CN100412228C - Composite reinforcing and treating method for alumium or alumium alloy substrate surface through ion implantation and deposition - Google Patents

Composite reinforcing and treating method for alumium or alumium alloy substrate surface through ion implantation and deposition Download PDF

Info

Publication number
CN100412228C
CN100412228C CNB2006100101366A CN200610010136A CN100412228C CN 100412228 C CN100412228 C CN 100412228C CN B2006100101366 A CNB2006100101366 A CN B2006100101366A CN 200610010136 A CN200610010136 A CN 200610010136A CN 100412228 C CN100412228 C CN 100412228C
Authority
CN
China
Prior art keywords
aluminum
minor arc
pulse
bias
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100101366A
Other languages
Chinese (zh)
Other versions
CN1858296A (en
Inventor
王宇航
王浪平
王小峰
汤宝寅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CNB2006100101366A priority Critical patent/CN100412228C/en
Publication of CN1858296A publication Critical patent/CN1858296A/en
Application granted granted Critical
Publication of CN100412228C publication Critical patent/CN100412228C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The present invention discloses a composite intensifying processing method for injecting and depositing the ions of the surface of the basal body of aluminum or aluminum alloy, which relates to a composite intensifying processing method for injecting and depositing the ions of the surface of a metal material. The present invention solves the problems that the residual stress between a diamond carbon film and the basal body of aluminum or aluminum alloy is large, the binding force and the bearing capacity between the diamond carbon film and the basal body of the aluminum or the aluminum alloy are poor, the abrasion resistance of DLC is low under the condition of high speed and heavy load, and the DLC is easily peeled from the basal body of the aluminum or the aluminum alloy. A synthetic method is carried out according to the following steps that (1) the aluminum or the aluminum alloy is leaned in an ultrasonic mode; (2) the argon ions of the aluminum or aluminum alloy are cleaned in a sputtering mode; (3) Ti ions are injected; (4) the Ti is deposited by a PIIID method; (5) TiN is deposited by the PIIID method; (6) Ti (CN) is deposited by the PIIID method; (7) TiC is deposited by the PIIID method; (8) the diamond carbon film is synthetized, namely that the aluminum or the aluminum alloy having the surface with multilayer gradient films is obtained; the step (2) to step (8) are carried out in a vacuum chamber. The abrasion life of the DLC on the multilayer gradient films is more than 10 times longer than that of monolayer DLC of which the thickness is the same as the thickness of the DLC, and the friction coefficient of the DLC is below 0.1.

