CN100401988C - 超声波诊断微脉管显像 - Google Patents

超声波诊断微脉管显像 Download PDF

Info

Publication number
CN100401988C
CN100401988C CNB038133237A CN03813323A CN100401988C CN 100401988 C CN100401988 C CN 100401988C CN B038133237 A CNB038133237 A CN B038133237A CN 03813323 A CN03813323 A CN 03813323A CN 100401988 C CN100401988 C CN 100401988C
Authority
CN
China
Prior art keywords
image
contrast agent
processor
imaging system
ultrasound wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB038133237A
Other languages
English (en)
Other versions
CN1658798A (zh
Inventor
D·霍佩辛普森
J·E·珀维斯
M·肖夫
C·韦勒特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN1658798A publication Critical patent/CN1658798A/zh
Application granted granted Critical
Publication of CN100401988C publication Critical patent/CN100401988C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/481Diagnostic techniques involving the use of contrast agent, e.g. microbubbles introduced into the bloodstream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8959Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using coded signals for correlation purposes
    • G01S15/8963Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using coded signals for correlation purposes using pulse inversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52025Details of receivers for pulse systems
    • G01S7/52026Extracting wanted echo signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52038Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52038Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target
    • G01S7/52039Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target exploiting the non-linear response of a contrast enhancer, e.g. a contrast agent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8918Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being linear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems
    • G01S15/8981Discriminating between fixed and moving objects or between objects moving at different speeds, e.g. wall clutter filter

Abstract

一种用于借助于造影剂来超声显像细小血管的方法和设备。当微泡穿过血管时,在一系列图像中检测出造影剂微泡的位置。对这些图像进行瞬时处理,以鉴别移动的微泡,并对这些图像进行持续处理以描绘示出通过血管的微泡后面的轨迹的图像。可以使用最大强度持续性来示出通过脉管系统的微泡的轨迹的平稳形成,或者采用缓慢的衰退,以便随着时间的过去该轨迹将褪色成黑色。

