CN100573060C - Quick response broadband optical detector - Google Patents

Quick response broadband optical detector Download PDF

Info

Publication number
CN100573060C
CN100573060C CN 200510071811 CN200510071811A CN100573060C CN 100573060 C CN100573060 C CN 100573060C CN 200510071811 CN200510071811 CN 200510071811 CN 200510071811 A CN200510071811 A CN 200510071811A CN 100573060 C CN100573060 C CN 100573060C
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
quick
response
broadband
optical
detector
Prior art date
Application number
CN 200510071811
Other languages
Chinese (zh)
Other versions
CN1869612A (en )
Inventor
萌 何
吕惠宾
周岳亮
杨国桢
昆 赵
金奎娟
陈正豪
黄延红
Original Assignee
中国科学院物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明涉及一种快响应宽频段光探测器,包括:p型或n型硅片为衬底;在其上相应生长一层n型或p型的光响应材料层做成芯片,所述的光响应层为生长在硅片衬底上的掺杂钛酸锶薄膜,该掺杂钛酸锶光响应材料层厚度为0.5nm-5μm;第一电极设置在光响应材料层上,第二电极设置在硅片面上,每根电极引线的一端分别与二个电极连接,电极引线的另一端是信号输出端;电阻的两端分别和电极引线的输出端连接。 The present invention relates to a fast response wideband optical detector, comprising: p-type or n-type silicon wafer substrate; growing a layer of a respective n-type or p-type layer of light-responsive material on which the chip is made, according to photo-responsive layer is doped strontium titanate thin films grown on the silicon substrate, the light-responsive material doped strontium titanate layer having a thickness of 0.5nm-5μm; a first electrode disposed on the light responsive material layer, a second electrode provided on the wafer surface, one end of each of the electrode leads are connected to the two electrodes, the other end of the electrode lead is a signal output terminal; ends of the resistor and the output terminal are respectively connected to electrode leads. 该探测器均为光生伏特型,当光照射后直接产生电压信号,不需要任何辅助的电源和电子电路。 The detectors are photovoltaic type, when the voltage signal is directly generated by light irradiation, and does not require any auxiliary power supply of an electronic circuit. 其响应波段从紫外到远红外,可响应飞秒脉宽的激光脉冲,激光脉冲产生电压脉冲的前沿小于1ns,半宽度小于2ns,脉冲全宽度仅为几个ns。 In response band from ultraviolet to far infrared, in response femtosecond laser pulse width, laser pulse produces a voltage pulse leading edge is less than 1ns, less than half the width of 2ns, a pulse full width of only a few ns.

Description

一种快响应宽频段光探测器 In fast response to wideband optical detector

技术领域 FIELD

本发明涉及一种激光探测器,特别涉及一种利用掺杂钛酸锶和硅异质结材料制作的快响应宽频段激探测器。 The present invention relates to a laser detector, and particularly relates to a strontium titanate and doped silicon heterostructure made fast response wideband excitation detector. 背景技术 Background technique

对于激光能量、功率、脉宽和波形的探测,不仅对激光器件和基础研究非常重要,而且在工业、军事和国防等方面也具有非常广泛的用途。 For the detection of laser energy, power, pulse and waveform generation, is not only very important for the laser devices and basic research, but also in industrial, military and defense, also has a very wide range of uses. 人们已经发展了热电、 光电、热释电等各种类型的激光探测器,如热电探测器,虽然响应范围宽,但响应时间比较慢,多为毫秒级。 It has been developed a thermal, optical, and other types of pyroelectric laser detector, such as a pyroelectric detector, although a wide range of response, but the response time is relatively slow, multi milliseconds. 所以人们仍然一直在探索宽光谱、快响应、高灵敏度的新型激光探测器。 Therefore, people still have been exploring a broad spectrum, fast response, high sensitivity of the new laser detector.

钛酸锶(SrTi03)是典型的钙钛矿结构氧化物,不仅结构稳定,而且熔点较高(2000多度)。 Strontium titanate (SrTiO 3) is typical of the perovskite structure oxide, not only in a stable structure, and higher melting point (more than 20 degrees). 采用掺杂的方法,可以得到不同特性的掺杂SrTi03材料,本申请人己经申请了掺In、 Mn、 Sb等掺杂钛酸锶材料专利(如中国专利号:ZL99123795.1; ZL00100057.8; ZL99108056. 4)。 Doping method, the material can be doped SrTi03 different characteristics, the present applicant has applied for doping In, Mn, Sb-doped strontium titanate and other materials Patent (Chinese Patent number: ZL99123795.1; ZL00100057.8 ;. ZL99108056 4). 本申请人也申请了钛酸锶晶体管与半导体和钛酸锶pn结专利(如中国专利号:ZL00100366. 6; ZL01104066. 1 ),但这些都是以电学特性为主的专利。 The present Applicant also filed the semiconductor transistor strontium titanate and strontium titanate pn junction Patent (Chinese Patent No:.. ZL00100366 6; ZL01104066 1), but these are in electrical characteristics based patents. 发明内容 SUMMARY

本发明的目的在于利用掺杂钛酸锶和硅异质结材料,提供一种当光照射后直接产生电压信号,不需要任何辅助的外加电源和电子电路的、宽光谱、快响应、高灵敏度的激光探测器,可以探测激光的能量、功率和波形,其响应波段从紫外到红外, 可响应纳米脉宽的激光脉冲,产生光生电压脉冲的宽度可小于2ns。 Object of the present invention is to utilize silicon doped strontium titanate and heterojunction materials, one kind of a voltage signal produced when the light is irradiated directly, without any external power source and the auxiliary electronic circuits, broad spectrum, fast response, high sensitivity laser detectors, laser energy can be detected, and wave power, laser pulse in response band from ultraviolet to infrared, nano-pulse response of the photo generated voltage pulse may be less than the width of 2ns.

