CN100382958C - 防氚渗透耐蚀绝缘复合涂层 - Google Patents

防氚渗透耐蚀绝缘复合涂层 Download PDF

Info

Publication number
CN100382958C
CN100382958C CNB2006100859078A CN200610085907A CN100382958C CN 100382958 C CN100382958 C CN 100382958C CN B2006100859078 A CNB2006100859078 A CN B2006100859078A CN 200610085907 A CN200610085907 A CN 200610085907A CN 100382958 C CN100382958 C CN 100382958C
Authority
CN
China
Prior art keywords
coating
silicon carbide
tritium
alumina
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100859078A
Other languages
English (en)
Other versions
CN1861391A (zh
Inventor
宋勇
黄群英
李艳芬
李春京
吴宜灿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Plasma Physics of CAS
Original Assignee
Institute of Plasma Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Plasma Physics of CAS filed Critical Institute of Plasma Physics of CAS
Priority to CNB2006100859078A priority Critical patent/CN100382958C/zh
Publication of CN1861391A publication Critical patent/CN1861391A/zh
Application granted granted Critical
Publication of CN100382958C publication Critical patent/CN100382958C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明公开了一种防氚渗透耐蚀绝缘的复合涂层,其特征在于包括附着在基体材料合金钢上的铝铁合金相及氧化铝过渡层和致密的碳化硅表面涂层。其铝铁合金相的厚度为50-100μm,氧化铝过渡层厚度为2-5μm,碳化硅层厚度为1.5~2.5μm。通过综合氧化铝涂层和碳化硅涂层的优点,并克服其各自缺点,在合金钢上得到致密且性能优越的氧化铝/碳化硅复合涂层,特别适合于聚变堆环境。

Description

防氚渗透耐蚀绝缘复合涂层
技术领域
本发明属于合金钢表面涂层新技术领域。
背景技术
氚同其它氢同位素化学性质相同,都极其活泼,并且氚具有放射性,在材料中极易扩散,对周围工作人员及居民可能造成潜在的放射性危害,同时氚也是重要的聚变堆核燃料。国际上发展了一系列的涂层材料用于储氚容器壁表面及核反应堆包层结构材料表面以防止氚渗透,在聚变堆液态金属包层中,涂层还应具有耐液态金属腐蚀及电绝缘的能力。目前作为防氚渗透的绝缘涂层材料主要包括氧化铝和碳化硅等,但常规氧化铝涂层在液态金属锂铅环境中的防氚渗透降低因子(TPRF)远低于聚变堆的典型设计值100,且与液态金属锂铅的相容性温度仅为~500℃。而碳化硅涂层具有较高的TPRF,但其与基体材料合金钢的热膨胀系数差别较大,因此两者结合性能相对较差,一旦涂层出现裂纹等损坏情况,其防氚渗透性能将急剧下降。现有技术的涂层防氚渗透能力不能同时满足相关领域的使用要求,特别是聚变堆环境。
发明内容
本发明的目的在于提供防氚渗透耐蚀绝缘的复合涂层,通过综合氧化铝涂层和碳化硅涂层的优点,并克服其各自缺点,在合金钢上得到致密且性能优越的氧化铝/碳化硅复合涂层,特别适合于聚变堆环境。
本发明的技术方案如下:防氚渗透耐蚀绝缘复合涂层,其特征在于包括附着在基体材料合金钢上的铝铁合金相及氧化铝过渡层和致密的碳化硅表面涂层。
其铝铁合金相的厚度为50-100μm,氧化铝过渡层厚度为2-5μm,碳化硅层厚度为1.5~2.5μm。
本发明的复合涂层中,中间的氧化铝层的热膨胀系数介于基体材料合金钢与碳化硅热膨胀系数之间,因此具有一定铝浓度梯度的铝铁合金相及氧化铝层可以作为中间的过渡层,为碳化硅层与合金钢因热膨胀系数不同产生的热应力提供了很好的缓冲,增强了碳化硅层的稳定性。另外,对于该复合涂层即使表面的碳化硅涂层在使用过程中出现裂纹等失效事故,由于其与基体钢之间存在铝铁合金相及氧化铝过渡层,并且铝化物能与氧反应形成氧化铝,仍然具有耐腐蚀及防氚渗透的能力,因此涂层具有双重防氚渗透及潜在的自修复功能,增强了涂层在苛刻环境下的可靠性。
本发明得到的复合涂层总厚度为50-100μm,在气相中的TPRF(防氚渗透降低因子)可达到10000,液态金属(如液态锂铅)中TPRF可达到100;具有电绝缘功能,电阻率可达到106Ω·cm;与液态金属(如液态锂铅)具有较高的相容性温度,并具有潜在的自修复功能。可应用于储氚容器壁表面及核反应堆包层结构材料表面,能有效地解决材料的氚渗透以及液态金属腐蚀问题,同时具有减小液态金属流动的磁流体动力学效应的能力。
附图说明
图1是本发明结构示意图。
本发明的整体结构如图1所示,其中合金钢(1)为基体材料,铝铁合金相层(2)和氧化铝层(3)为中间过渡层,致密的碳化硅层(4)为表面涂层。
制作原理:
采用先进工艺在合金钢表面制备氧化铝/碳化硅复合涂层。首先将合金钢与熔融态的铝接触一定时间,然后将表面涂覆铝的合金钢采用HIP(热等静压)等工艺进行处理,使其表面铝膜与基体合金钢形成铝铁合金相和氧化铝过渡层,其中铝铁合金相层厚度为50-100μm,表面的氧化铝层厚度为2-5μm;然后在氧化铝层表面采用CVI(化学气相浸渗)等工艺形成~2μm的致密碳化硅层,从而得到性能优越的氧化铝/碳化硅复合涂层。