Description

超声波诊断微脉管显像
技术领域
本发明涉及超声波诊断显像系统,具体来讲涉及用于利用造影剂来显像微脉管系统的超声波诊断显像系统。
背景技术
超声波造影剂让临床医生能够对体内不容易看到或测量到的结构与功能进行显像及量化。当受超声波激励时,超声波造影剂非线性共振的能力能够产生强的谐波响应,这实现了利用造影剂注入的血管(vessel)的清晰分段。可以通过利用如美国专利5,456,257中所述的高MI的超声波使造影剂的微泡分裂来产生清晰像。当灌入间质组织的血管时跟随造影剂前进的能力使利用如美国专利5,833,613中所描述的造影剂产生心肌灌注的措施成为可能。
最近的病变研究(比如,乳房病变)已经把目光集中在病变的脉管系统上。乳房病变的早期检测和病变界线的定义往往能够通过利用超声波寻找特异的脉管结构加以确定。另外,在病变生长发展上的变化(比如那些因化学治疗而造成的病变生长发展)往往会在早期的时间点通过病变脉管系统上的变化自己显示出来。可以预料的是,可以通过利用造影剂来辅助这些研究。然而,涉及的脉管结构是极小的,带有单条血管的微脉管结构以非常低的流速传导极少量的血流。人们将希望能够使用增强反差的超声波来显像并描绘出这种困难,以便检测微脉管结构。
发明内容
依照本发明的原理,借助于造影剂、利用超声波来显像微脉管结构。造影剂的谐波响应减少了混杂,并且通过描绘穿过细小血管的微泡的轨迹、利用瞬时持续性来鉴别微脉管系统的结构。
附图说明
在附图中:
图1以框图的形式举例说明了依照本发明的原理构造的超声波诊断显像系统;
图2举例说明了图1的图像处理器的详细图;
图3举例说明了依照本发明的原理构造的超声波系统的图像处理器的优选实施例;
图4a-4f举例说明了依照本发明的原理、流过微脉管结构的微泡的显示;
图5举例说明了依照本发明的另一方面的复合交错脉冲(pulseinversion)倒向序列;和
图6a-6c举例说明了依照本发明、可以通过复合交错脉冲倒向而获得的多普勒滤波器特性曲线。
具体实施方式
在使用微泡造影剂的增强对比度的超声波显像过程中,有时存在这样的情况(condition),在其中间质组织或血液中的微泡的有效浓度十分低、以致单独的微泡或微泡作为相应超声波图像中的点状目标簇穿过了血管。在这些显像中造影剂的点状形态可能使人们难以识别图像中血管的结构。由于可以使用血管的形态学来进检测,并且在某些情况下可以使用血管的形态学来辨别可疑病变,因此改善这类血管的可视性具有临床意义。下列设备和方法通过使用超声波反差图像的瞬时帧间处理而改善了血管的可视性和血流图案。
参照图1,以框图的形式示出了依照本发明的原理构造的超声波诊断显像系统。探针10包括阵列转换器12,它将超声波波束发射到患者体内,并且响应于发射的波束、沿着波束方向从中接收回波,所有这些都受波束形成器14的控制。正交带通(QBP)滤波器16将波束形成器所产生的回波信号解调为正交I、Q分量。正交带通滤波器在本领域中已是众所周知的,比如在名为的″超声波谐波闪光抑制(UltrasonicHarmonic Flash Suppression)″的美国专利[申请号为09/693,059]中所描述的那些正交带通滤波器。回波样本耦合于回波处理器20,在所述回波处理器中通过振幅检测和日志压缩来处理这些样本,以供进行B模式显示。回波样本还耦合于流量处理器22,在所述流量处理器中使用这些回波样本来进行如美国专利5,386,830、6036,643和6,095,980中所描述的多普勒估计。处理后的回波信号和流量信号皆耦合于图像处理器30,在所述图像处理器中将它们扫描转换成期望的图像格式,并且独立地或者组合地显示于显示器40上。可以把二维图像序列存储在图像缓冲器32中,在所述图像缓冲器中可以对它们进行重放以供更加详细的研究,或者对它们进行诸如通过再现以形成三维图像或图像序列之类的处理。
依照本发明的原理,图像处理器为增强对比度(contrast)的超声波图像执行帧间图像处理。在图2中示出了本发明的图像处理器的第一实施例。该图像处理器包括扫描转换器,它将接收到的对比度信号转换成期望的显示格式,比如矩形或扇区形状的图像。然后,由帧间高通滤波器36对扫描转换后的图像进行滤波。帧间高通滤波器36是一个瞬时滤波器,它可以采取FIR滤波器、IIR滤波器或以象素间为基础滤波连续图像的帧间微分器的形式。从帧到帧都相同的空间对应的像素(比如稳定间质组织的像素)将产生低级的或零级的输出。就像当微泡从帧到帧移动到像素位置中或从帧到帧移动到像素位置之外时会发生的情形那样,从帧到帧不同的像素将产生有限的输出电平以供显示。帧间高通滤波器36由此降低了来自稳定和半稳定目标(比如,间质组织)的信号,并且根据脉管系统中的微泡的移动而产生显示电平信号。
将高通滤波后的造影剂信号施加于持续处理器38上,所述持续处理器在图像中维持受检微泡的瞬时序列。持续处理器可能具有用于所显示微泡的持续的时间常数,所述时间常数大于零且小于等于一。由于会随时间在图像中形成(存留)单独微泡检测事件,因此它们所穿过的细小血管的形态变得可见了。持续处理器38能够以高的时间常数来进行操作,以在屏幕上示出通过血管的微泡的连续通道和流状结构的连续形成(buildup)。还可以给予持续处理器更低的时间常数,以便微泡事件将随时间迟缓地衰退(decay away)。优选地,给予用户复位控制39,以便在一个捕获序列的开始、或者在高时间常数序列已经利用微泡事件填充了具有微泡事件的屏幕以后、或者在间质组织或转换器运动以后,将持续复位成黑色。此外,人们还可能希望把高MI的发射帧的传输与复位控制39结合起来,以令持续处理器的复位能与高能量帧相一致,所述高能量帧强烈地使当前显像区域中的微泡断裂。
优选的持续处理器依照下列等式进行操作:
OutputPixel(x,y,k)=max{abs[InputPixel(x,y,k)],P*OutputPixel(x,y,k-1)}
其中时间常数P具有0<P≤1的范围。当时间常数P小于1时,显示出来的微泡事件的踪迹将呈现快速侵袭、缓慢衰退的亮度,其将作为发亮事件开始、继而随着时间的过去褪色成黑色。当时间常数P等于1时,持续处理器将执行当前的(k)像素亮度和先前的(k-1)像素亮度的最大强度投影。