Description

Aluminum or aluminum alloy matrix surface ion implantation and deposition complex intensifying treatment process
Technical field
The present invention relates to a kind of metal material surface ion implantation and deposition complex intensifying treatment process.
Background technology
Aluminum or aluminum alloy is owing to light weight, specific tenacity height, be widely used in industrial circles such as Aeronautics and Astronautics, automobile and microelectronics, but the requirement to the aluminum or aluminum alloy surface is also more and more higher, because the aluminum or aluminum alloy surface hardness is low, abrasion resistance properties is poor, so need surface Hardening Treatment to improve its surface property.Excellent properties such as diamond-like carbon film (DLC) has the hardness height, frictional coefficient is low, thermal conductivity good, chemical stability is good, depositional area is big, and face is smooth smooth, is the desired coating material of material surface modifying.But since the difference of aluminium and aluminium alloy and diamond-like carbon film (DLC) performance and composition cause the diamond-like carbon film (DLC) that directly forms and the unrelieved stress between the matrix on the aluminum or aluminum alloy surface greatly, bonding force and supporting capacity be poor, diamond-like carbon film (DLC) abrasion resistance properties under the high-speed overload condition is low, easily peels off from the aluminum or aluminum alloy matrix.
Summary of the invention
The objective of the invention is that unrelieved stress is big in order to solve between diamond-like carbon film (DLC) and the aluminum or aluminum alloy matrix, bonding force and supporting capacity be poor, diamond-like carbon film abrasion resistance properties under the high-speed overload condition is low, easy problem of peeling off, and a kind of aluminum or aluminum alloy matrix surface ion implantation and deposition complex intensifying treatment process that provides from the aluminum or aluminum alloy matrix.Aluminum or aluminum alloy matrix surface ion implantation and deposition complex intensifying treatment process is being carried out according to the following steps: (one) aluminum or aluminum alloy purity all 〉=99.9% acetone and alcoholic acid solution in carry out ultrasonic cleaning successively; (2) aluminum or aluminum alloy carries out the argon plasma sputter clean, and the argon gas flow is 50~80sccm, and operating air pressure is 2.0 * 10 -1~8.0 * 10 -1Pa, the bias voltage amplitude is 4~8kV, and the bias pulse width is 20~60 μ s, and pulse-repetition is 50~100Hz, radio frequency power 300~600W, the treatment time is 20~30min; (3) aluminum or aluminum alloy is carried out titanium ion and inject, to be 90%~99.999% titanium by purity produce as the magnetic filtered pulse cathode arc source of negative electrode the titanium plasma body, and it is 2.0 * 10 that titanium ion injects operating air pressure -2~6.0 * 10 -2Pa, minor arc voltage are 40~80V, and the minor arc pulse width is 100~1000 μ s, the bias pulse width is than big 100~200 μ s of minor arc pulse width, the bias voltage amplitude is 20~30kV, and the bias pulse frequency is all 50~100Hz mutually with the minor arc pulse-repetition, and the treatment time is 0.5~2.0h; (4) PIIID method depositing Ti settled layer: to be 90%~99.999% titanium by purity produce as the magnetic filtered pulse cathode arc source of negative electrode the titanium plasma body, and Ti deposition operating air pressure is 2.0 * 10 -2~6.0 * 10 -2Pa, the bias voltage amplitude is 10~20kV, and the bias pulse width is 20~60 μ s, and the bias pulse frequency is all 50~100Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 40~80V, and the minor arc pulsewidth is 1~3ms, and the treatment time is 1.0~2.0h; (5) PIIID method depositing TiN settled layer: the N plasma body is produced by radio frequency source, and to be 90%~99.999% titanium by purity produce as the magnetic filtered pulse cathode arc source of negative electrode the Ti plasma body, and operating air pressure is 2.0 * 10 -1~6.0 * 10 -1Pa, the bias voltage amplitude is 10~20kV, the bias pulse width is 20~60 μ s, the bias pulse frequency is all 50~100Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 40~80V, and the minor arc pulsewidth is 1~3ms, radio frequency power 300~600W, the treatment time is 1.0~8.0h; (6) PIIID method depositing Ti (CN) settled layer: C plasma body and N plasma body are produced by radio frequency source, and to be 90%~99.999% titanium by purity produce as the magnetic filtered pulse cathode arc source of negative electrode the Ti plasma body, and operating air pressure is 2.0 * 10 -1~6.0 * 10 -1Pa, the bias voltage amplitude is 10~20kV, the bias pulse width is 20~60 μ s, the bias pulse frequency is all 50~100Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 40~80V, and the minor arc pulsewidth is 1~3ms, radio frequency power 300~600W, the treatment time is 1.0~8.0h; (7) PIIID method depositing Ti C settled layer: the C plasma body is produced by radio frequency source, and to be 90%~99.999% titanium by purity produce as the magnetic filtered pulse cathode arc source of negative electrode the Ti plasma body, and operating air pressure is 2.0 * 10 -1~6.0 * 10 -1Pa, the bias voltage amplitude is 10~20kV, the bias pulse width is 20~60 μ s, the bias pulse frequency is all 50~100Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 40~80V, and the minor arc pulsewidth is 1~3ms, radio frequency power 300~600W, the treatment time is 1.0~8.0h; (8) synthetic diamond-like carbon film, diamond-like carbon film are that 90%~99.999% graphite produces by negative electrode magnetic filtered pulse cathode arc source by purity, and operating air pressure is 2.0 * 10 -2~6.0 * 10 -2Pa, the bias voltage amplitude is 10~20kV, the bias pulse width is 20~60 μ s, the bias pulse frequency is all 50~100Hz mutually with the minor arc pulse-repetition, minor arc voltage is 