CN100361485C - 通信系统中非线性处理的装置和方法 - Google Patents

通信系统中非线性处理的装置和方法 Download PDF

Info

Publication number
CN100361485C
CN100361485C CNB971931240A CN97193124A CN100361485C CN 100361485 C CN100361485 C CN 100361485C CN B971931240 A CNB971931240 A CN B971931240A CN 97193124 A CN97193124 A CN 97193124A CN 100361485 C CN100361485 C CN 100361485C
Authority
CN
China
Prior art keywords
noise
control signal
signal
echo canceller
suppressing system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB971931240A
Other languages
English (en)
Other versions
CN1214171A (zh
Inventor
詹姆斯·P·阿什利
李·M·普罗克特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Mobility LLC
Google Technology Holdings LLC
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Publication of CN1214171A publication Critical patent/CN1214171A/zh
Application granted granted Critical
Publication of CN100361485C publication Critical patent/CN100361485C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M9/00Arrangements for interconnection not involving centralised switching
    • H04M9/08Two-way loud-speaking telephone systems with means for conditioning the signal, e.g. for suppressing echoes for one or both directions of traffic
    • H04M9/082Two-way loud-speaking telephone systems with means for conditioning the signal, e.g. for suppressing echoes for one or both directions of traffic using echo cancellers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/20Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other
    • H04B3/23Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other using a replica of transmitted signal in the time domain, e.g. echo cancellers

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Noise Elimination (AREA)

Abstract

一种在回声消除中使用的改进的非线性处理器取消了舒适噪声源(214)并代之以直接输入一个控制信号(224)到噪声抑制系统(403)。当控制信号(224)有效时,噪声抑制系统(403)利用控制信号(224)禁止背景噪声估算的反复修正,这可避免任何残余回声偏离噪声抑制系统(403)提供的噪声估算。另外,这一控制信号(224)还被噪声抑制系统(403)中的增益计算器(533)用于将每一频带衰减到最大允许量加上当前残余信道的信噪比(SNR)。依据这一实现方式,噪声抑制系统(403)可模拟PSTN用户或移动台用户的背景噪声。