本发明的目的是这样实现的: Object of the present invention is implemented as follows:

本发明提供的一种快响应宽频段光探测器,P型或n型硅片为衬底l;在所述的p 型或n型硅片为衬底1上相应生长一层n型或p型的掺杂钛酸锶薄膜层做成芯片;其特征在于:还包括一电阻5、第一电极3、第二电极4和两根引线6;所述的掺杂钛酸锶薄膜层为光响应材料层2,该光响应材料层2厚度为0.5咖-5!xm;第一电极3设置在光响应材料层2上,第二电极4设置在衬底1面上,两根电极引线6的一端分别与第一电极3和第二电极4连接,电极引线6的另一端是信号输出端;电阻5的两端分别和两根电极引线6的输出端连接;所述的快响应宽频段光探测器是光生伏特型光电探测器; One kind of the present invention provides fast response wideband optical detector, P-type or n-type silicon substrate is L; the p-type or n-type silicon is grown on the substrate 1 corresponding to one p-type or n doped strontium titanate thin film layer is made of a chip type; characterized by: further comprising a resistor 5, a first electrode 3 and second electrode 4 and the two lead wires 6; the doped strontium titanate thin film layer is a light responsive material layer 2, the thickness of the layer 2 is a light responsive material 0.5 coffee -5 xm;! 3 a first electrode disposed on the light responsive material layer 2, a second electrode provided on a surface of the substrate 4, two electrode lead 6 one end connected to the first electrode 3 and second electrode 4, the other end of the electrode lead 6 is signal output terminal; ends of the resistor 5, respectively, and two output terminals connected to the electrode lead 6; fast response of the wideband light detector is a photovoltaic type photoelectric detectors;

所述的掺杂钛酸锶薄膜层是Srv复Ti03或SrMyTi卜A;其中R包括:La、 Dy、 Y、 Sm或Gd;其中M包括:Nb、 Sb、 Ta、 In、 Mn、 W、 Mg或Fe;其x值为0. 005〜0. 5, y值为0. 005〜0. 5。 The doping layer is a strontium titanate film Srv complex Ti03 or SrMyTi BU A; wherein R comprises: La, Dy, Y, Sm or of Gd; wherein M comprises: Nb, Sb, Ta, In, Mn, W, Mg or of Fe; which x is 0. 005~0 5, y is 0.5 005~0 5.

在上述的技术方案中,还包括在硅衬底l上外延生长一SrO或BaO缓冲层,再在外延生长的SrO和BaO缓冲层上外延生长一层光响应材料层2,所述的SrO和BaO 缓冲层厚度为0. 4咖〜50nm。 In the above aspect, further comprising epitaxially growing a buffer layer of SrO or BaO L on a silicon substrate, and then epitaxially growing a layer of light-responsive material layers epitaxially grown on the buffer layer 2 SrO and BaO, SrO and said BaO buffer layer thickness is 0.4 coffee ~50nm.

在上述的技术方案中,还包括在硅片1上外延生长一绝缘层7,所述的光响应材料层2外延再生长在绝缘层7上;或者绝缘层7外延生长在硅衬底上的SrO或BaO 缓冲层上,所述的绝缘层7的厚度为l咖〜500咖。 In the above aspect, further comprising an epitaxially grown on a silicon wafer in an insulating layer 7, a light responsive material layer 2 is epitaxially grown again on the insulating layer 7; or the insulating layer 7 is epitaxially grown on a silicon substrate, SrO or BaO on the buffer layer, the thickness of the insulating layer 7 is ~ 500 l coffee coffee. 其中绝缘层7包括:铝酸镧(LaA103)、钛酸锶(SrTi03)、钛酸钡(BaTi03)、氧化锆(ZrO》、锰酸镧(LaMn03)或氧化镁(MgO)。 Wherein the insulating layer 7 comprising: a lanthanum aluminate (LaA103), strontium titanate (SrTiO 3), barium titanate (BaTi03), zirconium oxide (ZrO ", lanthanum manganate (LaMn03) or magnesium oxide (MgO).

在上述的技术方案中,所述的掺杂钛酸锶薄膜层是Sr,-JVTi03或SrM;r"A,掺杂钛酸锶薄膜2的厚度为0. 8nm〜5,;其中R包括:La、 Dy、 Y、 Sm或Gd;其中M 包括:Nb、 Sb、 Ta、 In、 Mn、 W、 Mg或Fe,其x值为0. 005〜0. 5, y值为0. 005〜0. 5。 In the above technical solution, said thin film layer is doped strontium titanate Sr, -JVTi03 or SrM; r "A, doped strontium titanate film thickness of 0. 8nm~5 ,; 2 wherein R comprises: la, Dy, Y, Sm or of Gd; wherein M comprises: Nb, Sb, Ta, In, Mn, W, Mg or Fe, which is x 0. 005~0 5, y is 0. 005~0. 5.

在上述的技术方案中,还包括一金属外壳,将其芯片安装在一个金属外壳内。 In the above aspect, further comprising a metal shell, to which the chip is mounted within a metal housing.

在上述的技术方案中,所述的电阻5的阻值为0.01Q〜1MQ;电阻5主要的作用是为了提高响应速度,由于异质结的结构具有电容特性,因此电阻5对激光照射后产生的电压起放电作用。 In the above technical solution, the resistance of the resistor 5 is 0.01Q~1MQ; 5 major role in resistance to improve the response speed, since the structure has a capacitance characteristic heterojunctions, thus generating resistor 5 after laser irradiation electrical discharge starting voltage.

在上述的技术方案中,所述的第一电极3的形状为一个点、 一条线,或光响应材料层2边缘设置的一个圆圈。 In the above technical solution, the shape of the first electrode 3 as a dot, a line, a circle or photoresponsive material layer disposed second edge. 第二电极4的形状为点、线或面;连接在硅片的任何部位。 Shape of the second electrode 4 is a point, line or area; connected in any part of the silicon wafer. 第一电极3和第二电极4可以用铟或焊锡直接焊接,也可以用真空镀膜或磁控溅射等方法蒸镀金、银、铂或铝电极。 The first electrode 3 and second electrode 4 may be directly welded with indium or solder, may be deposited by vacuum deposition or sputtering method such as gold, silver, platinum or aluminum electrode.

本发明提供的无论是硅一掺杂钛酸锶两层结构的激光探测器,还是硅一绝缘层一掺杂钛酸锶三层结构的激光探测器,对于探测激光的效果是一致的。 The present invention provides both a silicon-doped strontium titanate layer structure of the laser detector, an insulating layer or a doped silicon laser detector strontium titanate three-layer structure, the laser light for detecting the effect is the same. 当脉冲激光照射到掺杂钛酸锶薄膜或硅的表面时,掺杂钛酸锶薄膜或硅衬底吸收激光脉冲后产生光生载流子一电子和空穴对,在异质结界面势垒电场的作用下,就会在硅和掺杂钛酸锶之间产生光生电压信号,此效应称之为光生伏特效应。 When the surface of the strontium titanate film, or silicon doped with a pulsed laser irradiated, doped strontium titanate thin film or a silicon substrate, after absorption of the laser pulse to produce a photo-generated carriers electron and hole pairs, barrier at the heterojunction interface under the influence of an electric field, a signal is generated photovoltage between the silicon and the doped strontium titanate, this effect is called photovoltaic effect. 无论是两层结构还是三层结构,在硅和掺杂钛酸锶之间都存在一个结电容,因此在硅和掺杂钛酸锶层之间并联一个电阻,起放电作用,减小放电时间和消除结电容对响应速度的影响。 Whether two-layer structure or a three-layer structure, and the doped silicon in the presence of a junction capacitance between both strontium titanate, and therefore parallel with a resistor between the silicon layer and the doped strontium titanate, from discharging operation, reducing the discharge time junction capacitance and eliminate the influence on the response speed. 如果不考虑脉冲激光所产生脉冲电压信号的宽度,也可以不连接电阻。 Without considering the pulse width of the pulse laser beam generated by a voltage signal, the connection resistance may not be.