40~80V, the minor arc pulsewidth is 1~2ms, and the treatment time is 1.0~10.0h, promptly obtains the aluminum or aluminum alloy that there is the multi-gradient film on the surface; Wherein step (two) is carried out in vacuum chamber to step (eight), vacuum chamber base vacuum degree 1.0 * 10 -4~4.0 * 10 -3Pa.Multi-gradient film of the present invention is made up of titanium ion input horizon, Ti settled layer, TiN settled layer, Ti (CN) settled layer, TiC settled layer and diamond-like carbon film from inside to outside successively.The wear-out life of diamond-like carbon film among the present invention on the multi-gradient film under fully loaded transportation condition improves more than 10 times than the individual layer diamond-like carbon film of aluminum or aluminum alloy surperficial directly formation, same thickness, and frictional coefficient is lower than 0.1, and (the ball mill decreases the test conditions of test: to mill part material is Si 3N 4, load is 500g, rotating speed is 200r/min).
It is ion implantation that the present invention at first carries out Ti at the aluminum or aluminum alloy matrix surface, forms titanium aluminium and mix layer mutually, improved the bonding force of multi-gradient film and aluminum or aluminum alloy matrix; Then formed gradient-structure on composition and the performance by the sedimentary Ti of PIIID method, TiN, Ti (CN), TiC multi-gradient settled layer and outer field DLC, outer DLC and the difference of aluminum or aluminum alloy matrix on composition and performance have been reduced, thereby slowly-releasing unrelieved stress, improved the bonding force of multi-gradient film and aluminum or aluminum alloy matrix.The multi-gradient settled layer has very strong supporting capacity, make aluminum or aluminum alloy matrix under the situation of high-speed overload, still have the advantages of good abrasion performance, also improved the hardness and the supporting capacity on aluminum or aluminum alloy matrix surface and inferior surface simultaneously through intensive treatment.The present invention has adopted plasma immersion ion to inject and deposition (Plasma Immersion IonImplantation and Deposition, PIIID, or claim comprehensive ion implantation and deposition) method, this method is directly pending workpiece to be immersed in the plasma body, applies the ion implantation and deposition intensive treatment that minor arc pulse and bias pulse are realized workpiece surface then on workpiece; This technological method has overcome that traditional beamline ion implanters is injected and the direct projection restriction of Ion Beam Enhanced Deposit Technology, again since the bombardment of energetic ion make sedimentary rete have the compactness and the bonding force of excellence.Adopt the PIIID method to obtain strengthening layer, and can realize the batch processing of part, be with a wide range of applications in the surface strengthening field at complex-shaped piece surface with high-bond and excellent surface properties.
Description of drawings
Fig. 1 carries out observation by light microscope figure after the scratch test to the individual layer DLC that aluminum substrate surface directly forms, and Fig. 2 carries out observation by light microscope figure after the scratch test to aluminum substrate surface multi-gradient film among the present invention.
Embodiment
Embodiment one: present embodiment aluminum or aluminum alloy matrix surface ion implantation and deposition complex intensifying treatment process is being carried out according to the following steps: (one) aluminum or aluminum alloy purity all 〉=99.9% acetone and alcoholic acid solution in carry out ultrasonic cleaning successively; (2) aluminum or aluminum alloy carries out the argon plasma sputter clean, and the argon gas flow is 50~80sccm, and operating air pressure is 2.0 * 10 -1~8.0 * 10 -1Pa, the bias voltage amplitude is 4~8kV, and the bias pulse width is 20~60 μ s, and pulse-repetition is 50~100Hz, radio frequency power 300~600W, the treatment time is 20~30min; (3) aluminum or aluminum alloy is carried out titanium ion and inject, to be 90%~99.999% titanium by purity produce as the magnetic filtered pulse cathode arc source of negative electrode the titanium plasma body, and it is 2.0 * 10 that titanium ion injects operating air pressure -2~6.0 * 10 -2Pa, minor arc voltage are 40~80V, and the minor arc pulse width is 100~1000 μ s, the bias pulse width is than big 100~200 μ s of minor arc pulse width, the bias voltage amplitude is 20~30kV, and the bias pulse frequency is all 50~100Hz mutually with the minor arc pulse-repetition, and the treatment time is 0.5~2.0h; (4) PIIID method depositing Ti settled layer: to be 90%~99.999% titanium by purity produce as the magnetic filtered pulse cathode arc source of negative electrode the titanium plasma body, and Ti deposition operating air pressure is 2.0 * 10 -2~6.0 * 10 -2Pa, the bias voltage amplitude is 10~20kV, and the bias pulse width is 20~60 μ s, and the bias pulse frequency is all 50~100Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 40~80V, and the minor arc pulsewidth is 1~3ms, and the treatment time is 1.0~2.0h; (5) PIIID method depositing TiN settled layer: the N plasma body is produced by radio frequency source, and to be 90%~99.999% titanium by purity produce as the magnetic filtered pulse cathode arc source of negative electrode the Ti plasma body, and operating air pressure is 2.0 * 10 -1~6.0 * 10 -1Pa, the bias voltage amplitude is 10~20kV, the bias pulse width is 20~60 μ s, the bias pulse frequency is all 50~100Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 40~80V, and the minor arc pulsewidth is 1~3ms, radio frequency power 300~600W, the treatment time is 1.0~8.0h; (6) PIIID method depositing Ti (CN) settled layer: C plasma body and N plasma body are produced by radio frequency source, and to be 90%~99.999% titanium by purity produce as the magnetic filtered pulse cathode arc source of negative electrode