Description

通信系统中非线性处理的装置和方法
技术领域:
本发明一般涉及回声消除,尤其涉及通信系统中改进的非线性处理。
背景技术:
数字蜂窝系统的最新的语音压缩标准已将噪声抑制考虑为信号预处理功能的一个必要的组成部分。尽管噪声抑制的方法在这些标准中仍是可选的,然而如果不使用噪声抑制,那么几乎不可能通过主观一致性测试。这些标准在提出需要噪声抑制功能的同时,却没有提到将噪声抑制与其他必要的预处理功能如回声消除级联所带来的影响。将回声消除器与噪声抑制器级联可能会带来一些问题。
众所周知,在通信系统中消除电、声回声时,回声通路中的某些非线性(如量化噪声,声偏差等)妨碍了回声消除器对回声产生系统进行完整和精确地模拟(modeling)。这导致了终端用户可听见残余回声。为弥补这一缺陷,回声消除系统使用了众所周知的“中心限幅器”或“非线性处理器”  (参见“CCITT建议G.165,1980年于日内瓦制定,1984年于马拉加-托雷莫里诺斯,1988年于墨尔本修订”)。非线性处理器,通过估算回波损耗(ERL)和增强回波损耗(ERLE),并且一旦达到最小的ERL+ERLE阈值就对残余回声“限幅”,基本上抑制了残余回声。这种限幅一般是一种切换到低电平“舒适噪声”发生器的开关,它对终端用户提供了一种有电压的电路的感觉。
问题是这些新的噪声抑制系统与这一众所周知的非线性处理不兼容。简单地说,这些新的噪声抑制系统利用对输入信号的长时间统计来周期性地估算背景噪声谱幅度。然后这一估算被用作频域滤波器以衰减在幅度上与噪声估算非常接近的输入信号频带。如果一个回声消除器置于噪声抑制系统之前,那么非线性处理器将错误地偏离背景噪声的估算。一旦因为背景噪声特性的改变而使非线性处理器无效,将导致一个无效的滤波操作。在中等程度噪声到高噪声环境中,如蜂窝无线电话的免提配置,这将使噪声抑制系统变得无效。
其他配置也已考虑。例如,如果噪声抑制系统置于回声消除器之前,那么回声消除器中的非线性处理将对噪声抑制系统中的噪声估算不起作用。采用这一实现方式所带来的问题是高度非线性的噪声处理器此时处在回声通路中,这将妨碍回声消除器始终正常收敛。另一个例子包括将非线性处理器与回声消除器分开,正确地将回声消除器置于噪声抑制系统之前,并将非线性处理器放到噪声抑制系统后面(在噪声抑制器输出端)。虽然这是到目前为止所讨论的最佳实现方式,但有以下两个难点。首先,舒适噪声发生器典型地有一个固定的谱特性,它导致通常在大多数长距离陆线的电话通话中可觉察到的噪声切换人工痕迹。其次,非线性处理器在确定可变速率声码器的分组速率时可能产生问题。大多数速率确定算法利用输入语音信号的能量和谱特性来确定话音行为。这样,接通和断开合成的舒适噪声会大大降低速率确定算法的性能。
因此,需要将一种改进的回声消除和噪声抑制级联用于通信系统中。
发明内容:
根据本发明,这里提供一种用于在通信系统中非线性处理的装置,其特征在于,该装置包括:用于分析回声消除器基准信号和回声消除器残余信号以产生一个控制信号的装置;和一个噪声抑制系统,基于所述的控制信号,用于模拟用户的背景噪声,该噪声抑制系统响应所述的控制信号,自适应地以谱整形所述的回声消除器残余信号,以发出基本类似于由所述噪声抑制系统所产生的模拟背景噪声的声音。
其中,所述的噪声抑制系统还包括:基于所述的控制信号用于禁止更新所述的背景噪声的装置。
其中,所述的用于模拟用户的背景噪声的装置还包括:用于滤波所述回声消除器残余信号的装置。
其中,所述的用于分析回声消除器基准信号和回声消除器残余信号以产生控制信号的装置实际上可与所述用于模拟背景噪声的装置分离开或可与所述用于模拟背景噪声的装置配置在一起。
根据本发明,这里还提供一种用于在通信系统中非线性处理的方法,其特征在于,该方法包括以下步骤:分析回声消除器基准信号和回声消除器残余信号以产生一个控制信号;和基于所述的控制信号,利用一个噪声抑制系统模拟用户的背景噪声,该噪声抑制系统响应所述的控制信号,自适应地以谱整形所述的回声消除器残余信号,以发出基本类似于由所述噪声抑制系统所产生的模拟背景噪声的声音。
附图说明:
图1一般性地示出根据本发明有效地实现改进的非线性处理的通信系统。
图2一般性地示出典型地用于通信系统(如图1所示)的现有技术回声消除电路图。
图3一般性地示出用于说明图2的现有技术配置的能量-时间曲线图。
图4一般性地示出根据本发明用于通信系统的改进的非线性处理。
图5一般性地示出根据本发明的图4中的噪声抑制系统的框图。
图6一般性地示出图5的噪声抑制系统中出现的帧间重叠。
图7一般性地示出图5的噪声抑制系统中出现的预加重样值的梯形窗口处理。
图8一般性地示出图5所描述的噪声抑制系统中谱偏差估算器的框图。
图9一般性地示出图5所描述的噪声抑制系统中修正判决器所执行步骤的流程图。
图10一般性地示出根据本发明实现改进的非线性处理所形成的能量-时间曲线。
图11一般性地示出根据本发明实现非线性处理的移动台。
具体实施方式:
一般而言,一种改进的非线性处理器取消了舒适噪声源并代之以直接输入一个控制信号到噪声抑制系统。当控制信号有效时,噪声抑制系统利用该控制信号禁止背景噪声估算的反复修正,这可避免任何残余回声偏离噪声抑制系统提供的噪声估算。另外,这一控制信号还被噪声抑制系统中的增益计算器用于将每一频带衰减到最大允许量加上当前残余信道的信噪比(SNR)。依据这一实现方式,噪声抑制系统可模拟PSTN用户或移动台用户的背景噪声。
更准确地说,根据本发明在通信系统中用于非线性处理的一种装置包括,一个用于分析回声消除器基准信号和回声消除器残余信号以产生一个控制信号的装置,以及一个用于模拟基于该控制信号的用户的背景噪声的装置。在本优选的实施方式中,分析装置包括一个用于将回声消除器基准信号和回声消除器残余信号进行比较以产生该控制信号的比较器。而且在本优选的实施方式中,该用户可以是公共交换电话网(PSTN)中的一个用户或移动台的一个用户。
用于模拟用户背景噪声的装置进一步包括一个噪声抑制系统,该噪声抑制系统包括用于禁止基于控制信号的背景噪声的修正的装置。噪声抑制系统实现信道增益以完成输入信号的频域滤波并基于控制信号调节的信道增益。在本优选的实施方式中,当控制信号有效时利用等式γdB(i)=γn-σ(i),0≤i<Nc调节信道增益。在这一实现方式中,噪声抑制系统响应控制信号根据谱形成回声消除器残余信号,发出基本类似于噪声抑制系统产生的模拟背景噪声的声音。
在一种可选实施方式中,用于模拟用户背景噪声的装置包括用于对回声消除器残余信号进行滤波的装置。从系统集成和/或实现上讲,用于分析回声消除器基准信号和回声消除器残余信号以产生控制信号的装置实际上可与用于模拟背景噪声的装置分开或可与用于模拟背景噪声的装置配置在一起。这一装置与一个相应的方法结合在一起,该方法包括以下步骤,分析回声消除器基准信号和回声消除器残余信号以产生控制信号并基于这一控制信号模拟用户的背景噪声。
换一种说法,根据本发明在通信系统中用于非线性处理的装置包括一个用于激活输入到噪声抑制系统的控制信号的装置。噪声抑制系统包括一个用于从该控制信号产生一个调整控制信号的装置,一个用于基于该调整控制信号禁止对背景噪声估算进行修正的装置和一个用于基于该调整控制信号调节信道增益的装置。在这一实现方式中,用于激活这一控制信号的装置既包括一个用于将回声消除器基准信号和回声消除器残余信号之间的差值与一个阈值进行比较的装置又包括一个可被用户激活的静噪功能。由用户激活的静噪功能特别适用于希望能对信号进行滤波而留下背景噪声的情况。这种情形在卫星线路传输(特别是越洋通话)中会出现,在此需要背景噪声以使该通信设备的用户知道线路仍保持连接。
分析回声消除器基准信号和回声消除器残余信号以产生一个控制信号可由回声消除器完成,同时基于这一控制信号的用户的背景噪声的模拟可由噪声抑制系统完成。当用这种方式实现时,回声消除器实际上可与噪声抑制系统分开或可与噪声抑制系统配置在一起。重要的是要注意与噪声抑制系统分开的回声消除器的实现要求回声消除器提供控制信号作为输出。
图1一般地描述了根据本发明有效地实现改进的非线性处理的通信系统。在图1所描述的实施方式中,通信系统是一个码分多址(CDMA)无线电话系统,然而本领域一般熟练技术人员会知道各种实现回声消除和/或噪声抑制系统的其他类型的通信系统也可有效地使用本发明。接下来公共交换电话网103(PSTN)连接到移动交换中心106(MSC)。在本领域众所周知,PSTN 103具有有线线路交换能力而MSC 106具有与CDMA无线电话系统有关的交换能力。控制器109也连接到MSC 106,控制器109包括回声消除和话音编码/解码。这一控制器109控制进/出基站112、113的信号的路由选择,基站112、113则能够与移动台115进行通信。CDMA无线电话系统符合过渡性标准(IS)95-A。有关IS-95-A的详细资料,参见“TIA/EIA/IS-95-A,‘Mobile Station-Base StationCompatibility Standard for Dual Mode Wideband Spread SpectrumCellular System’,July 1993”。虽然MSC 106的交换能力和控制器109的控制能力如图1中配置所示,但本领域一般技术人员应当理解在系统实现上这两个功能可合并到同一物理实体中。
