure of Example 1, except that BaNb 0.1 Ti 0.9 O 3 is used instead of SrNb 0.1 Ti 0.9 O 3 as the doped
实施例5Example 5
按实施例1的结构制作,只是用BaIn0.1Ti0.9O3代替SrNb0.1Ti0.9O3作掺杂氧化物薄膜7,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。According to the structure of Example 1, except that BaIn 0.1 Ti 0.9 O 3 is used instead of SrNb 0.1 Ti 0.9 O 3 as the doped
实施例6Example 6
按实施例1的结构制作,只是用La0.05Sr0.95MnO3代替La0.7Sr0.3MnO3作掺杂氧化物薄膜7,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。According to the structure of Example 1, except that La 0.05 Sr 0.95 MnO 3 is used instead of La 0.7 Sr 0.3 MnO 3 as the doped
实施例8Example 8
按实施例1的结构制作,只是用La0.05Sr0.95MnO3代替La0.7Sr0.3MnO3作掺杂氧化物薄膜7,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。According to the structure of Example 1, except that La 0.05 Sr 0.95 MnO 3 is used instead of La 0.7 Sr 0.3 MnO 3 as the doped
实施例9Example 9
按实施例1的结构制作,只是用La0.7Ba0.3MnO3代替La0.7Sr0.3MnO3作掺杂氧化物薄膜7,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。According to the structure of Example 1, except that La 0.7 Ba 0.3 MnO 3 is used instead of La 0.7 Sr 0.3 MnO 3 as the doped
实施例10Example 10
按实施例1的结构制作,只是用La0.7Ga0.3MnO3代替La0.7Sr0.3MnO3作掺杂氧化物薄膜7,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。According to the structure of Example 1, except that La 0.7 Ga 0.3 MnO 3 is used instead of La 0.7 Sr 0.3 MnO 3 as the doped
实施例11Example 11
按实施例1的结构制作,用化学腐蚀法在探测器芯的一个边把La0.7Sr0.3MnO3腐蚀出2mm宽的一条线,刻蚀显露出掺铌钛酸锶膜面,用铟在掺铌钛酸锶7的边缘焊接宽为1mm的第二电极4,制备出掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。Manufactured according to the structure of Example 1, the La 0.7 Sr 0.3 MnO 3 is etched into a line with a width of 2 mm on one side of the detector core by chemical etching, and the surface of the strontium niobium titanate film is exposed by etching, and the indium doped strontium titanate film surface is exposed. The edge of the
实施例12Example 12
在实施例1的结构制作,用LaAlO3氧化物单晶基片代替SrTiO3氧化物单晶基片作为衬底1,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。In the fabrication of the structure in Example 1, a LaAlO 3 oxide single crystal substrate was used instead of a SrTiO 3 oxide single crystal substrate as the
实施例13Example 13
按实施例1的结构制作,用MgO单晶基片代替SrTiO3氧化物单晶基片作为衬底1,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。Manufactured according to the structure of Example 1, the SrTiO 3 oxide single crystal substrate was replaced by a MgO single crystal substrate as the
实施例14Example 14
按实施例1的结构制作,用ZrO2单晶基片代替SrTiO3氧化物单晶基片作为衬底1,制备掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。According to the structure of Example 1, a ZrO2 single crystal substrate is used instead of a SrTiO3 oxide single crystal substrate as the
实施例15Example 15
按实施例1制作,用ZrO2单晶基片代替SrTiO3氧化物单晶基片作为衬底1,制备出掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。According to Example 1, a ZrO 2 single crystal substrate is used instead of a SrTiO 3 oxide single crystal substrate as the
实施例16Example 16