the Ti plasma body, and operating air pressure is 2.0 * 10 -1~6.0 * 10 -1Pa, the bias voltage amplitude is 10~20kV, the bias pulse width is 20~60 μ s, the bias pulse frequency is all 50~100Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 40~80V, and the minor arc pulsewidth is 1~3ms, radio frequency power 300~600W, the treatment time is 1.0~8.0h; (7) PIIID method depositing Ti C settled layer: the C plasma body is produced by radio frequency source, and to be 90%~99.999% titanium by purity produce as the magnetic filtered pulse cathode arc source of negative electrode the Ti plasma body, and operating air pressure is 2.0 * 10 -1~6.0 * 10 -1Pa, the bias voltage amplitude is 10~20kV, the bias pulse width is 20~60 μ s, the bias pulse frequency is all 50~100Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 40~80V, and the minor arc pulsewidth is 1~3ms, radio frequency power 300~600W, the treatment time is 1.0~8.0h; (8) synthetic diamond-like carbon film, diamond-like carbon film are that 90%~99.999% graphite produces by negative electrode magnetic filtered pulse cathode arc source by purity, and operating air pressure is 2.0 * 10 -2~6.0 * 10 -2Pa, the bias voltage amplitude is 10~20kV, the bias pulse width is 20~60 μ s, the bias pulse frequency is all 50~100Hz mutually with the minor arc pulse-repetition, minor arc voltage is 40~80V, the minor arc pulsewidth is 1~2ms, and the treatment time is 1.0~10.0h, promptly obtains the aluminum or aluminum alloy that there is the multi-gradient film on the surface; Wherein step (two) is carried out in vacuum chamber to step (eight), vacuum chamber base vacuum degree 1.0 * 10 -4~4.0 * 10 -3Pa.
Argon plasma in the present embodiment step (two) is produced by the radio-frequency antenna in the vacuum chamber, and step (two) can be removed the impurity of matrix surface.
Carry out the cut simultaneous test, the individual layer DLC that directly forms on aluminum substrate surface and to carry out loading rate equally on the multi-gradient film by present embodiment synthetic (matrix is an aluminium) be 20N/min, ultimate load is 60N, and cut speed is the cut process of 2mm/min.By observation by light microscope, disengaging has taken place in the rete of cut both sides and matrix among Fig. 1, has formed fold, and in cut inside, disengaging has just taken place the initial period rete; The cut both sides do not deform and the rete peeling phenomenon substantially among Fig. 2, and in the cut process, have still kept rete in the cut, interlayer has only taken place peeled off.Unrelieved stress is big between test-results explanation individual layer DLC and matrix, and the bonding force of film and matrix is poor; Present embodiment synthetic multi-gradient film and matrix have extraordinary bonding properties.
Embodiment two: the difference of present embodiment and embodiment one is: the time of twice ultrasonic cleaning is 8~15min in the step ().Other step is identical with embodiment one.
Embodiment three: the difference of present embodiment and embodiment one is: the N plasma body is generated by the nitrogen that feeds vacuum chamber.Other is identical with embodiment one.
Embodiment four: the difference of present embodiment and embodiment one is: the C plasma body is by at room temperature generating for the gasiform hydrocarbon polymer.Other is identical with embodiment one.
Embodiment five: the difference of present embodiment and embodiment four is: hydrocarbon polymer is methane, ethene or acetylene.Other is identical with embodiment four.
Embodiment six: the difference of present embodiment and embodiment four is: hydrocarbon polymer is an acetylene.Other is identical with embodiment four.
Embodiment seven: the difference of present embodiment and embodiment one is: aluminium alloy is aluminum-copper alloy, aluminum magnesium alloy, aluminum silicon alloy, alumal, Aludur or aluminium zinc-magnesium copper alloy.Other is identical with embodiment one.
Embodiment eight: the difference of present embodiment and embodiment one is: step (two) is carried out in vacuum chamber to step (eight), vacuum chamber base vacuum degree 2.0 * 10 -4~3.0 * 10 -3Pa.Other step is identical with embodiment one.
Embodiment nine: the difference of present embodiment and embodiment one is: operating air pressure is 3.0 * 10 in the step (three) -2~5.0 * 10 -2Pa, minor arc voltage are 50~70V, and the minor arc pulse width is 200~900 μ s, the bias pulse width is than big 100~200 μ s of minor arc pulse width, the bias voltage amplitude is 22~28kV, and the bias pulse frequency is all 60~90Hz mutually with the minor arc pulse-repetition, and the treatment time is 1.0~1.5h.Other step is identical with embodiment one.
Embodiment ten: the difference of present embodiment and embodiment one is: operating air pressure is 3.0 * 10 in the step (four) -2~5.0 * 10 -2Pa, the bias voltage amplitude is 12~18kV, and the bias pulse width is 30~50 μ s, and the bias pulse frequency is all 60~90Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 50~70V, and the minor arc pulsewidth is 1.5~2.5ms, and the treatment time is 1.2~1.8h.Other step is identical with embodiment one.
Embodiment 11: the difference of present embodiment and embodiment one is: operating air pressure is 3.0 * 10 in the step (five) -1~5.0 * 10 -1Pa, the bias voltage amplitude is 12~18kV, the bias pulse width is 30~50 μ s, the bias pulse frequency is all 60~90Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 50~70V, and the minor arc pulsewidth is 1.5~2.5ms, radio frequency power 400~500W, the treatment time is 2.0~7.0h.Other step is identical with embodiment one.
Embodiment 12: the difference of present embodiment and embodiment one is: operating air pressure is 3.0 * 10 in the step (six) -1~5.0 * 10 -1Pa, the bias voltage amplitude is 12~18kV, the bias pulse width is 30~50 μ s, the bias pulse frequency is all 60~90Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 50~70V, and the minor arc pulsewidth is 1.5~2.5ms, radio frequency power 400~500W, the treatment time is 2.0~7.0h.Other step is identical with embodiment one.
