CN100348839C - 组合的空气分离和氧助发电系统以及利用该系统向空气分离单元提供动力的方法 - Google Patents

组合的空气分离和氧助发电系统以及利用该系统向空气分离单元提供动力的方法 Download PDF

Info

Publication number
CN100348839C
CN100348839C CNB038035820A CN03803582A CN100348839C CN 100348839 C CN100348839 C CN 100348839C CN B038035820 A CNB038035820 A CN B038035820A CN 03803582 A CN03803582 A CN 03803582A CN 100348839 C CN100348839 C CN 100348839C
Authority
CN
China
Prior art keywords
gas
turbine
air
transported
fuel element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038035820A
Other languages
English (en)
Other versions
CN1630769A (zh
Inventor
彼得罗·迪赞诺
弗雷德里克·菲耶
斯科特·麦克亚当
奥维迪乌·马林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Publication of CN1630769A publication Critical patent/CN1630769A/zh
Application granted granted Critical
Publication of CN100348839C publication Critical patent/CN100348839C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04121Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • F01K21/042Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas pure steam being expanded in a motor somewhere in the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • F01K21/047Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas having at least one combustion gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/064Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle in combination with an industrial process, e.g. chemical, metallurgical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04127Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04533Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • F25J3/04581Hot gas expansion of indirect heated nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • F25J3/04618Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/06Adiabatic compressor, i.e. without interstage cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/70Steam turbine, e.g. used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/80Integration in an installation using carbon dioxide, e.g. for EOR, sequestration, refrigeration etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

组合的空气分离和氧助发电系统包括空气分离单元(12)和燃气轮机(6),该燃气轮机(6)包括空气压缩机(4),以便向空气分离单元(12)提供压缩空气。该系统还包括燃气轮机膨胀器(6)和至少一个额外的驱动空气压缩机(4)的气轮机(40),而且还包括至少一个用于向膨胀器(6)提供驱动气体的燃烧单元(22)和额外的气轮机。由空气分离单元(12)产生的一部分氧气输送到该燃烧器(22),以便产生由膨胀器和额外气轮机所用的驱动气体,例如利用燃烧器的循环水或者蒸汽控制气轮机的入口温度。