尽管当在基本模式下检测造影剂时能够使用本发明的设备和方法,但是最好在谐波模式下执行该创造性技术,以便利用谐波对比度操作的强分段和杂波抑制益处。尽管能够使用射频高通滤波器来传递谐波回波分量而不是传递基波分量,但是优选的方式是通过如美国专利5,706,819中所描述的脉冲倒向来分离反差信号的谐波回波分量。众所周知,脉冲倒向技术涉及沿相同波束方向进行的不同调制(相位或极性或振幅或它们的组合)的发射脉冲的两个或多个发射事件的传输。在空间基础上将响应于两个发射事件接收的回波组合起来。发射脉冲的相反(反向)相位或调幅将导致两个事件的基波信号相消,同时非线性(谐波)分量将彼此增强,并由此与基波信号分离。在脉冲倒向中使用的术语″脉冲″泛指每个不同调制的发射脉冲的完整收发周期。由此,双脉冲的脉冲倒向指的是两个不同调制的脉冲的发射,回波序列的接收遵循每个发射脉冲或波,以及在空间(深度)基础上的两个回波序列的组合。就本发明而言,可以采用如美国专利6,186,950中所描述的两个以上脉冲的脉冲倒向。也可以通过以相邻的波束方向发射不同调制的脉冲、然后通过如美国专利6,193,662中所描述的波束位置间的内插分离谐波分量,来执行脉冲倒向。
在图1和2的实施例中,脉冲倒向谐波分离是在由扫描转换器34进行扫描转换之前执行的。一个方便的实现就是使用波束形成器14之后的线性缓冲器,其中存储来自一个脉冲的回波序列,并同时获得不同调制的第二个回波序列。组合两个序列,以便衰减基波分量并增强对比回波信号的谐波分量。由QBP滤波器16对谐波对比回波进行滤波,并由回波处理器20对其进行处理。如上所述,扫描转换回波数据,并对图像帧进行瞬时高通滤波以及持续处理以供显示。
通过图4a-4f的示例性图像序列举例说明了构造用以描绘血管形态的本发明的实施例的能力。例如,这些描绘了可以在一到三个心脏周期的时间期间内进展的实时图像序列的图像。在图4a中所示的序列中的早期图像当中,在0-1厘米范围的近场中看到了一些混杂信号,并在1-3厘米范围的近场中看到了五个微泡。对这五个微泡进行了描绘,这是因为这五个微泡出现在了相邻帧中的不同位置上,这导致帧间减法(瞬时高通滤波)用以根据移动微泡产生有限的显示信号。来自相邻帧中的稳定间质组织的信号,要么是基波的(线性的)或谐波的(非线性的),都将从帧到帧出现在相同的位置上,并且将通过该瞬时高通滤波器加以抑制。由此,将通过利用谐波信号来减少因基波信号散射而造成的混杂信号,并且将通过瞬时高通滤波器来减弱稳定间质组织混杂信号,借此使得能在图像中鉴别移动的微泡。
在稍后,产生图4b的图像。因持续处理,这幅图像示出了早期在图4a中所看到的五个微泡事件。这幅图像还示出了当微泡穿过它们从中流动的微血管时、在新的相邻位置上的五个微泡。在稍后,产生了图4c的图像。这幅图像示出了由于持续而产生的五个微泡的先前位置,以及由瞬时滤波标识出的这五个微泡的更新位置。在这幅图像中,以及在稍后的图4d、4e和4f的图像中,看到了通过持续的、连续微泡位置而产生的轨迹,以便描绘它们在其中流动的小型血管的曲径。另外,当造影剂开始到达图像平面中的其它血管,并且开始限定它们的流径时,其他轨迹开始出现。图4f将告知临床医生六个小型血管位于1-3厘米范围的显像区中,这将导致对存在病变的诊断。正如图4f中的72和74处所看到的那样,六个连续微泡位置的轨迹可能是由于正交于图像平面的六个相邻血管而造成的,但是这不太可能的具有更长的轨迹。临床医生能够通过轻微地移动探针并再次捕获微泡以测试图像平面中的血管来测试这一假设。
如果使用了P=1的时间常数,那么图像的序列将包括不断增加的微泡轨迹形成,直到轨迹的区域几乎完全白了为止。接着,能够由临床医生来复位持续处理器,并捕获另一个序列。作为选择,可以使用P<1的较低值,并且微泡轨迹中的旧点将随时间逐渐消失,这使得在需要被复位之前能观察显像区域相当长的一段时间。
人们希望以相对低的发射功率电平(低MI)来实施如上所述的微泡追踪,以便超声波能量不会破坏微泡,而是微泡将在许多帧期间内继续存在,并且当它们穿过微脉管系统时被检测到。然而,人们已经发现即使是当在血管中存在一些因发射能量而造成的微泡破环时,所述方法措施(procedure)也是有效的,这是由于通常足以存活的微泡将在若干个心脏周期期间内继续存在。
在图3中以框图形式示出了一种优选的图像处理器。因为图2的实施例使用了瞬时高通滤波器,所以它将在某种程度上对探针运动敏感。一种减少因探针运动而带来的不希望有的影响的方法就是利用如前述美国专利[申请号09/693,059]中所描述的谐波闪光抑制。可以单独地使用或结合闪光抑制一起使用的另一个手段就是:如图3所示,在帧间高通滤波器36之前先执行图像配准35。从帧到帧的粗图像配准能够降低间质组织/转换器运动的模糊,并且将产生更为有效的瞬时滤波器。后HPF处理器37能够执行诸如定阈值、降噪或帧间斑点追踪之类的图像处理任务。后持续处理器42可以执行诸如边缘增强或分段/定阈值之类的图像处理。处理后的对比图像可以与常规的2D回波图像很好地混合在一起。也可以根据混合/重叠处理器44的指示,将对比图像分段并用作为覆盖在2D回波图像上的颜色。或者可以在具备图像配准或不具备图像配准的情况下进行,但是如果配准了对比图像,那么最好是也配准2D显像,以便探针和间质组织运动在两幅图像中同等地减少。
通过本发明的实施例产生的微泡轨迹能用来计算流过微脉管系统的血流的绝对速度。可以看出气泡在帧之间沿着微脉管系统的曲线轨迹移动有限的量。由于与正显示的解剖体组织构造有关的像素密度的缩放是已知的,因此能够在图像中测量出微泡在帧期间内传播的间距。根据帧速(以每秒多少帧计)和微泡已经移动的间距的知识,能够计算出流过微脉管系统的绝对速度。
其它的瞬时显示技术也是可以使用的。进入病变中的流动由于它是在病变中形成的、且最终填充了病变,因而往往能示出明显脉动的特性。将在填充周期的早期填充动脉,而在填充周期的后一部分填充毛细血管床。可以与后面阶段中填充的那些血管所不同地对填充初期出现的血管进行色彩编码,这给出了动脉与毛细血管床之间的视觉差别。