Embodiment 13: the difference of present embodiment and embodiment one is: operating air pressure is 3.0 * 10 in the step (seven) -1~5.0 * 10 -1Pa, the bias voltage amplitude is 12~18kV, the bias pulse width is 30~50 μ s, the bias pulse frequency is all 60~90Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 50~70V, and the minor arc pulsewidth is 1.5~2.5ms, radio frequency power 400~500W, the treatment time is 2.0~7.0h.Other step is identical with embodiment one.
Embodiment 14: the difference of present embodiment and embodiment one is: operating air pressure is 3.0 * 10 in the step (eight) -2~5.0 * 10 -2Pa, the bias voltage amplitude is 12~18kV, and the bias pulse width is 30~50 μ s, and the bias pulse frequency is all 60~90Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 50~70V, and the minor arc pulsewidth is 1.2~1.8ms, and the treatment time is 2.0~9.0h.Other step is identical with embodiment one.
Embodiment 15: the difference of present embodiment and embodiment one is: the argon gas flow is 55~75sccm in the step (two), and operating air pressure is 3.0 * 10 -1~7.0 * 10 -1Pa, the bias voltage amplitude is 5~7kV, and the bias pulse width is 25~55 μ s, and pulse-repetition is 60~90Hz, radio frequency power 400~500W, the treatment time is 21~29min.Other step is identical with embodiment one.
Embodiment 16: the difference of present embodiment and embodiment one is: step (two) is carried out in vacuum chamber to step (eight), vacuum chamber base vacuum degree 3.0 * 10 -4~2.0 * 10 -3Pa.Other step is identical with embodiment one.
Embodiment 17: present embodiment LY12 aluminium alloy matrix surface ion implantation and deposition complex intensifying is handled: (one) LY12 aluminium alloy is in 99.99% acetone and the alcoholic acid solution in purity and carries out the 10min ultrasonic cleaning successively; (2) the LY12 aluminium alloy carries out the argon plasma sputter clean, and the argon gas flow is 50sccm, and operating air pressure is 6.0 * 10 -1Pa, the bias voltage amplitude is 6kV, and the bias pulse width is 60 μ s, and pulse-repetition is 100Hz, radio frequency power 500W, the treatment time is 30min; (3) the LY12 alloy matrix aluminum is carried out titanium ion and inject, to be 99% titanium by purity produce as the magnetic filtered pulse cathode arc source of negative electrode the titanium plasma body, and it is 4.0 * 10 that titanium ion injects operating air pressure -2Pa, minor arc voltage are 70V, and the minor arc pulse width is 200 μ s, and the bias pulse width is 300 μ s, and the bias voltage amplitude is 20kV, and the bias pulse frequency is all 50Hz mutually with the minor arc pulse-repetition, and the treatment time is 0.5; (4) PIIID method depositing Ti settled layer: to be 99% titanium by purity produce as the magnetic filtered pulse cathode arc source of negative electrode the titanium plasma body, and Ti deposition operating air pressure is 4.0 * 10 -2Pa, the bias voltage amplitude is 10kV, and the bias pulse width is 60 μ s, and the bias pulse frequency is all 50Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 60V, and the minor arc pulsewidth is 2ms, and the treatment time is 1.0h; (5) PIIID method depositing TiN settled layer: the N plasma body is produced by radio frequency source, and to be 99% titanium by purity produce as the magnetic filtered pulse cathode arc source of negative electrode the Ti plasma body, and operating air pressure is 4.0 * 10 -1Pa, the bias voltage amplitude is 10kV, and the bias pulse width is 60 μ s, and the bias pulse frequency is all 50Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 50V, the minor arc pulsewidth is 3ms, radio frequency power 500W, the treatment time is 1.0h; (6) PIIID method depositing Ti (CN) settled layer: C plasma body and N plasma body are produced by radio frequency source, and to be 99% titanium by purity produce as the magnetic filtered pulse cathode arc source of negative electrode the Ti plasma body, and operating air pressure is 4.0 * 10 -1Pa, the bias voltage amplitude is 10kV, and the bias pulse width is 60 μ s, and the bias pulse frequency is all 50Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 50V, the minor arc pulsewidth is 3ms, radio frequency power 500W, the treatment time is 1.0h; (7) PIIID method depositing Ti C settled layer: the C plasma body is produced by radio frequency source, and to be 99% titanium by purity produce as the magnetic filtered pulse cathode arc source of negative electrode the Ti plasma body, and operating air pressure is 4.0 * 10 -1Pa, the bias voltage amplitude is 10kV, and the bias pulse width is 60 μ s, and the bias pulse frequency is all 50Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 50V, the minor arc pulsewidth is 3ms, radio frequency power 500W, the treatment time is 1.0h; (8) synthetic diamond-like carbon film, diamond-like carbon film are that 99% graphite produces by negative electrode magnetic filtered pulse cathode arc source by purity, and operating air pressure is 4.0 * 10 -2Pa, the bias voltage amplitude is 20kV, and the bias pulse width is 60 μ s, and the bias pulse frequency is all 100Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 70V, and the minor arc pulsewidth is 1ms, and the treatment time is 2h, promptly obtains the LY12 aluminium alloy that there is the multi-gradient film on the surface; Wherein step (two) is carried out in vacuum chamber to step (eight), vacuum chamber base vacuum degree 1.0 * 10 -3Pa; C plasma body among step (six) and (seven) is by C 2H 2Gas produces.
The complex intensifying multi-gradient film of the formation on the present embodiment LY12 alloy matrix aluminum carries out the ball mill and decreases test under the fully loaded transportation condition of 500g.Change the wear-resistant revolution of complex intensifying layer of the formation on the present embodiment LY12 alloy matrix aluminum>60000, and frictional coefficient is lower than 0.1.