为了说明根据本发明改进的非线性处理,对现有技术的回声消除线路图进行说明是有助的。图2一般地描述了用于通信系统(如图1中的通信系统100)的一个典型的现有技术回声消除线路图。如图2所示,来自移动台115的信号输入到控制器109中的话音解码器部件(块采样速率)209。话音解码器部件(块采样速率)在本领域是众所周知的,实质上它对在移动台115中被编码的“编码”话音进行解码。话音解码器209的输出,即回声消除器基准信号205,输入到回声消除器203,203的工作原理将在下面作一般性描述。回声消除器基准信号205实际上通过MSC 106而不受影响,最终到达PSTN 103,在此被发送到PSTN 103的用户,一般标记为陆线用户。本领域中众所周知,在PSTN 103中,与输入和输出PSTN 103的传输线有关的相互耦合会产生回声。这一回声用部件(块采样速率)221中所示的传递函数H(z)表示。这样,示出的从PSTN 103输出并输入到MSC 106的信号不仅包括从陆线系统用户发出的纯信号,而且如上所述还包括源于移动台115的信号的回声。该信号通过MSC 106再次输入到控制器109中的回声消除器203。回声消除器203从输入中减去一个估算的回声复制,产生回声消除器残余信号207。回声消除器203包括一个非线性处理器212,它基于控制信号224状态进一步抑制回声消除器残余信号207。
如图2中所示,非线性处理可通过切换到向终端用户提供一种有电压电路的感觉的一个低电平舒适噪声源214来实现。重要的是要注意舒适噪声源214只提供低电平白噪声,而与是PSTN还是移动台的用户完全无关。这种回声消除器203在本领域是众所周知的,其中一个例子如1986年由美国Texas Instruments的名称为“Digital Signal ProcessingApplications with the TMS 320 Family”出版物中第417页到436页的应用注释所述。回声消除器203的另一个例子由授权给Ashley等人并已转让给本发明受让人的名称为“Method of Performing Convergence in aLeast Mean Square Adaptive Filter Echo Canceller”的美国专利号5,295,136所提供。在这一专利中描述的回声消除器符合前面已引用的CCITT协议G.165。
回声消除器203(确切地说回声消除器203中非线性处理器212)输出的信号,输入到噪声抑制系统206。在本优选实施方式中,噪声抑制系统206如1996年9月9日发布的名称为“Enhanced Variable RateCodec,Speech Service Option 3 for Wideband Spread Spectrum DigitalSystems”的TlA文件IS-127中的第4.1.2节所述,其内容并入本申请以备参考。噪声抑制系统206输出的信号输入到话音编码器210,在本领域中众所周知,它对噪声抑制的信号进行编码以便通过基站112、113传送到移动台115。图2中所示的还有速率确定算法211,它利用输入到话音编码器210的语音信号的能量和谱特性来确定话音行为。
图3一般地描述了用于进一步说明图2中的现有技术配置的能量-时间曲线。如图3所示,上面那条能量曲线301代表从MSC 106输出而输入到回声消除器203的信号,在图2中用点A(pt.A)标出。这一信号包括通过H(z)221产生的回声和来自PSTN 103中的陆线用户的噪声。下面那条能量曲线302是从噪声抑制系统206输出并输入到话音编码器210的信号,在图2中如点B所示。在图3中的时间段304和306期间,曲线301的能级高表示移动台115的用户在这期间正在讲话。在时间段307期间,移动台115的用户不发声,因此这期间从话音解码器209输出的能量小。
参照图3中曲线302,在时间段304和306期间,比较器227的输入端差值大,控制信号224有效以使舒适噪声源214被用作噪声抑制系统206的输入。在时间段307期间,当比较器227的输入端差值小时,控制信号224允许噪声抑制系统206的输入是来自PSTN 103中的陆线用户。来自舒适噪声源214的输入一般有一个比来自PSTN 103中的陆线用户的噪声输入更低的能级,如能量曲线302上的时间段312所示。因为在时间段312期间的能量(由来自陆线214的输入所引起)比时间段304期间的能量大,因此噪声抑制系统206假设其输入端有话音,于是解除噪声抑制系统206的作用直至在时间段315上恢复。实质上,噪声抑制系统206在时间段315期间将陆线噪声源电平衰减了13dB。在时间段306期间,当在话音解码器209的输出端又有话音时,比较器227的输入端差值又变大,控制信号224有效以使舒适噪声源214又被用作噪声抑制系统206的输入。重要的是要注意能量曲线302是在话音编码器210的输入端,于是在能量曲线302中描述的所有能级变化由话音编码器210进行编码并且在与PSTN 103的陆线用户通信期间发送给移动台115的用户。
图4一般地描述了根据本发明用于通信系统的改进的非线性处理。如图4所示,图2中的舒适噪声源214已去掉,比较器227输出的控制信号224直接输入到噪声抑制系统403。在根据本发明的优选实施方式中的装置401包括该比较器227和噪声抑制系统403。它允许装置401的非线性处理(在本实施方式中是非线性处理)的功能由噪声抑制系统403提供。当控制信号224有效时,噪声抑制系统403利用控制信号224来禁止背景噪声估算的反复修正,这一点将参照图5作更详细的描述。它可避免任何残余回声偏离噪声抑制系统403提供的噪声估算。最后,这一控制信号224被噪声抑制系统403中的增益计算器用于将每一频带衰减到最大允许量加上当前残余信道的信噪比(SNR)。在这种实施方式中,噪声抑制系统403提供了一种用于基于该控制信号模拟用户的背景噪声的装置,来模拟PSTN用户的背景噪声。
更详细地说,当控制信号224有效时,信道增益被改变以致形成其谱与噪声估算等同的残余回声信号,然后衰减一个预定的量值。重要的是要注意它不包含噪声合成(这可与图2中的现有技术比较,那里使用了舒适噪声源214),而是残余回声信号被适当地滤波以发出不被觉察的接近于进行了正常噪声抑制后的背景噪声。由于这种改进的非线性处理装置具有精确的功率谱密度,因此通信系统的其他方面例如通信系统中的速率确定或语音行为检测同样得到改进。
图5一般地描述了根据本发明的噪声抑制系统403的原理框图。在本优选的实施方式中,噪声抑制系统403是上述TlA文档IS-127中的第4.1.2节所述的噪声抑制系统的一个改进的变型。注意本申请的图5中描述的一些部件(块采样速率)与授权给Vilmur的美国专利号4,811,404的图1中描述的相应的部件(块采样速率)有着相似的作用。这样,授权给Vilmur并已转让给本申请受让人的美国专利号4,811,404在此可作为参考被引用。
为了开始进行噪声抑制,输入信号s(n)由高通滤波器(HPF)500进行高通滤波以产生信号shp(n)。HPF 500是一个本领域中众所周知的截止频率为120Hz的四阶Chebyshev(切比雪夫)II型滤波器。HPF 500的传递函数定义为:
H hp ( z ) = Σ i = 0 4 b ( i ) z - i Σ i = 0 4 a ( i ) z - i ,
式中,各分子和分母的系数定义为:
b={0.898025036,-3.59010601,5.38416243,-3.59010601,0.898024917},
a={1.0,-3.78284979,5.37379122,-3.39733505,0.806448996}。
正如本领域一般技术人员所知,可使用任意多的高通滤波器配置。
下一步,在预加重部件(块采样速率)503中,信号shp(n)用平滑的梯形窗进行窗口处理,其中输入帧(帧“m”)的前D个样值d(m)与前一帧(帧“m-1”)的后D个样值重叠。这种重叠从图6最易看出。除非另有说明,否则所有变量的初始值均为零,例如d(m)=0;m≤0。这可描述为:
d(m,n)=d(m-1,L+n);0≤n<D,
式中,m是当前帧,n是指向缓冲器{d(m)}的样值指针,L=80是帧长度,而D=24是样值中的重叠(或延迟)。输入缓冲器的其余样值再根据下式进行预加重:
d(m,D+n)=shp(n)+ζp shp(n-1);0≤n<L,
式中ζp=-0.8是预加重因子。这使得输入缓冲器包含L+D=104个样值,其中前D个样值是来自前一帧的预加重重叠,而随后的L个样值是来自当前帧的输入。
下一步,在图5中的窗口处理部件(块采样速率)504中,平滑的梯形窗(如图7中的窗700所示)施加到样值上,形成一个离散傅里叶变换(DFT)输入信号g(n)。在本优选的实施方式中,g(n)定义如下:
g ( n ) = d ( m , n ) sin 2 ( &pi; ( n + 0.5 ) / 2 D ) ; 0 &le; n < D , d ( m , n ) ; D &le; n < L , d ( m , n ) sin 2 ( &pi; ( n - L + D + 0.5 ) / 2 D ) ; L &le; n < D + L , 0 ; D + L &le; n < M ,
式中,M=128是DFT序列长度,所有其他项如前面所定义。