依照本发明的另一方面,迟缓流动的造影剂是通过脉冲倒向脉冲信号群的复合交错来检测的,所述信号群以高获取帧率将具有改善的灵敏度的杂波抑制提供给非常低速的血流。在常规的脉冲倒向多普勒显像过程中,人们希望拥有这样的多普勒频率滤波器,其具备处于奈奎斯特频率下的宽阻带来衰减间质组织信号,这要求高采样频率(PRF或脉冲重复频率),并且还具备处于DC下的窄阻带来锐利地衰减来自全部稳定目标的信号,这要求第一个PRI(脉冲重复间隔)和末尾PRI之间的长采样时间。如果需要每视线(波束方向)总共M个脉冲,那么就必须发射N×M个脉冲,从而产生有效的多普勒采样频率PRF/N、N×(M-1)/PRF的每一线路的总停留时间、以及与N×M成比的帧间隔。
依照本发明的原理,利用脉冲倒向脉冲序列的复合交错来在相对短的采样时间内产生具有期望特性的滤波。这提供了使用以高获取帧速率进行操作的脉冲倒向多普勒来检测低流率的高灵敏度的显像技术。在图5中示出了一种这样的脉冲序列,其对应两个视线或波束方向。在左边的号码是所使用的脉冲重复间隔(PRI)的数序列。在开头两个PRI期间,在第一视线中发射两个不同调制的脉冲。不同调制是用靠近每个PRI线路的″+″和″-″符号表示的,所述调制可能是幅度、相位或极性。将这两个脉冲的回波空间地合并以分离出谐波分量。优选地,快速连续地发射这两个脉冲,以便减少所接收的回波中的运动伪像,这可能会导致不完全的基波分量抵消。
在PRI 3和4期间,在第二视线中发射另一个双脉冲序列。也对这些脉冲进行不同调制,以便能够通过所接收回波的倒向组合来分离所接收的回波的谐波。如果使用第三视线的话,则下两个脉冲发射将处于第三线路中。在已经用一对脉冲询问了该序列的所有视线之后,发射器返回到第一视线。在该序列只使用两个视线的例图中,沿着PRI 5和6中的第一视线脉冲发射脉冲。正如该图表示的那样,以这种时间交错的方式、通过快速的两个脉冲序列询问两条视线,直到全部信号群长度已经结束为止,其中在例图中该长度上为三个脉冲对。在这个示例中的每条视线都是通过多个快速PRF、两个脉冲信号群来采样的,所述两个脉冲信号群共同包含长度为三的慢速PRF信号群。
在诸如矩阵壁滤波器之类的多普勒滤波器中使用所得到的样本。分离滤波器可以用作快速PRF和慢速PRF滤波,或者能够把两个滤波器合并成分离滤波器。适当的分离滤波系数为:
快速时间滤波器=[.5.5],慢速时间滤波器= 2-1-1
                                        -1 2-1
                                        -1-1 2
第一滤波器具有在如图6a中的多普勒滤波器响应特性60所示的采样率的奈奎斯特极限处衰减基波间质组织信号的频率响应。慢速时间滤波器将向处于如图6b中的多普勒滤波器响应62所示的DC下的这种特性提供尖锐的衰减,这将衰减来自稳定微泡和间质组织谐波的非线性信号。将具有零附近的多普勒频率的慢速移动对比在这个中心零信号的两侧上被传递。
我们看到,这个示例的频率响应特性展示出了在DC与±0.25PRF的奈奎斯特极限中间周围的另外两个中间零信号。这些零信号不太可能会影响从很缓慢的流速中获得的结果,但是可能在高流动状况条件期间会开始影响并且导致信号漏失。依照本发明的另一方面,通过使用非周期性的时间交错序列来减少这些中间零信号。通过改变一个或多个快速时间信号群的计时来让慢速时间信号群变得非周期性。非周期性复合的另一个手段就是改变连续图像帧上的交错比。一个非周期性复合交错序列的示例是:
线路号                        瞬时脉冲序列
1                [1,1,0,0,0,0,1,1,0,0,1,1,0,0]
2                [0,0,1,1,0,0,0,0,1,1,0,0,1,1]
其中序列中的每个″1″都表示某类已调制脉冲被发射并且在特定的脉冲重复间隔期间接收到回波。在这个示例中,我们看到:沿着线路1来发射和接收两个脉冲的快速时间序列,继之以沿着线路2的两个脉冲的快速时间序列的发射和接收。在下两个脉冲间隔期间,沿着每一条线路都未发射脉冲,尔后,沿着两条线路交替地发射两个脉冲的快速时间序列。因跳过在PRI 5和6(用于线路1)以及PRI 7和8(用于线路2)中正常再现第二快速时间信号群的传输而造成的慢速时间信号群的非周期性,使得滤波器的频率响应将在不带尖锐中间零信号的情况下波动,如图6c所示,期望的频谱扩宽也帮助实现这一结果。
可以把快速时间序列的非周期性交错扩展到利用造影剂或不利用造影剂的基本模式下的常规多普勒操作。非周期性交错和采样使得利用模仿以更长信号群长度产生的壁滤波器的性能的、使用非常少数样本的多普勒壁滤波器成为可能。例如,考虑下列四个脉冲在三条线路上的交错:
线路号              瞬时脉冲序列
1            [1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0]
2            [0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0]
3            [0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1]
使用来自这个非周期性信号群的样本的壁滤波器将具有类似于长度为14的信号群的低频性能,(沿每条线路、从第一个样本到最后一个样本的PRI持续期间),但是每个滤波器只有四个样本。优选地,考虑到样本的非周期性,将修改所采用的速度估算。
非周期性慢速时间信号群的使用可以在实时的三维显像过程中找到特定的实用性。在实时3D中,人们希望能够以尽可能短的时间扫描整个测定体积区域,以便获得高显示帧速。对于3D中的多普勒显像而言,为了既能检测高流量又能检测低流量,希望有高的混叠截频和长(及时的)慢速时间信号群。传统上,是通过沿每条线路向下发射长序列的高PRF脉冲来满足这些需要,这造成了长的捕获时间和缓慢的帧速。诸如上面所示的时间交错的非周期性扫描将从第一个脉冲间隔到最后一个脉冲间隔经很长一段时间询问每条线路。借此提供了良好的低流动率灵敏度。沿每条线路的连续捕获之间的非周期性计时提供了高效的混叠(奈奎斯特)频率。由于每条线路只需要少数脉冲,因此许多线路都可以是时间交错的,其代价只是降低了所得到的多普勒估计量的信噪比。
本发明的实施例能够对解调后的回波样本或者r.f.数据起作用。快速时间信号群在长度上可以大于两个脉冲,比如用于前述美国专利6,186,950中所描述的脉冲倒向的三个、四个和五个脉冲信号群。