Claims (10)

1. aluminum or aluminum alloy matrix surface ion implantation and deposition complex intensifying treatment process is characterized in that aluminum or aluminum alloy matrix surface ion implantation and deposition complex intensifying treatment process carrying out according to the following steps: (one) aluminum or aluminum alloy purity all 〉=99.9% acetone and alcoholic acid solution in carry out ultrasonic cleaning successively; (2) aluminum or aluminum alloy carries out the argon plasma sputter clean, and the argon gas flow is 50~80sccm, and operating air pressure is 2.0 * 10 -1~8.0 * 10 -1Pa, the bias voltage amplitude is 4~8kV, and the bias pulse width is 20~60 μ s, and pulse-repetition is 50~100Hz, radio frequency power 300~600W, the treatment time is 20~30min; (3) aluminum or aluminum alloy is carried out titanium ion and inject, to be 90%~99.999% titanium by purity produce as the magnetic filtered pulse cathode arc source of negative electrode the titanium plasma body, and it is 2.0 * 10 that titanium ion injects operating air pressure -2~6.0 * 10 -2Pa, minor arc voltage are 40~80V, and the minor arc pulse width is 100~1000 μ s, the bias pulse width is than big 100~200 μ s of minor arc pulse width, the bias voltage amplitude is 20~30kV, and the bias pulse frequency is all 50~100Hz mutually with the minor arc pulse-repetition, and the treatment time is 0.5~2.0h; (4) comprehensive ion implantation and deposition method depositing Ti settled layer: to be 90%~99.999% titanium by purity produce as the magnetic filtered pulse cathode arc source of negative electrode the titanium plasma body, and Ti deposition operating air pressure is 2.0 * 10 -2~6.0 * 10 -2Pa, the bias voltage amplitude is 10~20kV, and the bias pulse width is 20~60 μ s, and the bias pulse frequency is all 50~100Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 40~80V, and the minor arc pulsewidth is 1~3ms, and the treatment time is 1.0~2.0h; (5) comprehensive ion implantation and deposition method depositing TiN settled layer: the N plasma body is produced by radio frequency source, and to be 90%~99.999% titanium by purity produce as the magnetic filtered pulse cathode arc source of negative electrode the Ti plasma body, and operating air pressure is 2.0 * 10 -1~6.0 * 10 -1Pa, the bias voltage amplitude is 10~20kV, the bias pulse width is 20~60 μ s, the bias pulse frequency is all 50~100Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 40~80V, and the minor arc pulsewidth is 1~3ms, radio frequency power 300~600W, the treatment time is 1.0~8.0h; (6) comprehensive ion implantation and deposition method depositing Ti (CN) settled layer: C plasma body and N plasma body are produced by radio frequency source, to be 90%~99.999% titanium by purity produce as the magnetic filtered pulse cathode arc source of negative electrode the Ti plasma body, and operating air pressure is 2.0 * 10 -1~6.0 * 10 -1Pa, the bias voltage amplitude is 10~20kV, the bias pulse width is 20~60 μ s, the bias pulse frequency is all 50~100Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 40~80V, and the minor arc pulsewidth is 1~3ms, radio frequency power 300~600W, the treatment time is 1.0~8.0h; (7) comprehensive ion implantation and deposition method depositing Ti C settled layer: the C plasma body is produced by radio frequency source, and to be 90%~99.999% titanium by purity produce as the magnetic filtered pulse cathode arc source of negative electrode the Ti plasma body, and operating air pressure is 2.0 * 10 -1~6.0 * 10 -1Pa, the bias voltage amplitude is 10~20kV, the bias pulse width is 20~60 μ s, the bias pulse frequency is all 50~100Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 40~80V, and the minor arc pulsewidth is 1~3ms, radio frequency power 300~600W, the treatment time is 1.0~8.0h; (8) synthetic diamond-like carbon film, diamond-like carbon film are that 90%~99.999% graphite produces by negative electrode magnetic filtered pulse cathode arc source by purity, and operating air pressure is 2.0 * 10 -2~6.0 * 10 -2Pa, the bias voltage amplitude is 10~20kV, the bias pulse width is 20~60 μ s, the bias pulse frequency is all 50~100Hz mutually with the minor arc pulse-repetition, minor arc voltage is 40~80V, the minor arc pulsewidth is 1~2ms, and the treatment time is 1.0~10.0h, promptly obtains the aluminum or aluminum alloy that there is the multi-gradient film on the surface; Wherein step (two) is carried out in vacuum chamber to step (eight), vacuum chamber base vacuum degree 1.0 * 10 -4~4.0 * 10 -3Pa.
2. aluminum or aluminum alloy matrix surface ion implantation and deposition complex intensifying treatment process according to claim 1 is characterized in that the time of twice ultrasonic cleaning in the step () is 8~15min.
3. aluminum or aluminum alloy matrix surface ion implantation and deposition complex intensifying treatment process according to claim 1 is characterized in that the N plasma body is generated by the nitrogen that feeds vacuum chamber.
4. aluminum or aluminum alloy matrix surface ion implantation and deposition complex intensifying treatment process according to claim 1 is characterized in that the C plasma body is by at room temperature generating for the gasiform hydrocarbon polymer.
5. aluminum or aluminum alloy matrix surface ion implantation and deposition complex intensifying treatment process according to claim 4 is characterized in that hydrocarbon polymer is methane, ethene or acetylene.
6. aluminum or aluminum alloy matrix surface ion implantation and deposition complex intensifying treatment process according to claim 1 is characterized in that aluminium alloy is aluminum-copper alloy, aluminum magnesium alloy, aluminum silicon alloy, alumal, Aludur or aluminium zinc-magnesium copper alloy.
7. aluminum or aluminum alloy matrix surface ion implantation and deposition complex intensifying treatment process according to claim 1 is characterized in that step (two) carries out vacuum chamber base vacuum degree 2.0 * 10 to step (eight) in vacuum chamber -4~3.0 * 10 -3Pa.
8. aluminum or aluminum alloy matrix surface ion implantation and deposition complex intensifying treatment process according to claim 1 is characterized in that operating air pressure is 3.0 * 10 in the step (three) -2~5.0 * 10 -2Pa, minor arc voltage are 50~70V, and the minor arc pulse width is 200~900 μ s, the bias pulse width is than big 100~200 μ s of minor arc pulse width, the bias voltage amplitude is 22~28kV, and the bias pulse frequency is all 60~90Hz mutually with the minor arc pulse-repetition, and the treatment time is 1.0~1.5h.
9. aluminum or aluminum alloy matrix surface ion implantation and deposition complex intensifying treatment process according to claim 1 is characterized in that operating air pressure is 3.0 * 10 in the step (four) -2~5.0 * 10 -2Pa, the bias voltage amplitude is 12~18kV, and the bias pulse width is 30~50 μ s, and the bias pulse frequency is all 60~90Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 50~70V, and the minor arc pulsewidth is 1.5~2.5ms, and the treatment time is 1.2~1.8h.
10. aluminum or aluminum alloy matrix surface ion implantation and deposition complex intensifying treatment process according to claim 1 is characterized in that operating air pressure is 3.0 * 10 in the step (five) -1~5.0 * 10 -1Pa, the bias voltage amplitude is 12~18kV, the bias pulse width is 30~50 μ s, the bias pulse frequency is all 60~90Hz mutually with the minor arc pulse-repetition, and minor arc voltage is 50~70V, and the minor arc pulsewidth is 1.5~2.5ms, radio frequency power 400~500W, the treatment time is 2.0~7.0h.
CNB2006100101366A 2006-06-08 2006-06-08 Composite reinforcing and treating method for alumium or alumium alloy substrate surface through ion implantation and deposition Expired - Fee Related CN100412228C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100101366A CN100412228C (en) 2006-06-08 2006-06-08 Composite reinforcing and treating method for alumium or alumium alloy substrate surface through ion implantation and deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100101366A CN100412228C (en) 2006-06-08 2006-06-08 Composite reinforcing and treating method for alumium or alumium alloy substrate surface through ion implantation and deposition