在图5中的信道分配器506中,用离散傅里叶变换(DFT)将g(n)变换到频域中,定义如下:
G ( k ) = 2 M &Sigma; n = 0 M - 1 g ( n ) e - j 2 &pi;nk / M ; 0 &le; k &le; M ,
式中,e是具有瞬时径向位角ω的单位振幅复相量。这是一个非常规的定义,但可利用复数快速傅里叶变换(FFT)的系数。换算因数2/M在预处理M个点的实数序列以形成M/2个点的复数序列过程中产生,该序列是用M/2个点的复数FFT进行变换的。在本优选实施方式中,信号G(k)包含65个独立的信道。有关该技术的详细内容可参见“Proakis&Manolakis,‘Introduction to Digital Signal Processing’,第二版,NewYork,Macmillan,1988,pp.721-722”。
信号G(k)再输入到信道能量估算器509,其中当前帧m的信道能量估算Ech(m)用下式确定:
E ch ( m , i ) = max { E min , &alpha; ch ( m ) E ch ( m - 1 , i ) + ( 1 - &alpha; ch ( m ) ) 1 f H ( i ) - f L ( i ) + 1 &Sigma; k = f L ( i ) f H ( i ) | G ( k ) | 2 }
;0≤i<Nc
式中,Emin=0.0625是最小允许信道能量,αch(m)是信道能量平滑因子(在下文中定义),Nc=16是组合信道数,fL(i)和fH(i)分别是低信道组合表fL和高信道组合表fH中的第i个元素。在本优选实施方式中,fL和fH定义为:
fL={2,4,6,8,10,12,14,17,20,23,27,31,36,42,49,56},
fH={3,5,7,9,11,13,16,19,22,26,30,35,41,48,55,63}。
信道能量平滑因子αch(m)定义如下:
&alpha; ch ( m ) = 0 ; m &le; 1 , 0.45 ; m > 1 , )
它表示αch(m)设第一帧(m=1)的值为零,其后的所有帧的值为0.45。它允许信道能量估算被初始化到第一帧的未滤波信道能量。另外,信道噪声能量估算(如后面所定义)应被初始化到第一帧的信道能量,即:
En(m,i)=max{Einit,Ech(m,i)};m=1,0≤i<Nc,式中Einit=16是最小允许信道噪声初始化能量。
当前帧的信道能量估算Ech(m)接下来被用来估算量化的信道信噪比(SNR)指数。这一估算由图5中的信道SNR估算器518完成,并由下式确定:
&sigma; q ( i ) = max { 0 , min { 89 , round { 10 lo g 10 ( E ch ( m , i ) E n ( m , i ) ) / 0.375 } } } ;
0≤i<Nc
式中,En(m)是当前信道噪声能量估算(如后面所定义),{σq}的值限于0到89之间(含0和89)。在本发明中,需要未被量化的原始SNR的{σ},因此上式可分成两步:
&sigma; ( i ) = 10 lo g 10 ( E ch ( m , i ) E n ( m , i ) ) , 0 &le; i < N c
σ(i)=max{0,min{89,round{σ(i)/0.375}}},0≤i<Nc
参数{σ}和{σq}各自示于图5中信道SNR估算器518的输出端。
利用信道SNR估算{σq},话音量的总和在话音量计算器515中由下式确定:
( v ( m ) = &Sigma; i = 0 N c - 1 V ( &sigma; q ( i ) ) ,
式中,V(k)是具有90个元素的话音量表V中的第k个值,其中V定义如下:
V={2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5,5,5,6,6,7,7,7,8,
8,9,9,10,10,11,12,12,13,13,14,15,15,16,17,17,18,19,20,20,21,
22,23,24,24,25,26,27,28,28,29,30,31,32,33,34,35,36,37,37,38,
39,40,41,42,43,44,45,46,47,48,49,50,50,50,50,50,50,50,50,50,50}。
当前帧的信道能量估算Ech(m)还被用作谱偏差估算器510的输入,该估算器估算谱偏差ΔE(m)。参照图8,信道能量估算Ech(m)输入到对数功率谱估算器800,其中对数功率谱的估算如下:
EdB(m,i)=10 log10(Ech(m,i));0≤i<Nc
当前帧的信道能量估算Ech(m)还被输入到总信道能量估算器803,以根据下式确定当前帧m的总信道能量估算Etot(m):
E tot ( m ) = 10 log 10 ( &Sigma; i = 0 N c - 1 E ch ( m , i ) ) &CenterDot;
下一步,指数窗口因子α(m)(作为总信道能量Etot(m)的函数)在指数窗口因子确定器806中由下式确定:
&alpha; ( m ) = &alpha; H - ( &alpha; H - &alpha; L E H - E L ) ( E H - E tot ( m ) ) ,
它由下式被限定在αH和αL之间:
α(m)=max{αL,min{αH,α(m)}},
式中EH和EL是Etot(m)的线性内插的能量端值(单位为分贝,或“dB”),Etot(m)被转换为α(m),α(m)限定在αL≤α(m)≤αH。这些常量的值定义为:EH=50,EL=30,αH=0.99,αL=0.50。据此,利用上述计算,一个具有相对能量比如说40dB的信号应使用的指数窗口因子为α(m)=0.745。
然后,谱偏差ΔE(m)在谱偏差估算器809中被估算。谱偏差ΔE(m)是当前功率谱和平均长期功率谱估算之间的差值:
&Delta; E ( m ) = &Sigma; i = 0 N c - 1 | E dB ( m , i ) - E &OverBar; dB ( m , i ) | ,
式中,
Figure C9719312400134
是平均长期功率谱估算,它在长期谱能量估算器812中由下式确定:
E &OverBar; dB ( m + 1 , i ) = &alpha; ( m ) E &OverBar; dB ( m , i ) + ( 1 - &alpha; ( m ) ) E dB ( m , i ) ; 0≤i<Nc,式中所有变量前面已定义。
Figure C9719312400142
的初始值定义为被估算的帧1的对数功率谱,即:
E &OverBar; dB ( m ) = E dB ( m ) ; m=1。
下一步,控制信号224由调整部件(块采样速率)528进行处理以产生调整控制信号526。这一调整是必要的以使控制信号224的采样速率适应噪声抑制系统403的部件(块采样速率)采样速率。在调整部件(块采样速率)528中实现的伪码如下:
conditioned_control_signal=ACTIVE
for i=0 to L-1
 if control_signal(i)==INACTIVE
  conditioned_control_signal=INACTIVE
  break;
 end
end
这确保了如果控制信号224对样值i无效,那么调整控制信号526对整组L样值无效。
此时,话音量的总和v(m),当前帧的总信道能量估算Etot(m)以及谱偏差ΔE(m)如同调整控制信号526那样输入到修正判决器512以便进行根据本发明的非线性处理。调整控制信号526被修正判决器512用于禁止修正标记(update_flag)以阻止对背景噪声进行估算/修正。判决逻辑,其伪码如后面所示,流程图如图9中所描述,它说明了噪声估算修正判决最终是如何实现的。其过程从步骤900开始,进行到步骤903,修正标记(update_flag)被清零。然后,在步骤904中,Vilmur的修正逻辑(仅为VMSUM)通过检测话音量的总和v(m)是否小于一个修正阈值(UPDATE_THLD)来实现。如果话音量的总和小于这一修正阈值,那么修正计数器(update_cnt)在步骤905中被清零,并在步骤906中修正标记被置位。步骤903到906的伪码如下:
update_flag=FALSE;
if(v(m)≤UPDATE_THLD)and
  conditioned control signal 526=INACTIVE{
   update_flag=TRUE
   update_cnt=0
}
如果话音量的总和大于步骤904中修正阈值,则实现噪声抑制。首先在步骤907中,将当前帧m的总信道能量估算Etot(m)与用dB表示的本底噪声(NOISE_FLOOR_DB)进行比较,同时将谱偏差ΔE(m)与偏差阈值(DEV_THLD)进行比较。如果总信道能量估算大于本底噪声而谱偏差小于偏差阈值,则修正计数器在步骤908中增加。修正计数器增加后,在步骤909中进行检测以判断修正计数器是否大于或等于修正计数器阈值(UPDATE_CNT_THLD)。如果步骤909中检测的结果为“真”,那么在步骤906中修正标记被置位。步骤907到909以及906的伪码如下:
else if((Etot(m)>NOISE_FLOOR_DB)and(ΔE(m)<DEV_THLD))
{
 update_cnt=update_cnt+1
 if(update_cnt≥UPDATE_CNT_THLD)
  update_flag=TRUE
}
如图9所示,如果步骤907和909中的检测之一为“否”,或在步骤906中修正标记已被置位后,则实现避免修正标记长期“滞缓”的逻辑。实现该滞后逻辑是为了避免最小谱偏差在长时间内累积而导致一个非法的强制修正。该处理过程从步骤910开始,在此进行检测以判断修正计数器是否等于前N帧(HYSTER_CNT_THLD)的前次修正计数器值(last_update_cnt)。在本优选实施方式中,六帧被用作一个阈值,然而任意数量帧都可用作阈值。如果在步骤910中的检测为“真”,那么修正计数器在步骤911中被清零,处理过程退出到步骤912中的下一帧。如果步骤910中的检测为“假”,那么处理过程直接退出到步骤912中的下一帧。步骤910到912的伪码如下:
if(update_cnt==last_update_cnt)
 hyster_cnt=hyster_cnt+1
else
 hyster_cnt=0
last_update_cnt=update_cnt
if(hyster_cnt>HYSTER_CNT_THLD)
 update_cnt=0。
在本优选实施方式中,前面所用的常量的值分别为:
UPDATE_THLD=35,
NOISE_FLOOR_DB=10log10(l),
DEV_THLD=28,
UPDATE_CNT_THLD=50,和
HYSTER_CNT_THLD=6。
每当在步骤906中一个给定的帧的修正标记被置位时,下一帧的信道噪声估算就被修正。信道噪声估算在平滑滤波器524中按下式修正:
En(m+1,i)=max{Emin,αnEn(m,i)+(1-α n)Ech(m,i)};0≤i<Nc
式中,Emin=0.0625是最小允许信道能量,而αn=0.9是存储在平滑滤波器524中的信道噪声平滑因子。修正的信道噪声估算存储在能量估算存储器525中,能量估算存储器525的输出是修正的信道噪声估算En(m)。修正的信道噪声估算En(m)被用作上述信道SNR估算器518的输入,还被用作下述增益计算器533的输入。
下一步,噪声抑制系统403判断信道SNR是否应进行调节。这一判断在信道SNR调节器527中完成,它计算具有信道SNR指数值(该值超过一个指数阈值)的信道数。在自身调节处理期间,信道SNR调节器527降低那些SNR指数小于复原阈值(SETBACK_THLD)的特殊信道的SNR,或者如果话音量的总和小于量度阈值(METRIC_THLD),则降低所有信道的SNR。出现在信道SNR调节器527中的信道SNR调节处理的伪码表示如下:
    index_cnt=0
   for(i=NM to Nc-1 step 1){
    if(σq(i)≥INDEX_THLD)
    index_cnt=index cnt+1
   }
   if(index_cnt<INDEX_CNT_THLD)
    modify_flag=TRUE
   else
    modify_flag=FALSE
   if(modify_flag==TRUE)
    for(i=0 to Nc-1 step 1)
     if((v(m)≤METRIC_THLD)or(σq(i)≤SETBACK_THLD))
       σq(i)=1
     else
      σq(i)=σq(i)
    else
     {σ’q}={σq}
此时,信道SNR指数{σ’q}被限定为SNR阈值部件(块采样速率)530中的某个SNR阈值。常量σth被存储在SNR阈值部件(块采样速率)530中。在SNR阈值部件(块采样速率)530中进行的处理的伪码表示如下:
for(i=0 to Nc-1 step 1)
 if(σ’q(i)<σth)
    σ”q(i)=σth
else
    σ”q(i)=σ’q(i)
在本优选实施方式中,前述常量和阈值给定为:
NM=5,
INDEX_THLD=12,
INDEX_CNT_THLD=5,
METRIC_THLD=45,
SETBACK_THLD=12,和
σth=6。
此时,限定的SNR指数{σ”q}以及来自信道SNR估算器518的未被量化的信道SNR的{σ}被输入到增益计算器533,在此确定信道增益。首先由下式确定总增益因子:
&gamma; n = max { &gamma; min - 10 lo g 10 ( 1 E floor &Sigma; i = 0 N c - 1 E n ( m , i ) ) } ,
式中,γmin=-13是最小的总增益,Efloor=1是本底噪声能量,而En(m)是前一帧期间计算出的估算噪声谱。在本优选实施方式中,常量γmin和Efloor存储在增益计算器533中。在增益计算器533中,根据也被输入到增益计算器533中的调整控制信号526的状态,决定是用{σ”q}还是用{σ}。然后信道增益(单位:dB)确定如下:
当调整控制信号526有效时,
γdB(i)=γn-σ(i),0≤i<Nc,或
当调整控制信号526无效时,
γdB(i)=μgq”(i)-σth)+γn,0≤i<Nc
其中变量μg=0.39是增益斜率(也被存储在增益计算器533中)。这些线性信道增益再用下式进行转换:
γch(i)=min{1,10γdB(i)/20},0≤i<Nc
此时,以上确定的信道增益根据下列判别式施加到已变换的输入信号G(k)以从信道增益调节器539产生输出信号H(k):
Figure C9719312400191
上式中的“其他”情况假设k的区间为0≤k≤M/2。进一步假设H(k)为偶对称,以便下列条件也成立:
H(M-k)=H*(k);0<k<M/2,
式中“*”表示复共轭。那么信号H(k)可在信道组合器542中再用反DFT变换(逆变换)到时域中:
h ( m , n ) = 1 2 &Sigma; k = 0 M - 1 H ( k ) e - j 2 &pi;nk / M ; 0 &le; n &le; M ,
并进行频域滤波处理以根据下列判别式进行叠加产生输出信号h’(n):
h , ( n ) = h ( m , n ) + h ( m - 1 , n + L ) ; 0 &le; n < M - L , h ( m , n ) ; M - L &le; n < L ,
由去加重部件(块采样速率)545对信号h’(n)进行信号去加重处理以产生根据本发明进行噪声抑制的信号s’(n):
s’(n)=h’(n)+ζds’(n-1);0≤n<L,
式中ζd=0.8是存储在去加重部件(块采样速率)545中的去加重因子。
图10一般地描述了根据本发明实现改进的非线性处理所形成的能量-时间曲线。参照图4和图10,在时间段1006和1009期间,比较器227的输入端差值大,且输入到噪声抑制系统403的控制信号224是有效的。在时间段1012期间,输入到噪声抑制系统403的比较器227的输入端差值小,且控制信号224是无效的。然而,不同于图3中的信号能量302,根据本发明的图10中的信号能量1003是不变的。这是由于,在现有技术图2中所示的舒适噪声发生器214已被取消,输入到噪声抑制系统403的能量信号1003(图4中的点“C”)基本上包含与来自PSTN 103的噪声“相同”的噪声量。再者,当输入到噪声抑制系统403的控制信号224有效时,噪声抑制系统403免于区别背景噪声和话音信号。这样,当本实施方式中的控制信号224有效时,输入到噪声抑制系统403的噪声和信号(即回声残余)始终都被衰减。虽然已表明整个这段时间能量保持不变,但需要重申的是谱特征也一致。
尽管参照一个特定的实施方式对本发明进行特定的表示和描述,但本领域技术人员应当理解,在不违背本发明精神和不超出本发明范围的情况下,可以在形式和细节上实现各种变化。例如,根据本发明的回声消除器400中所示的装置401实际上可与回声消除器分开。另外,虽然根据本发明的装置401被描述为在通信系统中网络端实现,装置401同样可在系统的移动端实现。例如,如果根据本发明的装置401在移动台115中实现,那么图4中所需的唯一变化是去除PSTN 103和MSC 106,并改变在部件(块采样速率)221中所示的传递函数H(z)中实现的模型。
据此,图11中的原理框图描述了根据本发明在移动台115中实现的装置401。如图11所示,当输入到回声消除器400中的信号从移动台115的麦克风1106发出的同时,回声消除器400输出的信号又馈入到移动台115的扬声器1103。部件(块采样速率)1109中传递函数H(z)是一个基于较好地表示移动台115的精确环境的声音模型的传递函数。如在通信系统的网络端中所实现的那样,上述装置401的操作保持不变。在本实施方式中,提供一个用于基于控制信号模拟用户的背景噪声的装置的噪声抑制系统403模拟移动台用户的背景噪声。
在下述权利要求书中的所有装置的相应的结构、部件、行为和等同物,或步骤,加上功能单元,意味着包括用于与特定声明的其他权利要求项共同完成的功能的任何结构、部件或行为。

