CN100406379C - Deacidification method for preparing nano silicon dioxide by gas phase method - Google Patents
Deacidification method for preparing nano silicon dioxide by gas phase method Download PDFInfo
- Publication number
- CN100406379C CN100406379C CNB031169473A CN03116947A CN100406379C CN 100406379 C CN100406379 C CN 100406379C CN B031169473 A CNB031169473 A CN B031169473A CN 03116947 A CN03116947 A CN 03116947A CN 100406379 C CN100406379 C CN 100406379C
- Authority
- CN
- China
- Prior art keywords
- deacidification
- nano
- silicon dioxide
- nano silicon
- sio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims abstract description 21
- 235000012239 silicon dioxide Nutrition 0.000 title claims abstract description 11
- 239000005543 nano-size silicon particle Substances 0.000 title claims abstract description 4
- 238000005243 fluidization Methods 0.000 claims abstract description 16
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 15
- 239000007789 gas Substances 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 5
- 239000001257 hydrogen Substances 0.000 claims abstract description 5
- 238000002485 combustion reaction Methods 0.000 claims abstract description 3
- 239000012808 vapor phase Substances 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims 2
- 239000002253 acid Substances 0.000 claims 1
- 230000018044 dehydration Effects 0.000 claims 1
- 238000006297 dehydration reaction Methods 0.000 claims 1
- 239000000377 silicon dioxide Substances 0.000 abstract description 10
- 229910052681 coesite Inorganic materials 0.000 abstract description 9
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 9
- 229910052682 stishovite Inorganic materials 0.000 abstract description 9
- 229910052905 tridymite Inorganic materials 0.000 abstract description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 5
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 5
- 239000012071 phase Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910003902 SiCl 4 Inorganic materials 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Silicon Compounds (AREA)
Abstract
本发明公开了一种用于气相法制备纳米二氧化硅(SiO2)的脱酸方法。所述方法采用氢气和空气燃烧后的混合气体为流化气体,在流化床反应器中对纳米SiO2进行脱酸,流化脱酸的温度为300~500℃,流化气速为2~15cm/s。脱酸后纳米SiO2的pH大于4,水含量小于2%。The invention discloses a deacidification method for preparing nano silicon dioxide (SiO 2 ) by gas phase method. The method uses the mixed gas after combustion of hydrogen and air as the fluidization gas, and deacidifies nano- SiO2 in a fluidized bed reactor. ~15cm/s. After deacidification, the pH of nano- SiO2 is greater than 4, and the water content is less than 2%.
Description
技术领域 technical field
本发明涉及一种脱酸方法,具体地说,涉及一种用于气相法制备纳米二氧化硅(SiO2)的脱酸方法。The invention relates to a deacidification method, in particular to a deacidification method for preparing nano silicon dioxide (SiO 2 ) by gas phase method.
背景技术 Background technique
气相法制备的纳米SiO2是一种高科技的无机精细化工产品,由于纳米材料所特有的性质,其被广泛应用于橡胶、涂料、胶粘剂、化装品、油墨、塑料、医药等诸多工业领域,是一种发展前景十分广阔的纳米材料。Nano- SiO2 prepared by vapor phase method is a high-tech inorganic fine chemical product. Due to the unique properties of nano-materials, it is widely used in many industrial fields such as rubber, coatings, adhesives, cosmetics, inks, plastics, and medicine. It is a kind of nanometer material with very broad development prospect.
气相法制备纳米SiO2是由四氯化硅(SiCl4)经高温水解反应制得,其反应式如下:Nano-SiO 2 prepared by vapor phase method is prepared from silicon tetrachloride (SiCl 4 ) through high-temperature hydrolysis reaction, and its reaction formula is as follows:
SiCl4+2H2O→SiO2+4HClSiCl 4 +2H 2 O→SiO 2 +4HCl
由上述反应式可知,伴随SiO2的生成,同时有大量的氯化氢(HCl)气体产生。纳米SiO2是一种粒径很小、比表面很大的粉体,因而在其制备过程中吸附了大量的HCl。而在纳米SiO2(俗称白炭黑)大部分应用场合(如硅橡胶等),对白炭黑吸附的残余HCl量有严格要求,其pH值是衡量产品质量的一个主要指标。此外,在上述反应中,反应物水蒸汽大量过剩,白炭黑产品还吸附了不少水份,为了满足各种应用场合的要求,所含水份也必须与HCl一并去除,以达到规定的产品质量标准要求。It can be seen from the above reaction formula that a large amount of hydrogen chloride (HCl) gas is produced simultaneously with the generation of SiO 2 . Nano-SiO 2 is a powder with a small particle size and a large specific surface, so a large amount of HCl is adsorbed during its preparation. However, in most applications of nano-SiO 2 (commonly known as white carbon black) (such as silicone rubber, etc.), there are strict requirements on the amount of residual HCl adsorbed by white carbon black, and its pH value is a major indicator for measuring product quality. In addition, in the above reaction, there is a large excess of water vapor in the reactants, and the silica product also absorbs a lot of water. In order to meet the requirements of various applications, the contained water must also be removed together with HCl to meet the specified requirements. product quality standard requirements.