按实施例11的结构制作,用化学腐蚀法在探测器芯的一个边把La0.7Sr0.3MnO3腐蚀出2mm宽的一条线,腐蚀显露出掺铌钛酸锶膜面,用磁控溅射装置,在2mm宽的La0.7Sr0.3MnO3膜面上溅射0.5mm宽的银作为第一电极3,制备出掺杂氧化物-掺杂锰酸镧两层结构的激光探测器。Manufactured according to the structure of Example 11, the La 0.7 Sr 0.3 MnO 3 is etched into a line with a width of 2mm on one side of the detector core by chemical etching, and the surface of the niobium-doped strontium titanate film is exposed by etching, and magnetron sputtering is used. device, sputtering 0.5mm wide silver on a 2mm wide La 0.7 Sr 0.3 MnO 3 film surface as the
实施例17Example 17
参考图2,制备掺杂氧化物-绝缘层-掺杂锰酸镧三层结构的激光探测器,下面结合具体制备过程对本实施例的结构进行详细地说明。选用激光分子束外延设备,在2cm×2cm大小的SrTiO3衬底1上,先外延500nm厚的SrNb0.1Ti0.9O3薄膜作掺杂氧化物7,在SrNb0.1Ti0.9O3掺杂氧化物7上外延生长200nm厚的SrTiO3作绝缘层8,再在绝缘层SrTiO3薄膜8上外延生长300nm厚的La0.7Sr0.3nO3薄膜作为光响应材料层2,在钛酸锶衬底1上形成La0.7Sr0.3MnO3/SrTiO3/SrNb0.1Ti0.9O3三层结构的激光探测器样品,再将其切割成尺寸为1×0.5cm2的探测器芯片;用离子束刻蚀技术在探测器芯片的一个角把光响应材料层2La0.7Sr0.3MnO3和绝缘层8SrTiO3两层薄膜刻蚀出φ2mm的一个圆,刻蚀显露出SrNb0.1Ti0.9O3掺铌钛酸锶膜面,用铟在掺铌钛酸锶薄膜7的φ2mm圆面上焊接约为φ1mm铟的第二电极4,用铟在La0.7Sr0.3MnO3薄膜层2一个角表面处焊接约为φ1mm圆的第一电极3;用两根φ0.2mm的铜线作电极引线6,并用铟把两根φ0.1mm铜电极引线6的一端分别焊接在第一电极3和第二电极4上;选用0.01Ω的导线作电阻5,并将其两端分别与两根电极引线6的输出端焊接;这样探测器芯就制备完备,把探测器芯装入一个铜探测器外壳内,用同轴电缆接头引出输出端。Referring to FIG. 2 , a laser detector with a three-layer structure of doped oxide-insulating layer-doped lanthanum manganate is prepared. The structure of this embodiment will be described in detail below in conjunction with the specific preparation process. Using laser molecular beam epitaxy equipment, on a SrTiO 3 substrate 1 with a size of 2cm×2cm, epitaxially epitaxially 500nm thick SrNb 0.1 Ti 0.9 O 3 film as doped oxide 7, doped oxide 7 on SrNb 0.1 Ti 0.9 O 3 Epitaxially grow 200nm thick SrTiO 3 on the insulating layer 8 as the insulating layer 8, and then epitaxially grow a 300nm thick La 0.7 Sr 0.3 nO 3 thin film on the insulating layer SrTiO 3 thin film 8 as the photoresponsive material layer 2, on the strontium titanate substrate 1 Form a laser detector sample with a three-layer structure of La 0.7 Sr 0.3 MnO 3 /SrTiO 3 /SrNb 0.1 Ti 0.9 O 3 , and then cut it into a detector chip with a size of 1×0.5cm 2 ; At one corner of the detector chip, the photoresponsive material layer 2La 0.7 Sr 0.3 MnO 3 and the insulating layer 8SrTiO 3 are etched into a circle of φ2mm, and the etching reveals the SrNb 0.1 Ti 0.9 O 3 doped strontium niobium titanate film surface , use indium to weld the second electrode 4 of about φ1mm indium on the φ2mm round surface of the strontium niobate titanate thin film 7, and weld the second electrode 4 of about φ1mm circle at one corner surface of the La 0.7 Sr 0.3 MnO 3 thin film layer 2 with indium An electrode 3; use two φ0.2mm copper wires as electrode leads 6, and weld one end of the two φ0.1mm copper electrode leads 6 to the first electrode 3 and the second electrode 4 respectively with indium; select 0.01Ω The wire is used as resistance 5, and its two ends are respectively welded to the output ends of two electrode leads 6; in this way, the detector core is prepared completely, and the detector core is put into a copper detector shell, and the output is led out with a coaxial cable connector. end.