Publications (2)

Publication Number Publication Date
CN1858296A CN1858296A (en) 2006-11-08
CN100412228C true CN100412228C (en) 2008-08-20

Family

ID=37297252

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100101366A Expired - Fee Related CN100412228C (en) 2006-06-08 2006-06-08 Composite reinforcing and treating method for alumium or alumium alloy substrate surface through ion implantation and deposition

Country Status (1)

Country Link
CN (1) CN100412228C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534611A (en) * 2010-12-27 2012-07-04 鸿富锦精密工业(深圳)有限公司 Shell and manufacturing method for shell
CN102691062A (en) * 2011-03-23 2012-09-26 鸿富锦精密工业(深圳)有限公司 Housing and manufacturing method thereof

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008064517A1 (en) * 2006-11-27 2008-06-05 Lifetech Scientific (Shenzhen) Co., Ltd. Method for preparing a coating on the surface of medical devices made of nickel-titanium alloy
CN101319324B (en) * 2008-06-17 2010-06-23 庄严 Diamond-like film preparation method
CN101418430B (en) * 2008-09-09 2010-09-15 哈尔滨工业大学 Omnidirectional ion injection and deposition batch composite handling arrangement and method
CN102465274A (en) * 2010-11-15 2012-05-23 北京有色金属研究总院 Method for increasing bonding force between metal thin film prepared by magneto-controlled sputtering process and substrate
CN102477526B (en) * 2010-11-22 2015-02-04 鸿富锦精密工业(深圳)有限公司 Shell and manufacture method thereof
CN102477537B (en) * 2010-11-26 2014-08-20 鸿富锦精密工业(深圳)有限公司 Casing and preparation method thereof
CN102560404B (en) * 2010-12-24 2013-11-06 北京有色金属研究总院 Preparation method for spiral line low-resistance composite coating for traveling wave tube
CN102560368A (en) * 2010-12-28 2012-07-11 鸿富锦精密工业(深圳)有限公司 Shell and manufacturing method thereof
CN102618822A (en) * 2011-01-26 2012-08-01 鸿富锦精密工业(深圳)有限公司 Housing and manufacturing method thereof
CN102226263B (en) * 2011-05-31 2013-09-11 中广核工程有限公司 Cutter tool and manufacturing method thereof
CN103074589A (en) * 2013-01-31 2013-05-01 苏州格科特真空镀膜技术有限公司 Preparation method of nanocrystal composite coating
CN103056425B (en) * 2013-02-27 2015-06-10 武汉大学 Gradient composite coating alloy bit of super hard nanometer crystal TiN-CN (carbon nitride)-DLC (diamond-like carbon) and preparation method thereof
CN103305883A (en) * 2013-05-07 2013-09-18 苏州奕光薄膜科技有限公司 Cleaning process of coating surface of electronic device
CN104018115B (en) * 2013-06-04 2016-07-06 黄山明明德轴承有限公司 A kind of rolling bearing lasso raceway ion implanting and precipitation compounding method
CN104711513A (en) * 2013-12-17 2015-06-17 上海航天设备制造总厂 Solid lubricating film layer and preparation method thereof
CN103898470B (en) * 2014-03-28 2016-03-02 中国科学院重庆绿色智能技术研究院 Mg alloy surface gradient composite coating and preparation method thereof
CN105331945A (en) * 2014-08-12 2016-02-17 上海航天设备制造总厂 Preparing method for diamond-like carbon base solid-liquid composite lubricating film under high vacuum
CN105154954B (en) * 2015-09-30 2019-01-08 深圳天珑无线科技有限公司 Pack alloy surface treatment method
CN105755442B (en) * 2015-11-06 2019-07-26 北京师范大学 A kind of efficient filtered arc cathodic plasma deposition preparation DLC thick-film methods
CN106435506B (en) * 2015-12-24 2019-03-29 北京师范大学 A method of solving engine piston scuffing of cylinder bore
CN105755465B (en) * 2016-02-26 2019-04-23 北京师范大学 A kind of manufacturing method and equipment of the novel smokeless pot based on ion beam technology
CN108531856B (en) * 2018-04-20 2020-04-07 北京师范大学 Preparation method of electrode coating
CN108977759B (en) * 2018-09-20 2020-10-02 中国科学院近代物理研究所 Method for carrying out composite strengthening treatment on metal plasma immersion ion implantation and deposition on surface of spallation target ball
CN109267029B (en) * 2018-12-06 2020-12-11 大连大学 Preparation method of magnesium alloy surface coating with high flatness, high wear resistance and high corrosion resistance
CN114875367B (en) * 2022-05-06 2023-04-07 哈尔滨工业大学 Method for depositing thick tetrahedral amorphous carbon film by pulse cathode arc/workpiece bias pulse cooperative control