Claims (2)

1.防氚渗透耐蚀绝缘复合涂层,其特征在于包括附着在基体材料合金钢上的铝铁合金相及氧化铝过渡层和致密的碳化硅表面涂层。
2.根据权利要求1所述的复合涂层,其特征在于其铝铁合金相的厚度为50-100μm,氧化铝过渡层厚度为2-5μm,碳化硅层厚度为1.5~2.5μm。
CNB2006100859078A 2006-05-27 2006-05-27 防氚渗透耐蚀绝缘复合涂层 Expired - Fee Related CN100382958C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100859078A CN100382958C (zh) 2006-05-27 2006-05-27 防氚渗透耐蚀绝缘复合涂层

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100859078A CN100382958C (zh) 2006-05-27 2006-05-27 防氚渗透耐蚀绝缘复合涂层

Publications (2)

Publication Number Publication Date
CN1861391A CN1861391A (zh) 2006-11-15
CN100382958C true CN100382958C (zh) 2008-04-23

Family

ID=37388963

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100859078A Expired - Fee Related CN100382958C (zh) 2006-05-27 2006-05-27 防氚渗透耐蚀绝缘复合涂层

Country Status (1)

Country Link
CN (1) CN100382958C (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261261A (ja) * 2007-04-11 2008-10-30 Hitachi Appliances Inc 摺動部材及びそれを用いたスクロール型電動圧縮機
CN101579958B (zh) * 2009-06-29 2013-03-20 中国科学院等离子体物理研究所 一种钢基多功能陶瓷复合涂层及其制备方法
CN111041418B (zh) * 2019-12-11 2021-01-01 武汉大学 一种适用于铁基不锈钢的复合梯度阻氚涂层及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250350A (en) * 1991-12-03 1993-10-05 The Dow Chemical Company Modified burn characteristic Saranex film
CN1083128A (zh) * 1992-08-20 1994-03-02 中国原子能科学研究院 不锈钢防氚渗透材料的制作工艺

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250350A (en) * 1991-12-03 1993-10-05 The Dow Chemical Company Modified burn characteristic Saranex film
CN1083128A (zh) * 1992-08-20 1994-03-02 中国原子能科学研究院 不锈钢防氚渗透材料的制作工艺

Also Published As

Publication number Publication date
CN1861391A (zh) 2006-11-15

Similar Documents

Publication Publication Date Title
CN101579958B (zh) 一种钢基多功能陶瓷复合涂层及其制备方法
Wereszczak et al. Properties of bulk sintered silver as a function of porosity
JP6455958B2 (ja) 燃料棒のセラミック含有被覆管に二重にシールされた端栓
US20230352199A1 (en) COATINGS AND SURFACE MODIFICATIONS TO MITIGATE SiC CLADDING DURING OPERATION IN LIGHT WATER REACTORS
WO2019052315A1 (zh) 燃料包壳及燃料组件
CN100382958C (zh) 防氚渗透耐蚀绝缘复合涂层
CN111139434A (zh) 一种锆合金表面用事故容错核燃料包壳涂层
US20120314831A1 (en) Light Water Reactor TRISO Particle-Metal-Matrix Composite Fuel
Riccardi et al. Status of the European R&D activities on SiCf/SiC composites for fusion reactors
Shen et al. Thermal conductivity and thermal expansion coefficient of diamond/5 wt% Si–Cu composite by vacuum hot pressing
GB2063915A (en) Method for forming nuclear fuel containers of a composite construction and the product thereof
Guéneau et al. A thermodynamic approach for advanced fuels of gas-cooled reactors
Hurley et al. Swelling and thermal diffusivity changes in neutron-irradiated ceramics
CN116968397B (zh) 一种防氚渗透的层状复合材料及其制备方法
CA2041418A1 (en) Method of protecting ceramic surfaces
US10636533B2 (en) Alloys for inert matrix fuel compositions, and methods of making the same
Kim et al. Ceramic plasma‐spray‐coated graphite crucible for injection casting of fast reactor fuel slugs
Hamling Using ceramic-fiber materials in corrosive environments
Hurley et al. X-ray analysis of internal strain in neutron-irradiated silicon nitrides and oxynitrides
Rattray et al. Neutron activation analysis and numerical taxonomy of thin orange ceramics from the manufacturing site of Rio Carnero, Puebla, Mexico
Shigegaki et al. {beta}-SiAlON-silicon nitride multilayered composites
CN109160529B (zh) 一种氧化铝-氧化锆高温抗氧化复合层的制备方法
RU2333552C1 (ru) Микротвэл ядерного реактора с трехслойным защитным покрытием топливной микросферы
Hafner et al. Coating for improved surface finish
Spradling et al. Freeze Casting SiC-SiC Composites

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080423

Termination date: 20150527

EXPY Termination of patent right or utility model