选用500兆示波器,用本实施例在钛酸锶衬底上外延生长的La0.7Sr0.3MnO3/SrTiO3/SrNb0.1Ti0.9O3三层结构激光探测器,测量YAG三倍频激光器输出波长355nm、脉宽15ps的激光脉冲。图4是用示波器储存记录探测器一个激光脉冲,所产生的电压信号波形。从图4可看出,脉冲激光所产生电压信号的前沿上升时间仅为~1.5ns,半宽度仅为~3ns,1mJ的激光能量可上百mV的电压信号。因此,三层结构的探测器和两层结构的探测器一样,不仅是一个超快过程,而且具有很高的灵敏度。Select a 500M oscilloscope, use the La 0.7 Sr 0.3 MnO 3 /SrTiO 3 /SrNb 0.1 Ti 0.9 O 3 three-layer structure laser detector epitaxially grown on the strontium titanate substrate in this embodiment, and measure the output wavelength of the YAG triple frequency laser 355nm laser pulse with a pulse width of 15ps. Figure 4 is the voltage signal waveform generated by storing and recording a laser pulse of the detector with an oscilloscope. It can be seen from Figure 4 that the rising time of the leading edge of the voltage signal generated by the pulsed laser is only ~1.5ns, the half width is only ~3ns, and the laser energy of 1mJ can reach a voltage signal of hundreds of mV. Therefore, the three-layer detector, like the two-layer detector, is not only an ultrafast process, but also has a high sensitivity.
实施例18Example 18
按实施例17的结构制作,在掺杂氧化物薄膜层7上生长一层1nm厚的LaAlO3薄膜作为绝缘层8,其余结构同实施例17,即在钛酸锶衬底1上制备La0.7Sr0.3MnO3/LaAlO3/SrNb0.1Ti0.9O3三层结构激光探测器。Made according to the structure of Example 17, a layer of 1nm thick LaAlO3 film was grown on the doped
实施例19Example 19
按实施例17的结构制作,用500nm厚的ZrO薄膜作为绝缘层8,即在钛酸锶衬底1上制备La0.7Sr0.3MnO3/ZrO/SrNb0.1Ti0.9O3三层结构激光探测器。According to the structure of Example 17, a 500nm thick ZrO film is used as the insulating
实施例20Example 20
按实施例17的结构制作,用50nm厚的MgO薄膜作绝缘层8,即在钛酸锶衬底1上制备La0.7Sr0.3MnO3/MgO/SrNb0.1Ti0.9O3三层结构激光探测器。According to the structure of Example 17, a 50nm thick MgO film is used as the insulating
实施例21Example 21
采用脉冲激光制膜方法,按实施例17的结构制作,制作在钛酸锶衬底上外延生长的La0.7Sr0.3MnO3/SrTiO3/SrNb0.1Ti0.9O3三层结构激光探测器。Using the pulsed laser film forming method, according to the structure of Example 17, a laser detector with a three-layer structure of La 0.7 Sr 0.3 MnO 3 /SrTiO 3 /SrNb 0.1 Ti 0.9 O 3 epitaxially grown on a strontium titanate substrate was fabricated.
实施例22Example 22
采用磁控溅射制膜方法,按实施例17的结构制作,制作在钛酸锶衬底上外延生长的La0.7Sr0.3MnO3/SrTiO3/SrNb0.1Ti0.9O3三层结构激光探测器。Using the magnetron sputtering film-forming method, according to the structure of Example 17, a laser detector with a three-layer structure of La 0.7 Sr 0.3 MnO 3 /SrTiO 3 /SrNb 0.1 Ti 0.9 O 3 epitaxially grown on a strontium titanate substrate was fabricated .