气相法白炭黑生产过程中,纳米SiO2脱酸一般有两种方法。一种是将预热到一定温度的干空气通入脱酸塔内与SiO2粉体接触,进行气固两相传质;另一种是在干空气内加入NH3,通过化学作用脱除HCl。后一种脱酸方法人为地引入杂质,影响产品质量;而第一种方法经实践证明其脱酸效果不理想。In the production process of fumed silica, there are generally two methods for deacidification of nano-SiO 2 . One is to pass dry air preheated to a certain temperature into the deacidification tower to contact with SiO 2 powder for gas-solid two-phase mass transfer; the other is to add NH 3 to the dry air to remove HCl through chemical action . The latter deacidification method artificially introduces impurities and affects product quality; while the first method has been proved to be unsatisfactory in deacidification effect.
发明内容 Contents of the invention
本发明目的在于,提供一种的脱除气相法制备的纳米SiO2吸附HCl的方法,使纳米SiO2的pH大于4.0及水份含量小于2%。The object of the present invention is to provide a method for removing HCl from nano- SiO2 prepared by gas-phase method, so that the pH of nano -SiO2 is greater than 4.0 and the water content is less than 2%.
本发明的目的是这样实现的:The purpose of the present invention is achieved like this:
本发明采用氢气和空气燃烧后的混合气体为流化气体,在流化床反应器中对纳米SiO2进行脱酸,其中氢气与空气的体积比优选1∶2~20,流化脱酸的温度为300~500℃,流化气速为2~15cm/s,流化膨胀率为3~6,流化脱酸的时间为30~90min。The present invention adopts the mixed gas after combustion of hydrogen and air as the fluidization gas, and deacidifies nano -SiO2 in a fluidized bed reactor, wherein the volume ratio of hydrogen to air is preferably 1:2 to 20, and the fluidized deacidification The temperature is 300-500°C, the fluidization gas velocity is 2-15cm/s, the fluidization expansion ratio is 3-6, and the fluidization deacidification time is 30-90min.
本发明所述的脱酸和水的方法与现有技术相比具有气固两相接触状况好,脱酸时间快,不需要另外加入水份,不会引入其它杂质,与固定床相比不会急剧增加阻力等优点。Compared with the prior art, the deacidification and water method of the present invention has good gas-solid two-phase contact condition, fast deacidification time, no need to add water, and no other impurities will be introduced. Compared with fixed beds, it does not Advantages such as a sharp increase in resistance.
具体实施方式 Detailed ways
下面通过实施例对本发明作进一步说明,所举之例并不限制本发明的保护范围:Below by embodiment the present invention will be further described, and the example given does not limit protection scope of the present invention:
实施例1Example 1
先将流化气(H2与空气的体积比为1∶20)预热至600~700℃,然后穿过瓷环均布后到达流化段对由流化塔上部加入的纳米SiO2进行流化脱酸,流化脱酸的温度为300℃,流化气速为5cm/s,流化膨胀率为3,经30分钟流化脱酸后的纳米SiO2由流化塔下部出料口出料,进行产品分析。First preheat the fluidizing gas (the volume ratio of H2 to air is 1:20) to 600-700°C, then pass through the ceramic ring and then reach the fluidization section to treat the nano- SiO2 added from the upper part of the fluidization tower. Fluidized deacidification, the temperature of fluidized deacidification is 300°C, the fluidization gas velocity is 5cm/s, the fluidization expansion rate is 3, and the nano-SiO 2 after fluidized deacidification for 30 minutes is discharged from the lower part of the fluidized tower Out of the mouth, for product analysis.
产品分析结果:Product Analysis Results:
脱酸前:纳米SiO2的pH:2.50,含H2O:2.0%,比表面积201m2/g;Before deacidification: pH of nano-SiO 2 : 2.50, containing H 2 O: 2.0%, specific surface area 201m 2 /g;
脱酸后:纳米SiO2的pH:4.19,含H2O:1.0%,比表面积200m2/g。After deacidification: pH of nano SiO 2 : 4.19, H 2 O content: 1.0%, specific surface area 200m 2 /g.