本发明提供的利用掺杂钛酸锶和硅异质结材料制作的快响应宽频段激光探测器,其优点在于,可以用激光分子束外延、脉冲激光沉积、磁控溅射、电子束蒸发和粘胶法等制膜方法,把掺杂钛酸锶和绝缘层与掺杂钛酸锶直接外延生长在硅片上; 或通过Sr0和Ba0缓冲层,把掺杂钛酸锶和绝缘层与掺杂钛酸锶外延生长在硅片上, 制备方法简单。 The present invention provides the use of strontium titanate and doped silicon heterostructure made fast response wideband laser detector, is advantageous in that, with a laser molecular beam epitaxy can, pulsed laser deposition, magnetron sputtering, electron beam evaporation, and viscose method, film forming method, the doped strontium titanate, and strontium titanate doped insulating layer is epitaxially grown directly on a silicon wafer; Sr0 and Ba0 or via a buffer layer, the insulating layer and the doped strontium titanate and doped heteroaryl strontium titanate is epitaxially grown on a silicon wafer, simple preparation method. 该激光探测器均为光生伏特型光电探测器,当光照射后直接产生电压信号,不需要任何外加辅助的电源和电子电路。 The laser light detectors are photovoltaic type photoelectric detector, when irradiated with light to generate a voltage signal directly, without any additional auxiliary power supply and electronic circuitry. 可以探测激光能量、激光功率、 激光脉冲波形等多种激光参数。 It can detect a variety of laser parameters of the laser energy, laser power, laser pulse waveforms. 本发明的快响应宽频段激光探测器其响应波段从紫外到远红外,是一种快响应宽频段激光探测器。 Fast response to broad-band laser detector of the present invention in response band from ultraviolet to far infrared, a fast response to broad-band laser detector. 探测过程是一个超快过程,光生伏特所产生脉冲电压信号的前沿只有几百皮秒到一个纳秒,可探测ns脉宽的激光波形。 Ultrafast detection process is a process, leading edge of the pulse voltage signal generated by a photovoltaic picoseconds to a few hundred ns, the laser can be detected waveform ns pulse width. 0.5mJ/mm2的激光脉冲可产生近百mV的电压信号,具有很高的灵敏度。 Laser pulse 0.5mJ / mm2 can generate hundreds of mV voltage signal, having a high sensitivity. 因此本 Therefore, this

发明提供的硅和掺杂钛酸锶激光探测器在军事、国防、科研、生产和生活等方面均 Doped silicon invention provides strontium titanate and laser detector are in the military, national defense, scientific research, production and life

有广泛的应用。 There are a wide range of applications.

附图说明 BRIEF DESCRIPTION

图1.硅一掺杂钛酸锶两层结构的光探测器 1. FIG photodetector silicon doped strontium titanate bilayer structure

图2.硅一绝缘层一掺杂钛酸锶三层结构的光探测器 2. FIG insulating layer a silicon photodetector strontium titanate doped with a three-layer structure

图3.硅一缓冲层一掺杂钛酸锶三层结构的光探测器 Figure 3. a silicon photodetector strontium titanate doped buffer layer a three-layer structure

图4.用500兆示波器储存记录的SrNkwTi^A /Si两层结构激光探测器,测量YAG 4. FIG recorded with 500 megabytes of storage oscilloscope SrNkwTi ^ A / Si two-layer structure of the laser probe, the measurement YAG

激光器输出波长1. 06|_im、脉宽25ps激光脉冲所产生的脉冲电压信号。 Laser output wavelength of 1. 06 | _im, pulse width of 25ps pulse voltage signal generated by the laser pulse.

图5.用500兆示波器储存记录的SrNb。 FIG 5. SrNb recorded with 500 megabytes of storage oscilloscope. .Ji。 .Ji. .99(ySrTi03/Si三层结构激光探测器, .99 (ySrTi03 / Si three-layer structure of the laser probe,

测量YAG三倍频激光器输出波长355nm、脉宽15ps激光脉冲所产生的脉冲电压信号。 Measurement frequency tripled YAG laser output wavelength of 355nm, pulse width of 15ps pulse voltage signal generated by the laser pulse.

图面说明如下: FIG plane as follows:

l一硅衬底; 2 —光响应材料层; 3—第一电极; a silicon substrate l; 2 - photoresponsive material layer; 3- a first electrode;

4一第二电极; 5—电阻; 6—电极引线; 4 a second electrode; 5- resistance; 6- electrode lead;

7 —绝缘层; 8-缓冲层; 7-- insulating layer; 8- buffer layer;

具体实施方式实施例l,下面结合附图和具体实施例对本发明进行详细地说明 DETAILED DESCRIPTION Example l embodiment, the present invention will be described below in detail in conjunction with the accompanying drawings and specific embodiments