实施例23Example 23
按实施例17的结构制作,用400nm厚的La0.7Sr0.3MnO3代替500nm厚的SrNb0.1Ti0.9O3薄膜作掺杂氧化物7,在钛酸锶衬底1上制备La0.7Sr0.3MnO3/SrTiO3/La0.7Sr0.3MnO3三层结构激光探测器。Fabricate according to the structure of Example 17, replace the 500nm thick SrNb 0.1 Ti 0.9 O 3 thin film with 400nm thick La 0.7 Sr 0.3 MnO 3 as the
实施例24Example 24
按实施例17的结构制作,用400nm厚的BaNb0.3Ti0.7O3代替500nm厚的SrNb0.1Ti0.9O3薄膜作掺杂氧化物7,在钛酸锶衬底1上制备La0.7Sr0.3MnO3/SrTiO3/BaNb0.3Ti0.7O3三层结构激光探测器。Fabricate according to the structure of Example 17, replace the 500nm thick SrNb 0.1 Ti 0.9 O 3 thin film with 400nm thick BaNb 0.3 Ti 0.7 O 3 as the
实施例25Example 25
参考图3,制备掺杂氧化物-氧化物衬底-掺杂锰酸镧三层结构的激光探测器,结合下面具体制备过程,对本实施例的结构进行详细地说明。选用激光分子束外延设备,在双面抛光的2英寸大小的SrTiO3衬底1的一个面上,外延500nm厚的SrNb0.3Ti0.7O3薄膜作掺杂氧化物7,在SrTiO3衬底1的另一个面上外延生长300nm厚的La0.8Ca0.2MnO3薄膜光响应材料层2,形成La0.8Ca0.2MnO3/SrTiO3/SrNb0.3Ti0.7O3掺杂氧化物-氧化物衬底-掺杂锰酸镧三层结构的激光探测器样品,将其切割成尺寸为1×1cm2的探测器芯片。用铟在SrNb0.3Ti0.7O3掺铌钛酸锶7的面上焊接约为φ2mm的第二电极4,用铟在La0.8Ca0.2MnO3薄膜光响应层2一个角表面处焊接约为φ1mm的第一电极3;用两根φ0.2mm的铜线作电极引线6,并用铟把两根φ0.1mm铜电极引线6的一端分别焊接在第一电极3和第二电极4上;选用1KΩ的电阻作电阻5,并将其两端分别与两根电极引线6的输出端焊接;这样探测器芯就制备完备,把探测器芯装入一个铜探测器外壳内,用同轴电缆接头引出输出端。Referring to FIG. 3 , a laser detector with a three-layer structure of doped oxide-oxide substrate-doped lanthanum manganate is prepared, and the structure of this embodiment is described in detail in conjunction with the following specific preparation process. Using laser molecular beam epitaxy equipment, epitaxy a 500nm-thick SrNb 0.3 Ti 0.7 O 3 film on one side of a double-sided polished 2-inch SrTiO 3 substrate 1 as doped
实施例26Example 26
按实施例25的结构制作,选用LaAlO3氧化物单晶基片作为衬底1,在用LaAlO3衬底1上制备La0.8Ca0.2MnO3/LaAlO3/SrNb0.3Ti0.7O3掺杂氧化物-氧化物衬底-掺杂锰酸镧三层结构的激光探测器。According to the structure of Example 25, the LaAlO 3 oxide single crystal substrate was selected as the
实施例27Example 27
按实施例25的结构制作,用MgO代替SrTiO3作氧化物衬底1,在用MgO衬底1上制备La0.8Ca0.2MnO3/MgO/SrNb0.3Ti0.7O3掺杂氧化物-氧化物衬底-掺杂锰酸镧三层结构的激光探测器。According to the structure of Example 25, MgO is used instead of SrTiO 3 as
实施例28Example 28
按实施例25的结构制作,用400nm厚的BaNb0.3Ti0.7O3代替500nm厚的SrNb0.3Ti0.7O3薄膜作掺杂氧化物7,制备La0.8Ca0.2MnO3/SrTiO3/BaNb0.3Ti0.7O3掺杂氧化物-氧化物衬底-掺杂锰酸镧三层结构的激光探测器样品。According to the structure of Example 25, use 400nm thick BaNb 0.3 Ti 0.7 O 3 instead of 500nm thick SrNb 0.3 Ti 0.7 O 3 film as doped
实施例29Example 29
按实施例25的结构制作,用200nm厚的La0.8Ca0.2MnO3代替500nm厚的薄膜作掺杂氧化物7,制备/SrTiO3/掺杂氧化物-氧化物衬底-掺杂锰酸镧三层结构的激光探测器样品。Make according to the structure of
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100711743A CN100412518C (en) | 2004-07-30 | 2004-07-30 | Laser detector made of oxide multilayer film material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100711743A CN100412518C (en) | 2004-07-30 | 2004-07-30 | Laser detector made of oxide multilayer film material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1727854A CN1727854A (en) | 2006-02-01 |
CN100412518C true CN100412518C (en) | 2008-08-20 |
Family
ID=35927247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100711743A Expired - Fee Related CN100412518C (en) | 2004-07-30 | 2004-07-30 | Laser detector made of oxide multilayer film material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100412518C (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2012120083A (en) * | 2009-10-16 | 2013-11-27 | Конинклейке Филипс Электроникс Н.В. | PHOTOSENSITIVE LAYER AND LAYER ASSEMBLY |
CN101871818B (en) * | 2010-06-25 | 2012-05-23 | 清华大学 | Infrared detector |
CN115894025B (en) * | 2022-11-10 | 2023-07-04 | 微集电科技(苏州)有限公司 | Lanthanum manganate ceramic-based light absorber and application and preparation method thereof |
CN115626825B (en) * | 2022-11-10 | 2023-05-09 | 江苏大学 | Alumina/lanthanide perovskite ceramic composite light absorber and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85200313U (en) * | 1985-04-01 | 1985-12-20 | 中国科学院物理研究所 | High sensitive, fast-response, calorimetry type and pulse laser detector |
CN2050161U (en) * | 1989-04-20 | 1989-12-27 | 吉林大学 | Passing type ag-bi film laser detector |