Claims (7)

1.一种用于谐波反差图像的超声波显像系统,包括:
阵列转换器(12),其询问包含移动造影剂的图像场;
耦合于阵列转换器的接收器,其从移动造影剂产生相干回波信号;
耦合于接收器的图像处理器(30),其产生示出在不同时间点移动造影剂的位置的图像;
帧间高通滤波器(36),其耦合于图像处理器(30);
耦合于帧间高通滤波器(36)的持续处理器(38),其产生描绘在早期时间点移动造影剂的位置的图像;和
图像显示器(40)。
2.根据权利要求1所述的超声波显像系统,其中所述帧间高通滤波器(36)包括帧间减法器。
3.根据权利要求1所述的超声波显像系统,其中所述持续处理器(38)使用持续时间常数,以使得在给定的时间点移动造影剂的位置在多个图像间隔上持续。
4.根据权利要求3所述的超声波显像系统,其中所述持续时间常数使得在给定的时间点移动造影剂的位置不确定地持续。
5.根据权利要求3所述的超声波显像系统,其中所述持续时间常数使得在给定的时间点移动造影剂的位置缓慢衰退地持续。
6.根据权利要求1所述的超声波显像系统,其中所述图像显示器(40)用于显示描绘随着时间过去通过小型血管的微泡轨迹的图像。
7.根据权利要求1所述的超声波显像系统,还包括耦合于图像处理器(30)的图像配准处理器(35)。
CNB038133237A 2002-06-11 2003-05-16 超声波诊断微脉管显像 Expired - Lifetime CN100401988C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/170,178 2002-06-11
US10/170,178 US6676606B2 (en) 2002-06-11 2002-06-11 Ultrasonic diagnostic micro-vascular imaging