参考图1,选用激光分子束外延设备制备硅一掺杂钛酸锶两层结构的光探测器。 Referring to FIG 1, the selection of a laser molecular beam epitaxy apparatus prepared a silicon-doped strontium titanate photodetector two-layer structure. 衬底1为P型硅片,在其上直接外延生长180nra厚的n型SrNb。 P-type silicon substrate 1 is directly epitaxially grown thereon 180nra thick n-type SrNb. .。 .. Ji。 Ji. .的03光响应材料层2,形成SrNWwTi^CVSi两层异质结构样品,切割成尺寸为3x3醒2的探测器芯;用铟在衬底1表面焊接约为(|)2咖圆形的第二电极4,用铟在SrNb。 . 03 photoresponsive material layer 2 is formed SrNWwTi ^ CVSi two-layer heterostructure sample was cut into a size of 3x3 core 2 wake detector; about indium solder surface of the substrate. 1 (|) 2 of a circular coffee a second electrode 4, with indium SrNb. .。 .. Ji。 Ji. 」903光响应材料层2的一个角的表面上,焊接约为())lram圆形的第一电极3;用两根(j)O. lmra的铜线作电极引线6,并用铟把两根(j)O. lmm铜电极引线6的一端分别焊接在第一电极3和第二电极4上;电阻5选用5Q阻值的,并将其两端分别与两根电极引线6的输出端焊接;这样探测器芯就制备完成,把探测器芯装入一个铝探测器外壳内,用同轴电缆接头引出输出端。 "903 on the surface of a light response of the corner material layer 2, the welding is about () LRAM circular first electrode 3);. With two (j) O lmra copper wire as an electrode wire 6, and the two with indium root (j) O lmm end of the copper electrode leads 6 are welded to the first electrode 3 and second electrode 4; 5Q selected resistance resistor 5, and both ends of the two electrode leads are respectively output terminal 6 welding; this core probe to prepared, loaded in a core of the aluminum detector probe housing, with an output terminal lead coaxial cable connector.

选用500兆示波器,用上述制备出的具有SrNba^Ti^CVSi两层结构激光探测器,测量YAG激光器输出波长1. 06,、脉宽25ps的激光脉冲,图4是用示波器储存记录探测器一个激光脉冲所产生的电压信号波形。 Selection oscilloscope 500 MB using the above prepared having SrNba ^ Ti ^ CVSi two-layer structure of the laser probe, a YAG laser output wavelength measuring 1.06 ,, laser pulse width of 25ps, FIG. 4 is a storage oscilloscope detector recording a voltage signal generated by the laser pulse waveform. 电压信号的前沿上升时间仅为〜1.5ns,半宽度仅为〜2. lns, 0. 5mJ/mm2的激光脉冲可产生近百mV的电压信号。 Leading edge rise time of the voltage signal ~1.5ns, the half width of only ~2. Lns, 0. 5mJ / mm2 laser pulse may produce hundreds mV voltage signal. 因此,说明该探测器的探测不仅是一个超快过程,而且具有很高的灵敏度。 Therefore, the description of the detector probe is not only a process ultrafast, and high sensitivity.

实施例2 Example 2

按实施例1制备两层结构的激光探测器,选用脉冲激光设备,在2英寸n型硅片衬底l上直接外延生长200nm厚的、p型Srln。 By a laser probe prepared in Example 1 two-layer structure, a pulsed laser device selection, two inches on an n-type silicon substrate l 200nm thick epitaxially grown directly, p is type Srln. .。 .. Ji。 Ji. .舰03薄膜光响应材料层2,制备出SrIna。 SUM 03 photoresponsive thin film material layer 2, prepared SrIna. . 5Ti。 5Ti. .99503/Si两层异质结构样品作为芯片,其它结构同实施例1。 .99503 / Si sample as a two-layer heterostructure chip, other configurations in Example 1. 实施例3 Example 3

参考图2,选用磁控溅射装置,制备一硅一缓冲层一掺杂钛酸锶三层结构的激光探测器。 Referring to Figure 2, selection of a magnetron sputtering apparatus, preparing a silicon buffer layer a doped strontium titanate laser detector three-layer structure. 在n型硅片衬底l上溅射生长一层0.4nm的SrO作为缓冲层8,再在其上溅射一层800nm厚的p型SrMn。 On the n-type silicon substrate l Sputtering SrO 0.4nm layer 8 as a buffer layer, and then a layer of sputtered thereon 800nm ​​thick p-type SrMn. .Ji。 .Ji. .9A薄膜光响应材料层S,形成SrMn。 .9A layer thin-film light responsive material S, forming SrMn. .。 .. Ji。 Ji. .9A/Si 两层异质结构芯片;或参考图3,在SrO缓冲层8上溅射生长一层lnm的SrTi03作为绝缘层7;然后再在绝缘层7上溅射一层800nm厚的p型SrMn。 .9A / Si heterostructures two chips; or 3, SrO buffer layer in growing a layer of lnm of SrTi03 sputtering as the insulating layer 7, 8; on the insulating layer and then sputtering a 800nm ​​thick p 7 type SrMn. .。 .. /Ti。 / Ti. .9903薄膜光响应材料层2。 .9903 photoresponsive thin film material layer 2. 在SrMn。 In SrMn. .。 .. Ji。 Ji. .9903薄膜光响应材料层2上的一个边缘,用真空蒸镀0. 5鹏宽的铂作为第一电极3,其余同按实施例1制备的快响应宽频段激光探测器结构一样。 .9903 photoresponsive thin film 2 on one edge of the material layer, by vacuum deposition of platinum 0.5 Peng width as the first electrode 3, as with the rest by a fast response detector wideband laser structure prepared in Example 1 of the embodiment. 实施例4 Example 4

参考图3,制备一硅一缓冲层一掺杂钛酸锶三层结构的激光探测器选用激光分子束外延装置,在p型硅片1上外延生长50rnn的BaO作为缓沖层8, 再外延生长0. 5咖厚n型SrSb。 Referring to Figure 3, a preparation of a silicon epitaxial buffer layer is a doped strontium titanate laser detector means three-layer structure of a laser molecular beam selection, on the p-type silicon epitaxial growth 50rnn 1 of BaO as a buffer layer 8, and then epitaxial growth 0.5 thick n-type coffee SrSb. ,5Ti。 , 5Ti. .5()3薄膜光响应材料层2,形成SrSb。 .5 () 3 thin film light-responsive material layer 2, is formed SrSb. .5TiQ.503/Si两层异质结构芯片,在SrSb。 .5TiQ.503 / Si heterostructures two chips, the SrSb. .5Ti。 .5Ti. .503薄膜层的四个边缘用磁控溅射装置,溅射0.5min 宽的银第一电极3,在硅片1的上面的中心位置用磁控溅射直径(!)5rnm的银第二电极4,其余同实施例1制备的快响应宽频段激光探测器结构一样。 Silver .503 second 5rnm four edges of the film layer by magnetron sputtering apparatus, sputtering silver wide 0.5min first electrode 3, the diameter magnetron sputtering in a central position above the wafer 1 (!) electrode 4, as with the rest of wideband fast response to laser detector structure prepared in Example 1 of the embodiment.