US5621238A (en) * | 1994-02-25 | 1997-04-15 | The United States Of America As Represented By The Secretary Of The Air Force | Narrow band semiconductor detector |
US20020121647A1 (en) * | 2001-03-02 | 2002-09-05 | Taylor Geoff W. | Modulation doped thyristor and complementary transistor combination for a monolithic optoelectronic integrated circuit |
CN2567553Y (en) * | 2002-04-16 | 2003-08-20 | 中国科学院上海技术物理研究所 | Three-band laser probe for photoelectric laser detecting system |
-
2004
- 2004-07-30 CN CNB2004100711743A patent/CN100412518C/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85200313U (en) * | 1985-04-01 | 1985-12-20 | 中国科学院物理研究所 | High sensitive, fast-response, calorimetry type and pulse laser detector |
CN2050161U (en) * | 1989-04-20 | 1989-12-27 | 吉林大学 | Passing type ag-bi film laser detector |
US5621238A (en) * | 1994-02-25 | 1997-04-15 | The United States Of America As Represented By The Secretary Of The Air Force | Narrow band semiconductor detector |
US20020121647A1 (en) * | 2001-03-02 | 2002-09-05 | Taylor Geoff W. | Modulation doped thyristor and complementary transistor combination for a monolithic optoelectronic integrated circuit |
CN2567553Y (en) * | 2002-04-16 | 2003-08-20 | 中国科学院上海技术物理研究所 | Three-band laser probe for photoelectric laser detecting system |
Also Published As
Publication number | Publication date |
---|---|
CN1727854A (en) | 2006-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7608467B2 (en) | Switchable resistive perovskite microelectronic device with multi-layer thin film structure | |
JP4822287B2 (en) | Nonvolatile memory device | |
US6204139B1 (en) | Method for switching the properties of perovskite materials used in thin film resistors | |
US9349947B2 (en) | Methods of using a two terminal multi-layer thin film resistance switching device with a diffusion barrier | |
US8687401B2 (en) | Ferro-resistive random access memory (Ferro-RRAM), operation method and manufacturing method thereof | |
EP2147471B1 (en) | Three-terminal metal-insulator transition switch, switching system including the same, and method of controlling metal-insulator transition of the same | |
CN100412518C (en) | Laser detector made of oxide multilayer film material | |
US7932505B2 (en) | Perovskite transition metal oxide nonvolatile memory element | |
CN100422702C (en) | Fast Response Broadband Laser Detector Made of Heterojunction Materials | |
Hsu et al. | Modification of OFF-and ON-resistances of SrTiO x WORM memories by thermal annealing processes | |
CN100437055C (en) | Fast response broad band laser detector made by oxide heterojunction material | |
US6573526B1 (en) | Single electron tunneling transistor having multilayer structure | |
CN100458381C (en) | Super-fast wide-wave-band optical detector made by by doped oxide and silicon heterojunction material | |
CN100593110C (en) | Photoelectric detector with high sensitivity | |
CN100458382C (en) | Quick-responding high-sensitivity ultraviolet detector made by calcium-titanium oxide monocrystal material | |
JP6813844B2 (en) | Tunnel junction element and non-volatile memory element | |
CN101261158B (en) | Photodetector | |
CN100573060C (en) | A kind of quick response broadband optical detector | |
US8409879B2 (en) | Method of using a buffered electric pulse induced resistance device | |
Bian et al. | Photovoltaic and resistance switching properties of NiO/Pb0. 92La0. 08 (Zr0. 52Ti0. 48) O3/LaNiO3 | |
US20110151617A1 (en) | Memory and methods of forming the same to enhance scalability of non-volatile two-terminal memory cells | |
CN110440831A (en) | A kind of sensor and preparation method thereof | |
CN101493356A (en) | Medium-infrared-to-far-infrared detector | |
CN101170147A (en) | A detector for light from deep ultraviolet to far infrared and its preparation method | |
GAGOU et al. | Chap. 26-Resistance Switching Effect in Octahedral framework oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080820 Termination date: 20100730 |