Publications (2)

Publication Number Publication Date
CN1658798A CN1658798A (zh) 2005-08-24
CN100401988C true CN100401988C (zh) 2008-07-16

Family

ID=29711009

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038133237A Expired - Lifetime CN100401988C (zh) 2002-06-11 2003-05-16 超声波诊断微脉管显像

Country Status (8)

Country Link
US (1) US6676606B2 (zh)
EP (1) EP1515639B1 (zh)
JP (1) JP4457002B2 (zh)
CN (1) CN100401988C (zh)
AT (1) ATE454850T1 (zh)
AU (1) AU2003224390A1 (zh)
DE (1) DE60330963D1 (zh)
WO (1) WO2003103497A1 (zh)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7346228B2 (en) * 2003-09-09 2008-03-18 Ge Medical Systems Global Technology Company, Llc Simultaneous generation of spatially compounded and non-compounded images
US8708909B2 (en) 2004-01-20 2014-04-29 Fujifilm Visualsonics, Inc. High frequency ultrasound imaging using contrast agents
JP4521204B2 (ja) * 2004-02-27 2010-08-11 株式会社東芝 超音波診断装置、画像処理装置及び超音波画像撮影方法
EP1738407B1 (en) * 2004-04-20 2014-03-26 Visualsonics Inc. Arrayed ultrasonic transducer
JP5002119B2 (ja) * 2004-05-12 2012-08-15 株式会社東芝 超音波診断装置
US7998076B2 (en) * 2005-09-27 2011-08-16 Siemens Medical Solutions Usa, Inc. Advanced characterization of contrast agents with ultrasound
US7711168B2 (en) * 2005-10-19 2010-05-04 Siemens Medical Solutions Usa, Inc. Method for tracking blood vessels
EP1952175B1 (en) * 2005-11-02 2013-01-09 Visualsonics, Inc. Digital transmit beamformer for an arrayed ultrasound transducer system
US9198639B2 (en) * 2005-11-10 2015-12-01 Bracco Suisse S.A. Detection of immobilized contrast agent in medical imaging applications based on flow dynamics analysis
WO2007136554A1 (en) * 2006-05-15 2007-11-29 Mayo Foundation For Medical Education And Research Method for imaging intracavitary blood flow patterns
EP2050074A2 (en) * 2006-07-13 2009-04-22 The Regents Of The University Of Colorado Echo particle image velocity (epiv) and echo particle tracking velocimetry (eptv) system and method
US20080081998A1 (en) * 2006-10-03 2008-04-03 General Electric Company System and method for three-dimensional and four-dimensional contrast imaging
CN101605500B (zh) * 2006-12-21 2013-01-30 博莱科瑞士股份有限公司 在医学成像应用中对固定造影剂脱离的检测
US20080214934A1 (en) * 2007-03-02 2008-09-04 Siemens Medical Solutions Usa, Inc. Inter-frame processing for contrast agent enhanced medical diagnostic ultrasound imaging
US7713209B2 (en) * 2007-05-21 2010-05-11 Siemens Medical Solutions Usa, Inc. Targeted contrast agent imaging with medical diagnostic ultrasound
JP5263867B2 (ja) * 2007-10-15 2013-08-14 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波撮像装置
US10130342B2 (en) 2007-12-28 2018-11-20 Bracco Suisse Sa Initialization of fitting parameters for perfusion assessment based on bolus administration
CN101496728B (zh) * 2008-02-03 2013-03-13 深圳迈瑞生物医疗电子股份有限公司 超声频率复合成像方法与装置
US20090204003A1 (en) * 2008-02-07 2009-08-13 Guracar Ismayil M Tracking selection for medical diagnostic ultrasound imaging
WO2009130647A1 (en) * 2008-04-24 2009-10-29 Koninklijke Philips Electronics N.V. Motion compensated micro-vasculature imaging
US9173047B2 (en) 2008-09-18 2015-10-27 Fujifilm Sonosite, Inc. Methods for manufacturing ultrasound transducers and other components
JP5723775B2 (ja) * 2008-09-18 2015-05-27 ビジュアルソニックス インコーポレイテッド 超音波変換器および他の構成要素の製造方法
US9184369B2 (en) 2008-09-18 2015-11-10 Fujifilm Sonosite, Inc. Methods for manufacturing ultrasound transducers and other components
EP2189112A1 (en) 2008-11-24 2010-05-26 Bracco Research S.A. Real-time perfusion imaging and quantification
US8945117B2 (en) 2009-02-11 2015-02-03 Boston Scientific Scimed, Inc. Insulated ablation catheter devices and methods of use
US8403856B2 (en) * 2009-03-11 2013-03-26 Volcano Corporation Rotational intravascular ultrasound probe with an active spinning element
JP5606143B2 (ja) 2009-06-08 2014-10-15 株式会社東芝 超音波診断装置、画像処理装置、画像処理方法および画像表示方法
US8414579B2 (en) 2009-06-30 2013-04-09 Boston Scientific Scimed, Inc. Map and ablate open irrigated hybrid catheter
US9255914B2 (en) * 2009-08-13 2016-02-09 Kabushiki Kaisha Toshiba Ultrasonic diagnosis apparatus and program
JP5454901B2 (ja) * 2010-02-15 2014-03-26 株式会社東芝 超音波診断装置
US8582865B2 (en) * 2010-04-28 2013-11-12 General Electric Company Ultrasound imaging with ray casting and software-based image reconstruction
US9089340B2 (en) 2010-12-30 2015-07-28 Boston Scientific Scimed, Inc. Ultrasound guided tissue ablation
AU2012262959A1 (en) 2011-06-01 2013-11-28 Boston Scientific Scimed, Inc. Ablation probe with ultrasonic imaging capabilities
JP2013042929A (ja) * 2011-08-24 2013-03-04 Hitachi Aloka Medical Ltd 超音波画像処理装置
CN103917185A (zh) 2011-09-14 2014-07-09 波士顿科学西美德公司 带有离子导电性球囊的消融装置
WO2013040201A2 (en) 2011-09-14 2013-03-21 Boston Scientific Scimed, Inc. Ablation device with multiple ablation modes
WO2013102072A1 (en) 2011-12-28 2013-07-04 Boston Scientific Scimed, Inc. Ablation probe with ultrasonic imaging capability
WO2013106557A1 (en) 2012-01-10 2013-07-18 Boston Scientific Scimed, Inc. Electrophysiology system
EP2809253B8 (en) 2012-01-31 2016-09-21 Boston Scientific Scimed, Inc. Ablation probe with fluid-based acoustic coupling for ultrasonic tissue imaging
CN103876776B (zh) * 2012-12-24 2017-09-01 深圳迈瑞生物医疗电子股份有限公司 一种超声造影成像方法及装置
EP3024396B1 (en) * 2013-07-24 2018-10-17 Koninklijke Philips N.V. System with two dimensional array probe for automated screening of carotid stenosis
CN106163412B (zh) 2014-04-07 2019-10-11 博莱科瑞士股份有限公司 利用非基频分析对声级进行原位估计
EP3206612B1 (en) 2014-10-13 2022-06-29 Boston Scientific Scimed Inc. Tissue diagnosis and treatment using mini-electrodes
CN106604675B (zh) 2014-10-24 2020-01-10 波士顿科学医学有限公司 具有耦接到消融尖头的柔性电极组件的医疗设备
WO2016100917A1 (en) 2014-12-18 2016-06-23 Boston Scientific Scimed Inc. Real-time morphology analysis for lesion assessment
BR112018003058B1 (pt) 2015-08-21 2022-11-29 Koninklijke Philips N.V. Aparelho para produzir uma imagem de contraste, e sistema de imageamento por ultrassom
WO2017097738A1 (en) * 2015-12-10 2017-06-15 Bracco Suisse Sa Detection of immobilized contrast agent with dynamic thresholding
US11589840B2 (en) 2017-05-31 2023-02-28 Mayo Foundation For Medical Education And Research Methods for super-resolution ultrasound imaging of microvessels
JP6853372B2 (ja) 2017-09-22 2021-03-31 富士フイルム株式会社 超音波診断装置および超音波診断装置の制御方法
US10863961B2 (en) 2018-03-07 2020-12-15 Canon Medical Systems Corporation Medical image processing apparatus and X-ray diagnosis apparatus
JP7235722B2 (ja) 2018-03-20 2023-03-08 富士フイルム株式会社 超音波診断装置および超音波診断装置の制御方法
WO2020081915A1 (en) * 2018-10-19 2020-04-23 Mayo Foundation For Medical Education And Research Systems and methods for kalman filter-based microvessel inpainting for super-resolution imaging
WO2020160546A1 (en) * 2019-02-01 2020-08-06 Mayo Foundation For Medical Education And Research Systems and methods for synthetic aperture focusing in ultrasound imaging
CN111598782B (zh) * 2020-05-18 2022-05-17 南京超维景生物科技有限公司 超分辨流场重建方法及其装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1135712A (zh) * 1994-09-22 1996-11-13 勃勒柯研究有限公司 超声波谱反衬成像
US20020055681A1 (en) * 1995-10-10 2002-05-09 Michalakis Averkiou Ultrasonic image persistence using contrast agents