实施例5 Example 5

参考图1,制备一硅一掺杂钛酸锶二层结构的激光探测器 Referring to FIG 1, the preparation of a silicon-doped strontium titanate laser detector layer structure

选用激光分子束外延设备,在P型硅片1上直接外延生长5lini厚、n型SrTa。 Selection laser molecular beam epitaxy apparatus, epitaxially grown directly 5lini thick, n-type on a P type silicon SrTa 1. .。 .. 2Ti。 2Ti. .gs03薄膜光响应材料层2,制备出SrTa。 .gs03 photoresponsive thin film material layer 2, prepared SrTa. .。 .. 2Ti。 2Ti. .9803/Si两层异质结构芯片样品, 其余结构按实施例1制备的快响应宽频段激光探测器结构一样。 .9803 / Si heterostructure two-chip samples, a fast response by the rest of the structure as broad-band laser detector structure prepared in Example 1 of the embodiment.

实施例6 Example 6

参考图1,制备一硅一掺杂钛酸锶二层结构的激光探测器 Referring to FIG 1, the preparation of a silicon-doped strontium titanate laser detector layer structure

选用激光分子束外延设备,在P型硅上直接外延生长0.5ran厚、n型Sr。 Selection laser molecular beam epitaxy apparatus, epitaxially grown directly 0.5ran thick, n-type on a P type silicon Sr. ,La。 , La. ,。 . . 5Ti03 薄膜光响应材料层2,制备出Sr。 5Ti03 photoresponsive thin film material layer 2, prepared Sr. .98La。 .98La. .。 .. 2Ti03/Si两层异质结构芯片,用市场购买的1MQ的电阻作电阻5,其余同实施例1制备的快响应宽频段激光探测器结构一样。 2Ti03 / Si heterostructure layers chips, resistor for the market to buy 1MQ resistor 5, with the remainder as fast response to broad-band laser detector structure prepared in Example 1 of the embodiment.

实施例7 Example 7

参考图1,制备一硅一掺杂钛酸锶二层结构的激光探测器 Referring to FIG 1, the preparation of a silicon-doped strontium titanate laser detector layer structure

选用激光分子束外延设备,在P型硅片1上直接外延生长200nm厚Sr。 Selection laser molecular beam epitaxy apparatus 1 on a P type silicon is epitaxially grown directly 200nm thick Sr. . J。 . J. .5Ti03 薄膜光响应材料层2, Sr。 .5Ti03 thin-film light responsive material layer 2, Sr. .5Y。 .5Y. .5Ti03/Si两层异质结构芯片,电阻5为1K的电阻,其余同实施例1制备的快响应宽频段激光探测器结构一样。 .5Ti03 / Si heterostructure two-chip, a resistance of 1K resistor 5, with the remainder as a fast response detector wideband laser structure prepared in Example 1 of the embodiment.

实施例8 Example 8

参考图1,制备一硅一掺杂钛酸锶二层结构的激光探测器选用激光分子束外延设备,在p型硅片1上直接外延生长1 wm厚Sr。 Referring to Figure 1, the preparation of a silicon-doped strontium titanate layer structure of the laser probe selection laser molecular beam epitaxy apparatus, a WM thick epitaxially grown directly on the p-type silicon wafer 1 Sr. . 8Gd。 . 8Gd. . Ji03 薄膜光响应材料层2,制备出Sr。 . Ji03 photoresponsive thin film material layer 2, prepared Sr. .8Ge。 .8Ge. .2Ti03/Si两层异质结构芯片样品,其余结构按实施例1制备的快响应宽频段激光探测器结构一样。 .2Ti03 / Si heterostructure two-chip samples, a fast response by the rest of the structure as broad-band laser detector structure prepared in Example 1 of the embodiment.

实施例9 Example 9

参考图1,制备一硅一掺杂钛酸锶二层结构的激光探测器 Referring to FIG 1, the preparation of a silicon-doped strontium titanate laser detector layer structure

选用激光分子束外延设备,在p型硅片1上直接外延生长1 wm厚Sr。 Selection laser molecular beam epitaxy apparatus 1 wm thick epitaxially grown directly on the p-type silicon wafer 1 Sr. .8Dy。 .8Dy. . 2Ti03 薄膜光响应材料层2,制备出Sr。 . 2Ti03 photoresponsive thin film material layer 2, prepared Sr. .8Dy。 .8Dy. .2Ti(VSi两层异质结构芯片样品,其余结构按实施例1制备的快响应宽频段激光探测器结构一样。 .2Ti (VSi two-layer heterostructure chip samples, according to the remaining structure as fast response detector wideband laser structure prepared in Example 1 of the embodiment.

实施例10 Example 10

参考图1,制备一硅一掺杂钛酸锶二层结构的激光探测器 Referring to FIG 1, the preparation of a silicon-doped strontium titanate laser detector layer structure

选用激光分子束外延设备,在p型硅片1上直接外延生长1 厚Sr。 Selection laser molecular beam epitaxy apparatus, a thick epitaxially grown directly on the p-type silicon wafer Sr. 1 .8Sm。 .8Sm. . 2Ti03 薄膜光响应材料层2,制备出31"。.807。.21103/51两层异质结构芯片样品,其余结构按实施例1制备的快响应宽频段激光探测器结构一样。 . 2Ti03 photoresponsive thin film material layer 2, to prepare a 31 ".. 807..21103 / two-layer heterostructure sample chips 51, as a fast response detector structure of the remaining wideband laser structure prepared according to Example 1.

实施例11 Example 11

参考图l,制备一硅一掺杂钛酸锶二层结构的激光探测器 Referring to FIG l, preparation of a silicon-doped strontium titanate laser detector layer structure

选用激光分子束外延设备,在n型硅片1上直接外延生长lOOmn厚SrFe。 Selection laser molecular beam epitaxy apparatus, lOOmn thick epitaxially grown directly on the n-type silicon wafer SrFe 1. .。 .. 5Ti。 5Ti. .99503 薄膜光响应材料层2,制备出SrFe。 .99503 photoresponsive thin film material layer 2, prepared SrFe. .Ji。 .Ji. .9(VSi两层异质结构芯片样品,其余结构按实施例1制备的利用异质结材料制作的快响应宽频段激光探测器结构一样。 .9 (VSi two-layer heterostructure chip samples, as described in the rest of the structure of wideband fast laser detector response using a heterojunction structure of the material prepared in Example.