Claims (5)

1.一种用于在通信系统中非线性处理的装置,其特征在于,该装置包括:
用于分析回声消除器基准信号和回声消除器残余信号以产生一个控制信号的装置;和
一个噪声抑制系统,基于所述的控制信号,用于模拟用户的背景噪声,该噪声抑制系统响应所述的控制信号,自适应地以谱整形所述的回声消除器残余信号,以便发出基本类似于由所述噪声抑制系统所产生的模拟背景噪声的声音。
2.根据权利要求1所述的装置,其特征在于,所述的噪声抑制系统还包括:基于所述的控制信号用于禁止更新所述的背景噪声的装置。
3.根据权利要求1所述的装置,其特征在于,所述的用于模拟用户的背景噪声的装置还包括:用于滤波所述回声消除器残余信号的装置。
4.根据权利要求1所述的装置,其特征在于,所述的用于分析回声消除器基准信号和回声消除器残余信号以产生控制信号的装置实际上可与所述用于模拟背景噪声的装置分离开或可与所述用于模拟背景噪声的装置配置在一起。
5.一种用于在通信系统中非线性处理的方法,其特征在于,该方法包括以下步骤:
分析回声消除器基准信号和回声消除器残余信号以产生一个控制信号;和
基于所述的控制信号,利用一个噪声抑制系统模拟用户的背景噪声,该噪声抑制系统响应所述的控制信号,自适应地以谱整形所述的回声消除器残余信号,以发出基本类似于由所述噪声抑制系统所产生的模拟背景噪声的声音。
CNB971931240A 1997-01-23 1997-11-04 通信系统中非线性处理的装置和方法 Expired - Fee Related CN100361485C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US78806197A 1997-01-23 1997-01-23
US08/788,061 1997-01-23