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL257123A (zh) * 1960-10-21
US3201487A (en) * 1961-09-19 1965-08-17 Sinclair Research Inc Aromatic alkylation with a silicaalumina-chromia catalyst
US3274287A (en) * 1964-04-21 1966-09-20 Monsanto Co Hydrocarbon conversion process and catalyst
US3315008A (en) * 1964-12-28 1967-04-18 Monsanto Co Dehydrogenation of saturated hydrocarbons over noble-metal catalyst
US3315007A (en) * 1964-12-28 1967-04-18 Monsanto Co Dehydrogenation of saturated hydrocarbons over noble-metal catalyst
OA02047A (fr) * 1965-02-13 1970-05-05 Inst Francais Du Petrole Procédé d'hydrogenation selective des diolefines.
US3293319A (en) * 1966-02-14 1966-12-20 Universal Oil Prod Co Catalytic dehydrogenation of paraffinic hydrocarbons
US3448165A (en) * 1966-07-26 1969-06-03 Universal Oil Prod Co Catalytic dehydrogenation of paraffinic hydrocarbons at high space velocity
GB1200651A (en) * 1967-05-02 1970-07-29 British Petroleum Co Dehydrogenation process
US3484498A (en) * 1967-12-11 1969-12-16 Universal Oil Prod Co Process for the preparation of aryl-substituted normal paraffin hydrocarbons
US3458592A (en) * 1967-12-12 1969-07-29 Texaco Inc Manufacture of n-mono-olefins from n-paraffins
US3585253A (en) * 1968-03-22 1971-06-15 Monsanto Co Production of alkylaryl sulfonates including the step of dehydrogenating normal paraffins with improved catalyst
DE1926503C3 (de) * 1968-05-27 1975-03-20 Maruzen Oil Co. Ltd., Osaka (Japan) Verfahren zu selektiven Hydrierung von mehrfach ungesättigten Kohlenwasserstoffen
US3494971A (en) * 1969-04-18 1970-02-10 Universal Oil Prod Co Process for the production of a monoalkylated aromatic hydrocarbon
US3576766A (en) * 1969-07-09 1971-04-27 Universal Oil Prod Co Dehydrogenation method and catalytic composite for use therein
US3647719A (en) * 1969-08-21 1972-03-07 Universal Oil Prod Co Dehydrogenation method and catalytic composite for use therein
US3649566A (en) * 1970-01-12 1972-03-14 Universal Oil Prod Co Dehydrogenation catalysts containing platinum rhenium a group vi transition metal and an alkali or alkaline earth metal
US3655621A (en) * 1970-03-23 1972-04-11 Signal Oil & Gas Co Adding mercaptan sulfur to a selective hydrogenation process
US3696160A (en) * 1970-03-26 1972-10-03 Exxon Research Engineering Co Selective hydrogenation of diolefins
US3632662A (en) * 1970-03-26 1972-01-04 Monsanto Co Dehydrogenation process
US3662018A (en) * 1970-05-15 1972-05-09 Texaco Inc Process of improving the selectivity of dehydrogenation catalysts
US3761531A (en) * 1970-06-26 1973-09-25 Universal Oil Prod Co Dehydrogenation with a multicomponent catalyst
US3767594A (en) * 1970-08-20 1973-10-23 Universal Oil Prod Co Dehydrogenation catalyst
US3825612A (en) * 1970-10-16 1974-07-23 Universal Oil Prod Co Dehydrogenation with a multicomponent catalyst
US3745112A (en) * 1971-11-23 1973-07-10 Universal Oil Prod Co Platinum-tin uniformly dispersed hydro-carbon conversion catalyst and process
US3751506A (en) * 1972-05-12 1973-08-07 Mobil Oil Corp Vapor-phase alkylation in presence of crystalline aluminosilicate catalyst
US3998900A (en) * 1973-03-05 1976-12-21 Universal Oil Products Company Dehydrogenation of hydrocarbons with a multimetallic catalytic composite
US4172853A (en) * 1973-12-06 1979-10-30 Uop Inc. Hydrocarbon dehydrogenation with a multimetallic catalytic composite
US3993601A (en) * 1974-02-07 1976-11-23 Exxon Research And Engineering Company Process for preparing a heavy crude conversion catalyst
US3887455A (en) * 1974-03-25 1975-06-03 Exxon Research Engineering Co Ebullating bed process for hydrotreatment of heavy crudes and residua
US3920615A (en) * 1974-08-30 1975-11-18 Monsanto Co Production of alkylaryl sulfonates including the step of dehydrogenating normal paraffins with an improved catalyst
US4048246A (en) * 1975-05-05 1977-09-13 Uop Inc. Dehydrogenation method and nonacidic multimetallic catalytic composite for use therein
US4016106A (en) * 1976-01-05 1977-04-05 Exxon Research And Engineering Company Preparation of catalysts of predetermined pore size distribution and pore volume
US4177218A (en) * 1976-06-24 1979-12-04 Uop Inc. Dehydrogenation process utilizing multimetallic catalytic composite
US4036743A (en) * 1976-09-20 1977-07-19 Uop Inc. Hydrocarbon conversion with an acidic multimetallic catalytic composite
US4070413A (en) * 1976-10-28 1978-01-24 Uop Inc. Dehydrogenation of saturated hydrocarbons
US4207425A (en) * 1977-04-11 1980-06-10 Uop Inc. Dehydrogenation method and nonacidic multimetallic catalytic composite for use therein
US4136127A (en) * 1977-06-27 1979-01-23 Uop Inc. Dehydrogenation method and multimetallic catalytic composite for use therein
US4268706A (en) * 1978-05-15 1981-05-19 Uop Inc. Hydrocarbon dehydrogenation method and nonacidic multimetallic catalytic composite for use therein
US4227026A (en) * 1978-08-10 1980-10-07 Uop Inc. Dehydrogenation method and nonacidic multimetallic catalytic composite for use therein
US4216346A (en) * 1979-03-05 1980-08-05 Uop Inc. Hydrocarbon dehydrogenation method employing platinum-cobalt-zinc catalyst
US4278566A (en) * 1979-03-19 1981-07-14 Standard Oil Company (Indiana) Hydrotreating process
US4312792A (en) * 1979-05-04 1982-01-26 Uop Inc. Hydrocarbon dehydrogenation with an attenuated superactive multimetallic catalytic composite for use therein
US4341664A (en) * 1979-06-15 1982-07-27 Uop Inc. Hydrocarbon dehydrogenation with an attenuated superactive multimetallic catalytic composite for use therein
US4343724A (en) * 1979-10-01 1982-08-10 Uop Inc. Hydrocarbon dehydrogenation with an attenuated superactive multimetallic catalytic composite for use therein
FR2482953A1 (fr) * 1980-05-22 1981-11-27 Inst Francais Du Petrole Procede d'hydrogenation selective d'une di-olefine dans un melange d'hydrocarbures renfermant au moins 4 atomes de carbone et contenant une olefine -a
US4489213A (en) * 1980-08-25 1984-12-18 Ashland Oil, Inc. Alumina catalyst for alkylating aromatics with olefins
US4409412A (en) * 1981-01-30 1983-10-11 Mobil Oil Corporation Process for producing alkyl aromatic compounds
US4396540A (en) * 1981-03-23 1983-08-02 Uop Inc. Hydrocarbon dehydrogenation with a multimetallic catalytic composite
US4358628A (en) * 1981-06-26 1982-11-09 Shell Oil Company Alkylation of benzene compounds with detergent range olefins
US4387259A (en) * 1981-07-16 1983-06-07 Mobil Oil Corporation Selective alkylation of aromatic hydrocarbons using a mixed ethylene/propylene alkylation agent
US4409401A (en) * 1981-08-17 1983-10-11 Phillips Petroleum Company Selective hydrogenation of organic materials
US4486547A (en) * 1981-11-05 1984-12-04 Uop Inc. Indium-containing dehydrogenation catalyst
US4430517A (en) * 1981-12-02 1984-02-07 Uop Inc. Dehydrogenation process using a catalytic composition
US4551574A (en) * 1983-06-02 1985-11-05 Uop Inc. Indium-containing dehydrogenation catalyst
US4523048A (en) * 1984-04-04 1985-06-11 Uop Inc. Process for the selective production of alkylbenzenes
US4595673A (en) * 1984-11-29 1986-06-17 Uop Inc. Dehydrogenation catalyst compositions and method of their preparation
US4677237A (en) * 1984-11-29 1987-06-30 Uop Inc. Dehydrogenation catalyst compositions
US4598060A (en) * 1985-01-28 1986-07-01 Shell Oil Company Process for the preparation of wide pore catalysts
US4608360A (en) * 1985-07-02 1986-08-26 Uop Inc. Dehydrogenation catalyst compositions and method of preparing same
US4827072A (en) * 1986-06-06 1989-05-02 Uop Inc. Dehydrogenation catalyst composition and hydrocarbon dehydrogenation process
US4888694A (en) 1987-10-28 1989-12-19 Quantum Medical Systems, Inc. Ultrasound imaging system for relatively low-velocity blood flow at relatively high frame rates
ES2032371T3 (es) * 1990-06-05 1996-03-16 Huntsman Spec Chem Corp Procedimiento para deshidrogenacion de parafina.
US5827421A (en) * 1992-04-20 1998-10-27 Texaco Inc Hydroconversion process employing catalyst with specified pore size distribution and no added silica
CA2093412C (en) * 1992-04-20 2002-12-31 Gerald Verdell Nelson Novel hydroconversion process employing catalyst with specified pore size distribution
US5611260A (en) * 1994-07-07 1997-03-18 Unisia Jecs Corporation Piston ring mount structure
US5706819A (en) 1995-10-10 1998-01-13 Advanced Technology Laboratories, Inc. Ultrasonic diagnostic imaging with harmonic contrast agents
US5879303A (en) 1996-09-27 1999-03-09 Atl Ultrasound Ultrasonic diagnostic imaging of response frequency differing from transmit frequency
US6095980A (en) 1997-10-02 2000-08-01 Sunnybrook Health Science Centre Pulse inversion doppler ultrasonic diagnostic imaging
US6242379B1 (en) * 1998-04-01 2001-06-05 United Catalysts Inc. Dehydrogenation catalysts
US6036643A (en) 1998-05-14 2000-03-14 Advanced Technology Laboratories, Inc. Ultrasonic harmonic doppler imaging
US6193662B1 (en) 1999-02-17 2001-02-27 Atl Ultrasound High frame rate pulse inversion harmonic ultrasonic diagnostic imaging system
US6171246B1 (en) 1999-04-29 2001-01-09 Michalakis Averkiou Realtime ultrasonic imaging of perfusion using ultrasonic contrast agents
JP4408988B2 (ja) * 1999-05-31 2010-02-03 株式会社東芝 超音波診断装置
US6322505B1 (en) * 1999-06-08 2001-11-27 Acuson Corporation Medical diagnostic ultrasound system and method for post processing
US6186950B1 (en) 1999-11-04 2001-02-13 Atl Ultrasound Ultrasonic pulse inversion harmonic separation with reduced motional effects
US6461303B2 (en) * 2000-01-19 2002-10-08 Bjorn Angelsen Method of detecting ultrasound contrast agent in soft tissue, and quantitating blood perfusion through regions of tissue
US6517489B1 (en) * 2000-03-06 2003-02-11 Acuson Corporation Method and apparatus for forming medical ultrasound images
US6464643B1 (en) * 2000-10-06 2002-10-15 Koninklijke Philips Electronics N.V. Contrast imaging with motion correction
US6533728B1 (en) * 2001-11-20 2003-03-18 Mayo Foundation For Medical Education And Research Method and apparatus for recovery and parametric display of contrast agents in ultrasound imaging