实施例12 Example 12

参考图1,制备一硅一掺杂钛酸锶二层结构的激光探测器 Referring to FIG 1, the preparation of a silicon-doped strontium titanate laser detector layer structure

选用激光分子束外延设备,在n型硅片1上直接外延生长lOOnm厚SrMg。 Selection laser molecular beam epitaxy apparatus, a thickness of lOOnm SrMg epitaxially grown directly on the n-type silicon wafer 1. .。 .. 5Ti。 5Ti. .g503 薄膜光响应材料层2,制备出SrMg。 .g503 photoresponsive thin film material layer 2, prepared SrMg. .。 .. 5Ti。 5Ti. .9503/Si两层异质结构芯片样品,其余结构按实施例1制备的快响应宽频段激光探测器结构一样。 .9503 / Si heterostructure two-chip samples, a fast response by the rest of the structure as broad-band laser detector structure prepared in Example 1 of the embodiment.

实施例13参考图l,制备一硅一掺杂钛酸锶二层结构的激光探测器 Example 13 l embodiment with reference to FIG prepared a silicon-doped strontium titanate laser detector layer structure

选用激光分子束外延设备,在n型硅片1上直接外延生长100nm厚SrUi^ft 薄膜光响应材料层2,制备出SrWuTkA/Si两层异质结构芯片样品,其余结构按实施例1制备的快响应宽频段激光探测器结构一样。 Selection laser molecular beam epitaxy apparatus, 100nm thick is epitaxially grown directly SrUi ^ ft photoresponsive thin film material on the n-type silicon layer 12, prepared SrWuTkA / Si heterostructure two-chip sample, the remaining structure prepared according to Example 1 fast response as broad-band laser detector structure.

实施例14 Example 14

参考图2,制备一硅一绝缘层一掺杂钛酸锶三层结构的激光探测器选用激光分子束外延设备进行制备,先在n型硅片1上外延0. 4ran厚的SrTi03 层作绝缘层7,再在SrTi03绝缘层7上,外延生长300nm厚的Srln。 Referring to FIG 2, a preparation of a silicon insulating layer a doped strontium titanate laser detector three-layer structure of a laser molecular beam epitaxy apparatus selection prepared first epitaxial 0. 4ran thick on the n-type silicon wafer as the insulating layer 1 SrTi03 layer 7, then over SrTi03 insulating layer 7, a 300nm-thick epitaxially grown Srln. .MTi,03薄膜光响应材料层2,形成Srln。 .MTi, 03 thin-film light responsive material layer 2, is formed Srln. .。 .. Ji。 Ji. ,(ySrTi03/Si三层异质结构芯片,将其切割成尺寸为lxl5cm2的探测器芯;用氢氟酸去除硅片1表面的氧化硅,用铟在硅片1表面焊接约为小2咖的第二电极4,用锡在SrIn隨Tie.gA薄膜层2的一个角表面处焊接约为(l)lno 圆形的第一电极3;用两根(()O. lmm的铜线作电极引线6,并用铟把两根小O. lram铜电极引线6的一端分别焊接在第一电极3和第二电极4上;选用0. OIQ的导线作电阻5,并将其两端分别与两根电极引线6的输出端焊接;这样探测器芯就制备完备,把探测器芯装入一个铜探测器外壳内,用同轴电缆接头引出输出端。 , (YSrTi03 / Si three-layer heterostructure chip cut to a size of the probe core lxl5cm2; removed with hydrofluoric acid a surface of the silicon wafer of silicon oxide, indium on a surface of the welded around small coffee wafer 2 a second electrode 4, with tin in the thin film layer Tie.gA SrIn with a welding angle of the surface at about 2 (l) lno circular first electrode 3;. by two (() O lmm for copper electrode lead 6, and one end of indium O. lram two small copper electrode leads 6 are welded to the first electrode 3 and second electrode 4; 0. OIQ selection for resistance wire 5, and both ends thereof, respectively two electrode lead welding output terminal 6; this probe prepared on the core is complete, the probe core loaded in a copper probe housing, with an output terminal lead coaxial cable connector.

选用500兆示波器,用上述的Srln。 Selection oscilloscope 500 MB using the above Srln. .Ji。 .Ji. .99(ySrTi(ySi三层结构激光探测器, 测量YAG三倍频激光器输出波长355mn、脉宽15ps的激光脉冲。图5是用示波器储存记录探测器一个激光脉冲,所产生的电压信号波形。从图5可看出,脉冲激光所产生电压信号的前沿上升时间仅为〜1.3ns,半宽度仅为〜2ns, 0. 5mJ的激光能量可产生70mV的电压信号。因此,三层结构的探测器和两层结构的探测器一样,不仅是一个超快过程,而且具有很高的灵敏度。 .99 (ySrTi (ySi three-layer structure of the laser probe, the measurement frequency tripled YAG laser output wavelength of 355mn, laser pulse width of 15ps. FIG. 5 is a storage oscilloscope detector a recording laser pulse, a voltage waveform generated. as can be seen from FIG. 5, the leading edge of the voltage signal generating pulsed laser rise time of ~1.3ns, the half width is only ~2ns, 0. 5mJ laser energy may generate a voltage signal of 70mV. Thus, detection of the three-layer structure and a detector as two-layer structure, not only a process ultrafast, and high sensitivity.

实施例15 Example 15

参考图2,制备一硅一绝缘层-掺杂钛酸锶三层结构的激光探测器按实施例14结构制作,其绝缘层7为LaA103,其厚度为l咖,其余结构同实施例14的快响应宽频段激光探测器结构一样。 Referring to FIG 2, an insulating layer was prepared a silicon - doped strontium titanate three-layer structure of the laser probe structure produced in Example 14, the insulating layer 7 which is LaA103, the thickness l of coffee, with the rest of the structure of Example 14 fast response as broad-band laser detector structure.

实施例16按实施例14结构制作,选用BaTi03作绝缘层7,其厚度为500rai,其余结构同实施例14的快响应宽频段激光探测器结构一样。 EXAMPLE 16 Example 14 Production structure embodiment, as the insulating layer 7 selected BaTi03 a thickness of 500rai, fast response wideband laser detector configuration example of the rest of the structure 14 with the same embodiment.

实施例17 Example 17

按实施例14结构制作,选用Zr03作绝缘层7,其厚度为300nm,其余结构同实施例14的快响应宽频段激光探测器结构一样。 Structure prepared in Example 14, for the selection of Zr03 insulating layer 7 having a thickness of 300 nm, Example 14 fast response wideband laser detector with the structure of the remaining structure of the same embodiment.

实施例18 Example 18

按实施例14结构制作,选用MgO作绝缘层7,其厚度为100nm,其余结构同实施例14的快响应宽频段激光探测器结构一样。 Structure prepared in Example 14, for the selection of MgO insulating layer 7 having a thickness of 100 nm or, fast response wideband Example 14 remaining structure of the laser detector structure with the same embodiment.