Publications (2)

Publication Number Publication Date
CN1214171A CN1214171A (zh) 1999-04-14
CN100361485C true CN100361485C (zh) 2008-01-09

Family

ID=25143329

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB971931240A Expired - Fee Related CN100361485C (zh) 1997-01-23 1997-11-04 通信系统中非线性处理的装置和方法

Country Status (9)

Country Link
EP (1) EP0895688B1 (zh)
JP (1) JP4261622B2 (zh)
KR (1) KR20000064767A (zh)
CN (1) CN100361485C (zh)
BR (1) BRPI9709148B8 (zh)
CA (1) CA2247429C (zh)
DE (1) DE69735275T2 (zh)
IL (1) IL124578A0 (zh)
WO (1) WO1998033311A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6658107B1 (en) * 1998-10-23 2003-12-02 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for providing echo suppression using frequency domain nonlinear processing
DE19935808A1 (de) * 1999-07-29 2001-02-08 Ericsson Telefon Ab L M Echounterdrückungseinrichtung zum Unterdrücken von Echos in einer Sender/Empfänger-Einheit
US6507653B1 (en) 2000-04-14 2003-01-14 Ericsson Inc. Desired voice detection in echo suppression
ATE306781T1 (de) * 2000-05-18 2005-10-15 Ericsson Inc Gerausch-adaptive kommunikationsignalpegelregelung
JP4580508B2 (ja) * 2000-05-31 2010-11-17 株式会社東芝 信号処理装置及び通信装置
US7027591B2 (en) 2002-10-16 2006-04-11 Ericsson Inc. Integrated noise cancellation and residual echo suppression
US7133825B2 (en) 2003-11-28 2006-11-07 Skyworks Solutions, Inc. Computationally efficient background noise suppressor for speech coding and speech recognition
JP4594960B2 (ja) * 2007-05-18 2010-12-08 日本電信電話株式会社 背景雑音補間装置、背景雑音補間方法
CN102136271B (zh) * 2011-02-09 2012-07-04 华为技术有限公司 舒适噪声生成器、方法及回声抵消装置
US8804977B2 (en) 2011-03-18 2014-08-12 Dolby Laboratories Licensing Corporation Nonlinear reference signal processing for echo suppression
CN105872156B (zh) 2016-05-25 2019-02-12 腾讯科技(深圳)有限公司 一种回声时延跟踪方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5307405A (en) * 1992-09-25 1994-04-26 Qualcomm Incorporated Network echo canceller
US5535194A (en) * 1994-07-14 1996-07-09 Motorola, Inc. Method and apparatus for echo canceling with double-talk immunity