实施例2Example 2
先将流化气(H2与空气的体积比为1∶10)预热至600~700℃,然后穿过瓷环均布后到达流化段对由流化塔上部加入的纳米SiO2进行流化脱酸,流化脱酸的温度为500℃,流化气速为15cm/s,流化膨胀率为6,经90分钟流化脱酸后的纳米SiO2由流化塔下部出料口出料,进行产品分析。First preheat the fluidizing gas (the volume ratio of H2 to air is 1:10) to 600-700°C, then pass through the ceramic ring and evenly distribute it to the fluidization section to treat the nano- SiO2 added from the upper part of the fluidization tower. Fluidized deacidification, the temperature of fluidized deacidification is 500°C, the fluidization gas velocity is 15cm/s, the fluidization expansion rate is 6, and the nano- SiO2 after fluidized deacidification for 90 minutes is discharged from the lower part of the fluidized tower Out of the mouth, for product analysis.
产品分析结果:Product Analysis Results:
脱酸前:纳米SiO2的pH:1.90,含H2O:4.6%,比表面积460m2/g;Before deacidification: pH of nano-SiO 2 : 1.90, containing H 2 O: 4.6%, specific surface area 460m 2 /g;
脱酸后:纳米SiO2的pH:4.26,含H2O:2.0%,比表面积459m2/g。After deacidification: pH of nano SiO 2 : 4.26, H 2 O content: 2.0%, specific surface area 459m 2 /g.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031169473A CN100406379C (en) | 2003-05-16 | 2003-05-16 | Deacidification method for preparing nano silicon dioxide by gas phase method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031169473A CN100406379C (en) | 2003-05-16 | 2003-05-16 | Deacidification method for preparing nano silicon dioxide by gas phase method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1548370A CN1548370A (en) | 2004-11-24 |
CN100406379C true CN100406379C (en) | 2008-07-30 |
Family
ID=34320539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB031169473A Expired - Lifetime CN100406379C (en) | 2003-05-16 | 2003-05-16 | Deacidification method for preparing nano silicon dioxide by gas phase method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100406379C (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100431955C (en) * | 2006-09-04 | 2008-11-12 | 上海氯碱化工股份有限公司 | Apparatus and method of synthesizing acidic material on SiO2 surface by eliminating gas phase method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1208016A (en) * | 1998-08-27 | 1999-02-17 | 沈阳化工股份有限公司 | Gas phase process preparing white carbon |
-
2003
- 2003-05-16 CN CNB031169473A patent/CN100406379C/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1208016A (en) * | 1998-08-27 | 1999-02-17 | 沈阳化工股份有限公司 | Gas phase process preparing white carbon |
Also Published As
Publication number | Publication date |
---|---|
CN1548370A (en) | 2004-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102502663B (en) | Preparation method of hydrophobic nano-silica | |
JP4828032B2 (en) | Hydrophobic silica powder and method for producing the same | |
JP4430164B2 (en) | Method for producing hydrophobic non-aggregated colloidal silica | |
JP5484331B2 (en) | Surface-modified silica produced by pyrolysis | |
JP5644789B2 (en) | Powder composition | |
WO2018006694A1 (en) | Method for producing silicon tetrachloride | |
CN101755017A (en) | Surface-modified, pyrogenically prepared silica | |
CN102001671A (en) | Method for preparing white carbon black by using silicon tetrachloride | |
CN102557049B (en) | The preparation method of silica dioxide granule | |
JP3581079B2 (en) | Granules based on titanium dioxide produced by pyrolysis and process for producing the same | |
CN102530962B (en) | Method for synthesizing hydrophobic nanometer silicon dioxide particle through combustion method | |
CN108129671A (en) | A kind of method that the micro-nano bead with super-hydrophobicity is prepared based on silicon rubber microballoon | |
CN115612315A (en) | A kind of preparation method of surface modified spherical silica powder | |
CN100406379C (en) | Deacidification method for preparing nano silicon dioxide by gas phase method | |
JP5136815B2 (en) | Superabsorbent inorganic oxide powder and method for producing the same | |
CN100506921C (en) | A method for preparing hydrophobic nano silicon dioxide by continuous surface treatment | |
DE60005367D1 (en) | FALLING SILICON, PRODUCTION PROCESS AND USE | |
CN111918949B (en) | Chemical heat storage material and method for producing the same | |
CN109179429B (en) | A kind of method for preparing mesoporous nano-silica from chlorosilane raffinate | |
CN101172610A (en) | A kind of preparation method of high temperature silica powder | |
CN102515104A (en) | Method for preparing hydrogen chloride and silicon dioxide by hydrolyzing silicon tetrachloride in organic solvent | |
CN107902660A (en) | A kind of yellow phosphorus furnace slag prepares SiO2The method of base ATO conductive powder materials | |
CN107118289A (en) | A kind of surface modifier of inorganic particle and preparation method thereof, application | |
JP4093660B2 (en) | Hydrophobic silica and method for producing the same | |
TW202140382A (en) | Modified metal oxide particle material and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20080730 |
|
CX01 | Expiry of patent term |