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040200599A1 (en) * 2003-04-10 2004-10-14 Bradley Michael William Amorphous carbon layer for heat exchangers and processes thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040200599A1 (en) * 2003-04-10 2004-10-14 Bradley Michael William Amorphous carbon layer for heat exchangers and processes thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
等离子体浸没离子注入及表面强化工艺的进展. 汤宝寅,刘爱国等.材料科学与工艺,第7卷第增刊期. 1999
等离子体浸没离子注入及表面强化工艺的进展. 汤宝寅,刘爱国等.材料科学与工艺,第7卷第增刊期. 1999 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534611A (en) * 2010-12-27 2012-07-04 鸿富锦精密工业(深圳)有限公司 Shell and manufacturing method for shell
CN102691062A (en) * 2011-03-23 2012-09-26 鸿富锦精密工业(深圳)有限公司 Housing and manufacturing method thereof

Also Published As

Publication number Publication date
CN1858296A (en) 2006-11-08

Similar Documents

Publication Publication Date Title
CN100412228C (en) Composite reinforcing and treating method for alumium or alumium alloy substrate surface through ion implantation and deposition
Lin et al. Diamond like carbon films deposited by HiPIMS using oscillatory voltage pulses
Yuan et al. Recent developments in research of double glow plasma surface alloying technology: A brief review
CN106521440B (en) A method of high adhesion force aluminizer is prepared using magnetron sputtering method
CN111074224B (en) Corrosion-resistant high-entropy alloy nitride coating, and preparation method and application thereof
CN103469205A (en) Coating process for lotus leaf-like diamond film
CN108977781B (en) Method for depositing W-N hard film on surface of hard alloy by magnetron sputtering composite technology
CN112410728B (en) CrB with high Cr content 2 Preparation process of-Cr coating
CN111945111A (en) Composite coating deposited on surface of cubic boron nitride cutter and deposition method
CN107858684B (en) Metal-diamond-like composite coating, preparation method and application thereof and coated tool
CN114196914B (en) Carbide high-entropy ceramic material, carbide ceramic layer and preparation method and application thereof
CN113235051B (en) Nano biphase high-entropy alloy film and preparation method thereof
Wu et al. Micrograph and structure of CrN films prepared by plasma immersion ion implantation and deposition using HPPMS plasma source
Cheng et al. Effect of substrate bias on structure and properties of (AlTiCrZrNb) N high-entropy alloy nitride coatings through arc ion plating
US20120263941A1 (en) Coated article and method for making the same
CN113278939A (en) Fullerene-like nano-structure hydrogen-containing carbon film and preparation method thereof
US20120171416A1 (en) Coated article and method for making the same
CN110923650B (en) DLC coating and preparation method thereof
CN110129742B (en) Preparation method of superhard and tough TiSiCN hard coating
CN107881469B (en) Diamond-like composite coating, preparation method and application thereof and coated tool
CN103774092B (en) It is a kind of to prepare conductive and corrosion-resistant finishes method in Mg alloy surface
CN109023292A (en) A kind of Mg alloy surface DLC protective coating preparation method
US8592032B2 (en) Coated article and method for making the same
US20120171421A1 (en) Coated article and method for making the same
CN113774347A (en) Superhard and tough nano composite coating, preparation method and use equipment

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080820