实施例19 Example 19

按实施例14结构制作,选用LaMn(U乍绝缘层7,其厚度为100ran,其余结构同实施例14的快响应宽频段激光探测器结构一样。 Structure prepared in Example 14, the choice LaMn (U 7 Chad insulating layer, a thickness of 100ran, fast response wideband Example 14 remaining structure of the laser detector structure with the same embodiment.

实施例20 Example 20

按实施例l结构制作,使用铝作电极3,其余结构同实施例l。 Structure prepared according to Example l embodiment, aluminum is used as the electrode 3, with the rest of the structure in Example l embodiment. 实施例21 Example 21

按实施例l结构制作,使用金作电极3,其余结构同实施例l。 Structure prepared as in Example l, using the gold electrode as the embodiment 3, the structure of Example l with the remaining embodiments. 实施例22 Example 22

按实施例1制备两层结构的激光探测器,选用银胶法,在2英寸n型硅片衬底1上生长5pm厚的、p型SrNb。 Laser detector according to embodiments of the two-layer structure prepared in Example 1, silver paste selection method, two inches on the n-type silicon substrate 1 grown 5pm thick, p is type SrNb. .Ji。 .Ji. ,03薄膜光响应材料层2,制备出SrNb。 , 03 thin-film light responsive material layer 2, prepared SrNb. .cnTi。 .cnTi. .的(VSi 两层异质结构样品作为芯片,其它结构同实施例l。 实施例23 . The (VSi as a two-layer heterostructure chip samples, with other structural embodiments Example l. Example 23

在n型硅衬底1上溅射生长一层0. 4rai的SrO作为缓冲层8,再外延生长一层0.4nra厚的SrTi03层作绝缘层7,再在SrTi03绝缘层7上,外延生长300nra厚的Srln。 On the n-type silicon substrate 1 Sputtering SrO 0. 4rai layer 8 as a buffer layer, epitaxially growing a layer thickness of SrTi03 0.4nra layer as the insulating layer 7, then over SrTi03 insulating layer 7 is epitaxially grown 300nra thick Srln. .wTi。 .wTi. ,(V薄膜光响应材料层2,形成Srln^/Ti^^/SrTiCySi三层异质结构芯片,将其切割成尺寸为lxl5cm2的探测器芯;其余同实施例14。 , (V photoresponsive thin film material layer 2 is formed Srln ^ / Ti ^^ / SrTiCySi three-layer heterostructure chip cut to a size of the probe core lxl5cm2; Example 14 remaining the same.

Claims (6)

  1. 1.一种快响应宽频段光探测器,包括:p型或n型硅片为衬底(1);在所述的p型或n型硅片为衬底(1)上相应生长一层n型或p型的掺杂钛酸锶薄膜层做成芯片;其特征在于:还包括一电阻(5)、第一电极(3)、第二电极(4)和两根引线(6),以及一绝缘层(7),所述的绝缘层(7)外延生长在衬底(1)与所述的n型或p型的掺杂钛酸锶薄膜层之间,所述的绝缘层(7)的厚度为10nm~500nm;所述的掺杂钛酸锶薄膜层为光响应材料层(2),该光响应材料层(2)厚度为0.5nm-5μm;第一电极(3)设置在光响应材料层(2)上,第二电极(4)设置在衬底(1)面上,两根电极引线(6)的一端分别与第一电极(3)和第二电极(4)连接,电极引线(6)的另一端是信号输出端;电阻(5)的两端分别和两根电极引线(6)的输出端连接; 所述的快响应宽频段光探测器是光生伏特型光电探测器; 所述的掺杂钛酸锶薄膜层是Sr1-xRxTiO3或SrMyTi1 A fast response wideband optical detector, comprising: p-type or n-type silicon wafer substrate (1); as a substrate (1) growing a layer of the corresponding p-type or n-type silicon wafer n-type or p-type doped layer made of strontium titanate film chip; characterized by: further comprising a resistor (5), a first electrode (3), a second electrode (4) and two lead wires (6), and an insulating layer (7), said insulating layer (7) is epitaxially grown between the substrate (1) and the n-type or p-type doped layer of the strontium titanate film, said insulating layer ( thickness 7) is 10nm ~ 500nm; doped strontium titanate thin film layer is a layer of light-responsive material (2), wherein the light-responsive material layer (2) having a thickness of 0.5nm-5μm; a first electrode (3) provided on the light responsive material layer (2), a second electrode (4) is provided (1) surface of the substrate, one end of the two electrode leads (6) respectively with the first electrode (3) and a second electrode (4) the other end is connected to the electrode lead (6) is a signal output terminal; across the resistor (5) respectively, and two electrode leads (6) connected to the output; fast response of the wideband optical detector is a photovoltaic type a photodetector; said strontium titanate thin film layer is doped Sr1-xRxTiO3 or SrMyTi1 -yO3;其中R包括:La、Dy、Y、Sm或Gd;其中M包括:Nb、Sb、Ta、In、Mn、W、Mg或Fe;其x值为0.005~0.5,y值为0.005~0.5; 所述的电阻(5)的阻值为0.01Ω~1MΩ。 -yO3; wherein R comprises: La, Dy, Y, Sm or of Gd; wherein M comprises: Nb, Sb, Ta, In, Mn, W, Mg or of Fe; which x is 0.005 ~ 0.5, y is 0.005 to 0.5; the value of resistor (5) is the 0.01Ω ~ 1MΩ.
  2. 2.按权利要求1所述的快响应宽频段光探测器,其特征在于:还包括在所述的硅衬底(1)上外延生长一SrO或BaO缓冲层(8),再在所述的SrO或BaO缓冲层(8)上外延生长所述的绝缘层(7),在该绝缘层(7)上外延生长所述的光响应材料层(2)。 2. Press section as claimed in claim fast response wideband optical detector of claim 1, characterized in that: further comprising a silicon substrate in the epitaxial growth of a BaO or SrO buffer layer (8) (1), and then the of BaO or SrO buffer layer (8) the epitaxial growth of the insulating layer (7), on the insulating layer (7) of the epitaxially grown layer of light-responsive material (2).
  3. 3. 按权利要求1所述的快响应宽频段光探测器,其特征在于:所述的绝缘层(7) 包括:铝酸镧LaA103、钛酸锶SrTi03、钛酸钡BaTiO,、氧化锆Zr02、锰酸镧LaMn03 或氧化镁MgO。 3. fast response claim wideband optical detector of claim 1, wherein: said insulating layer (7) comprising: a lanthanum aluminate LaA103, strontium titanate SrTiO 3, barium titanate BaTiO ,, zirconia Zr02 , magnesium oxide or lanthanum manganite LaMn03 MgO.
  4. 4. 按权利要求l、 2或3所述的快响应宽频段光探测器,其特征在于:还包括一金属外壳,将其芯片安装在所述的金属外壳内。 4. L claim, fast response wideband photodetector 2 or 3, characterized in that: further comprising a metal shell, to which the chip is mounted within a metal housing.
  5. 5. 按权利要求1所述的快响应宽频段光探测器,其特征在于:第一电极(3) 和第二电极(4)用铟或焊锡直接焊接,或用真空镀膜或磁控溅射镀膜方法蒸镀金、 银、铀或铝电极。 5. fast response claim wideband optical detector of claim 1, wherein: a first electrode (3) and a second electrode (4) is directly soldered with indium or solder, or by vacuum deposition or sputtering, magnetron vapor deposition method, gold, silver, uranium or aluminum electrode.
  6. 6.按权利要求1所述的快响应宽频段光探测器,其特征在于:所述的第一电极(3)的形状为一个点、 一条线,或在光响应材料层(2)边缘设置的一个圆圈;第二电极(4)的形状为一点、线形或面;连接在硅片的任何部位。 6. claim fast response wideband optical detector of claim 1, wherein: shape of said first electrode (3) is a point, a line, or a light responsive material layer (2) is provided an edge a circle; shape of the second electrode (4) is a point, line or plane; connected in any part of the silicon wafer.
CN 200510071811 2005-05-24 2005-05-24 Quick response broadband optical detector CN100573060C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200510071811 CN100573060C (en) 2005-05-24 2005-05-24 Quick response broadband optical detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200510071811 CN100573060C (en) 2005-05-24 2005-05-24 Quick response broadband optical detector