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1135712A (zh) * 1994-09-22 1996-11-13 勃勒柯研究有限公司 超声波谱反衬成像
US20020055681A1 (en) * 1995-10-10 2002-05-09 Michalakis Averkiou Ultrasonic image persistence using contrast agents

Also Published As

Publication number Publication date
JP2005528949A (ja) 2005-09-29
US20030229285A1 (en) 2003-12-11
EP1515639A1 (en) 2005-03-23
WO2003103497A1 (en) 2003-12-18
CN1658798A (zh) 2005-08-24
EP1515639B1 (en) 2010-01-13
DE60330963D1 (de) 2010-03-04
AU2003224390A1 (en) 2003-12-22
JP4457002B2 (ja) 2010-04-28
ATE454850T1 (de) 2010-01-15
US6676606B2 (en) 2004-01-13

Similar Documents

Publication Publication Date Title
CN100401988C (zh) 超声波诊断微脉管显像
US6620103B1 (en) Ultrasonic diagnostic imaging system for low flow rate contrast agents
CN100466986C (zh) 使用谐波造影剂的灌注和血流超声成像
EP0714036B1 (en) Ultrasonic diagnostic scanning for three dimensional display
KR100742466B1 (ko) 이미징 방법 및 장치와 그를 이용한 혈액 움직임 이미징 시스템
EP0795296B1 (en) Ultrasonic scanning of tissue motion in three dimensions
US6390980B1 (en) Spatial compounding with ultrasonic doppler signal information
KR870000638B1 (ko) 초음파 유체관측장치
EP0948931A2 (en) Ultrasound imaging using coded excitation on transmit and selective filtering on receive
JP4995975B2 (ja) 空間合成による超音波診断造影画像
JP3402703B2 (ja) 超音波診断装置
JP2007518512A (ja) 心筋灌流を表示するための画像分割
JP3539924B2 (ja) 超音波撮像においてストレイン速度をリアルタイムで測定し、表示するシステム
US20070112269A1 (en) Clutter filtering with small ensemble lengths in ultrasound imaging
CN109982643B (zh) 用于解剖结构、功能和血液动力学成像的三模式超声成像
Bjærum et al. Blood motion imaging-A new technique to visualize 2D blood flow
Udesen et al. Blood vector velocity estimation using an autocorrelation approach: In vivo Investigation
Jensen et al. Imaging blood's velocity using synthetic aperture ultrasound
Udesen et al. A simple method to reduce aliasing artifacts in color flow mode imaging
Goertz et al. 1J-3 High Frequency Colour Flow Imaging of Mouse Tumours using Inter-Frame Clutter Filtering

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20080716