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783803A (en) * 1985-11-12 1988-11-08 Dragon Systems, Inc. Speech recognition apparatus and method
US4811404A (en) * 1987-10-01 1989-03-07 Motorola, Inc. Noise suppression system
FR2651077B1 (fr) * 1989-08-18 1994-06-10 Letourneur Gregoire Dispositif de traitement d'echo notamment acoustique dans une ligne telephonique
US5305309A (en) * 1989-12-06 1994-04-19 Fujitsu Limited Echo canceller
GB2245459A (en) * 1990-06-20 1992-01-02 Motorola Inc Echo canceller with adaptive voice switch attenuation
ES2225321T3 (es) * 1991-06-11 2005-03-16 Qualcomm Incorporated Aparaato y procedimiento para el enmascaramiento de errores en tramas de datos.
US5295136A (en) * 1992-04-13 1994-03-15 Motorola, Inc. Method of performing convergence in a, least mean square, adaptive filter, echo canceller
US5613037A (en) * 1993-12-21 1997-03-18 Lucent Technologies Inc. Rejection of non-digit strings for connected digit speech recognition
JP2928130B2 (ja) * 1995-04-19 1999-08-03 埼玉日本電気株式会社 ハンズフリー通信装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5307405A (en) * 1992-09-25 1994-04-26 Qualcomm Incorporated Network echo canceller
US5535194A (en) * 1994-07-14 1996-07-09 Motorola, Inc. Method and apparatus for echo canceling with double-talk immunity

Also Published As

Publication number Publication date
JP2000507432A (ja) 2000-06-13
EP0895688A4 (en) 2001-11-07
CA2247429C (en) 2002-01-01
DE69735275D1 (de) 2006-04-20
WO1998033311A1 (en) 1998-07-30
IL124578A0 (en) 1999-01-26
DE69735275T2 (de) 2006-07-27
BR9709148A (pt) 1999-08-03
KR20000064767A (ko) 2000-11-06
EP0895688B1 (en) 2006-02-15
CA2247429A1 (en) 1998-07-30
BRPI9709148B8 (pt) 2016-05-31
BR9709148B1 (pt) 2013-10-29
CN1214171A (zh) 1999-04-14
JP4261622B2 (ja) 2009-04-30
EP0895688A1 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
KR100286719B1 (ko) 통신 시스템에서 노이즈를 억압하는 방법 및 장치
Gustafsson et al. A psychoacoustic approach to combined acoustic echo cancellation and noise reduction
CA2189489C (en) Method and apparatus for reducing residual far-end echo in voice communication networks
CN103391381B (zh) 回声消除方法及装置
US8645129B2 (en) Integrated speech intelligibility enhancement system and acoustic echo canceller
AU2009242464B2 (en) System and method for dynamic sound delivery
US9420370B2 (en) Audio processing device and audio processing method
US20160035366A1 (en) Echo suppression device and echo suppression method
WO1997018647A9 (en) Method and apparatus for suppressing noise in a communication system
CA2243631A1 (en) A noisy speech parameter enhancement method and apparatus
CN100361485C (zh) 通信系统中非线性处理的装置和方法
KR20040030817A (ko) 통신 시스템, 에코 제거 수단 및 에코 제거 방법
US7243065B2 (en) Low-complexity comfort noise generator
CN104126297A (zh) 通信系统中的音频信号处理
JPH11331046A (ja) エコー抑圧方法及び装置並びにエコー抑圧プログラムが記憶されたコンピュータに読取り可能な記憶媒体
KR20010051980A (ko) 침묵 기간에서의 에코 및 노이즈의 지수적 감소
WO2000074362A2 (en) Methods and apparatus for improving adaptive filter performance by inclusion of inaudible information
Premananda et al. Speech enhancement algorithm to reduce the effect of background noise in mobile phones
US20010006511A1 (en) Process for coordinated echo- and/or noise reduction
US20050058277A1 (en) Controlling attenuation during echo suppression
US6711259B1 (en) Method and apparatus for noise suppression and side-tone generation
US20020012429A1 (en) Interference-signal-dependent adaptive echo suppression
Premananda et al. Uma BV Incorporating Auditory Masking Properties for Speech Enhancement in presence of Near-end Noise
Lu et al. A centralized acoustic echo canceller exploiting masking properties of the human ear
Michael et al. Extending the Fullband E-Model Towards Background Noise, Bursty Packet Loss, and Conversational Degradations.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: MOTOROLA MOBILE CO., LTD.

Free format text: FORMER OWNER: MOTOROLA INC.

Effective date: 20110111

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20110111

Address after: Illinois Instrunment

Patentee after: MOTOROLA MOBILITY, Inc.

Address before: Illinois Instrunment

Patentee before: Motorola, Inc.

C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Illinois State

Patentee after: MOTOROLA MOBILITY LLC

Address before: Illinois State

Patentee before: MOTOROLA MOBILITY, Inc.

CP02 Change in the address of a patent holder

Address after: Illinois State

Patentee after: MOTOROLA MOBILITY, Inc.

Address before: Illinois Instrunment

Patentee before: MOTOROLA MOBILITY, Inc.

TR01 Transfer of patent right

Effective date of registration: 20160620

Address after: California, USA

Patentee after: Google Technology Holdings LLC

Address before: Illinois State

Patentee before: MOTOROLA MOBILITY LLC

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080109

Termination date: 20151104

EXPY Termination of patent right or utility model