Publications (2)

Publication Number Publication Date
CN1869612A true CN1869612A (en) 2006-11-29
CN100573060C true CN100573060C (en) 2009-12-23

Family

ID=37443334

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200510071811 CN100573060C (en) 2005-05-24 2005-05-24 Quick response broadband optical detector

Country Status (1)

Country Link
CN (1) CN100573060C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2488455A1 (en) * 2009-10-16 2012-08-22 Koninklijke Philips Electronics N.V. Photo-responsive layer and layer assembly
CN102157655B (en) * 2011-02-28 2013-01-02 浙江大学 Strontium titanate/P-type silicon heterojunction-based electroluminescent device and preparation method thereof
US9786855B2 (en) 2014-12-30 2017-10-10 Indian Institute Of Technology Bombay Micro electro mechanical system (MEMS) based wide-band polymer photo-detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621238A (en) 1994-02-25 1997-04-15 The United States Of America As Represented By The Secretary Of The Air Force Narrow band semiconductor detector
US6059895A (en) 1997-04-30 2000-05-09 International Business Machines Corporation Strained Si/SiGe layers on insulator
CN1485935A (en) 2002-09-27 2004-03-31 中国科学院物理研究所 Strontium titanate doping and lanthanum manganese oxygen doping giant reluctivity device and its preparing process
CN1165084C (en) 2001-02-27 2004-09-01 中国科学院物理研究所 The semiconductor pn junction and strontium titanate
CN1535472A (en) 2001-07-20 2004-10-06 摩托罗拉公司 Epitaxial semiconductor on insulator (SOI) structures and devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621238A (en) 1994-02-25 1997-04-15 The United States Of America As Represented By The Secretary Of The Air Force Narrow band semiconductor detector
US6059895A (en) 1997-04-30 2000-05-09 International Business Machines Corporation Strained Si/SiGe layers on insulator
CN1165084C (en) 2001-02-27 2004-09-01 中国科学院物理研究所 The semiconductor pn junction and strontium titanate
CN1535472A (en) 2001-07-20 2004-10-06 摩托罗拉公司 Epitaxial semiconductor on insulator (SOI) structures and devices
CN1485935A (en) 2002-09-27 2004-03-31 中国科学院物理研究所 Strontium titanate doping and lanthanum manganese oxygen doping giant reluctivity device and its preparing process

Also Published As

Publication number Publication date Type
CN1869612A (en) 2006-11-29 application

Similar Documents

Publication Publication Date Title
Lin et al. Photoresponse and fast optical readout for a PbZr x Ti1− x O3/YBa2Cu3O7− x thin‐film heterostructure capacitor
US5512773A (en) Switching element with memory provided with Schottky tunnelling barrier
Di Giacomo et al. Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV‐irradiated TiO2 scaffolds on plastic substrates
US5227635A (en) Mercuric iodide x-ray detector
US5259891A (en) Integrated type solar battery
US5977476A (en) High efficiency photovoltaic device
Hagen et al. Novel hybrid solar cells consisting of inorganic nanoparticles and an organic hole transport material
US7608467B2 (en) Switchable resistive perovskite microelectronic device with multi-layer thin film structure
US6204139B1 (en) Method for switching the properties of perovskite materials used in thin film resistors
US4965655A (en) Interconnected semiconductor devices
US4938244A (en) Temperature difference detecting element using semiconductive ceramic material
US4292092A (en) Laser processing technique for fabricating series-connected and tandem junction series-connected solar cells into a solar battery
US5268037A (en) Monolithic, parallel connected photovoltaic array and method for its manufacture
US4873201A (en) Method for fabricating an interconnected array of semiconductor devices
US6252221B1 (en) Photo-conductive switch having an improved semiconductor structure
US20030000565A1 (en) Integrated thin-film photoelectric conversion module
US20030189235A1 (en) Photoelectric conversion element and photoelectric conversion device
US20090260671A1 (en) Systems and methods of parallel interconnection of photovoltaic modules
JP2008034609A (en) Solar battery element, solar battery module using same, and manufacturing methods of both
Hikita et al. Termination control of the interface dipole in La 0.7 Sr 0.3 MnO 3/Nb: SrTiO 3 (001) Schottky junctions
US4015175A (en) Discrete, fixed-value capacitor
JP2002261308A (en) Thin-film photoelectric conversion module
US5212395A (en) P-I-N photodiodes with transparent conductive contacts
JPH06342924A (en) Thin-film solar cell and manufacture thereof
US20080142070A1 (en) Photovoltaic module

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right