Description

组合的空气分离和氧助发电系统以及利用该系统向空气分离单元提供动力的方法
本发明涉及与氧助发电系统结合的空气分离单元以及利用所述系统向空气分离单元提供动力的方法。
在工业上,为了生产大量氧气和氮气,一般优先采用低温空气分离法,这种方法可以用在各种不同的发电系统中。然而,低温空气分离系统的缺点是,系统操作的电力成本高到总操作成本的50%,其中大部分的电力由配置在空气分离装置上游的主空气压缩机消耗掉。因此,主空气压缩机的动力成本极大地影响了空气分离单元生产产品的总的生产成本。为了降低系统操作的电力成本,很需要优化驱动主空气压缩机的气轮机结构。
在将空气分离单元与发电作业组合成一种形式和另一种形式的先有技术中已知各种各样的不同系统。例如Marin等提出的美国专利NO.6282901说明一种组合的空气分离工艺,该工艺生产富含氧气的气流和富含氮气的气流。富含氮气的气流在连接于第一锅炉的第一热交换器中被加热,然后用于发电。富含氧气的气流和燃料一起引入到连接于第一锅炉的燃烧器,由此产生烟气,并将从锅炉排出的至少一部分烟气用来发电。
Brugerolle的美国专利NO.6202442说明一种组合的发电系统,该系统中将燃气轮机压缩机流出的至少一部分空气输送到空气分离单元,而将另一部分输送到燃气轮机的燃烧器.从空气分离单元排出的氮气流与燃气轮机燃烧器的排出气流混合,然后将其输送到燃气轮机膨胀器。Brugerolle的系统可以发电,也可以生产富氧气体。
Plumley等的美国专利NO.4785622公开一种组合的煤气化装置和联合循环系统,该循环系统利用一部分从燃气轮机空气压缩机部分放出的压缩气体,供应连接于煤气化装置的氧气装置所需的压缩空气.利用从燃气轮机的涡轮部分排出的高温气体来产生蒸汽,然后将产生的蒸汽输送到蒸气轮机,以便除开由燃气轮机产生的输出外,还产生机械输出。为了补偿送到氧装置而失去的压缩空气,将燃气轮机送出的蒸汽加在输送到燃气轮机燃烧器部分的压缩空气和燃料中。Plumley等的系统不需用单独的压缩机向制氧装置提供压缩空气。
Demetri提出的美国专利NO.6148602说明一种可以分离二氧化碳的加固体燃料的发电系统,该系统包括空气压缩机和用单个燃气轮机驱动的氧压缩机。该空气压缩机将压缩空气输送到空气分离器,从该空气分离器流出的基本上纯的氧气由氧气压缩机进一步压缩,然后分成两股气流。将第一股气流输送到煤气发生器,而将第二股气流输送到燃气轮机的燃烧器。第一气流与煤气发生器中的固体燃料混合,转化成送到燃烧器的可燃性气体。同时,还在燃烧器中喷射水,使燃烧器流出的二氧化碳和蒸汽的排出气流进入燃气轮机,以便驱动燃气轮机和发电。
由Bolland等说明的系统(Energy Conversion&Mgmt,Volume 33,No.5-8,1992,pages 467-475)包括燃烧器,该燃烧器接收从空气分离装置来的氧气,并使该氧气与燃料气体反应,随后将燃烧产物送入到气轮机。使水流穿过热交换器,冷却空气压缩机排出的压缩空气,然后将压缩空气输送到空气分离装置,随后,将热交换器排出的水或者蒸汽输送到燃烧器,以便将燃烧器的产品冷却到允许的气轮机入口温度。
由Yantovskii说明的GOOSTWEG发电装置(World Clean EnergyConference,Geneva,Switzerland,November 1991,pages 571-595)包括第一燃烧室,该燃烧室接收从空气分离机来的氧气、碳氢化合物燃料和水,生产输送到高压气轮机的二氧化碳和水蒸气驱动气体。在第二燃烧室中,重新加热高压气轮机的放出气流,然后将其输送到中压气轮机,随后在第三燃烧室中再加热,并输送到低压气轮机。利用除气装置使二氧化碳与水分离,并加热分离出的水,使其再循环回到第一燃烧室。
尽管各个上述系统具有某种有效性和优点,但是仍需要提供一种组合的具有优选结构的空气分离发电系统,从而降低对动力的要求,由此降低与空气分离单元操作相关的操作成本。
因此本发明的目的是提供一种组合的空气分离发电系统,该系统可以在系统操作期间降低动力的需求。
本发明的另一目的是制造一种空气分离装置的发电系统,使得与用常规现场发电装置来操作空气分离单元的方法相比,可以降低空气分离单元的动力要求。
本发明的再一目的是提供一种组合的空气分离发电系统,该系统可以有效地将系统操作期间的热聚合起来,并优化发电的气轮机结构,以便向空气分离单元的主空气压缩机提供动力。
本发明的又一目的是提供一种组合的空气分离发电系统,该系统可以提供零排放作业。
可以一个一个单独地和/或者联合地达到上述目的,本发明不应当解释为需要同时达到两个或多个目的,除非下面权利要求书明确地要求。
按照本发明,组合的空气分离氧助发电系统包括空气分离单元和燃气轮机,该燃气轮机包括连接于燃气轮机膨胀器的空气压缩机和向该膨胀器提供驱动气体的燃烧单元。该空气压缩机将压缩空气输送到空气分离单元。该系统还包括至少一个额外的连接于空气压缩机的气轮机。当驱动气体通过膨胀器和一个或多个额外气轮机中的各个气轮时,该空气压缩机由该膨胀器和一个或者多个额外的气轮机驱动。该空气分离单元生产至少两个产品气流,包括主要的氧气流。由空气分离单元生产的一部分氧气流输送到燃气单元。可以配置额外的燃烧单元,以便产生温度和压力选定的驱动气体,使其输送到膨胀器和一个或多个额外的气轮机。最好采用再循环水或者系统至少一个燃烧单元驱动气体中的蒸汽来控制气轮机的温度状态。
下面参考附图详细说明具体实施例,由此可以明显看出本发明的上述以及其它一些目的、特征和优点,附图的不同图中,采用相同的编号表示相同的装置。
图1是本发明组合的空气分离单元和发电系统的作业流程图。
图2是本发明组合的空气分离单元和发电系统另一实施例作业流程图。
图3是与本发明的与发电装置组合的空气分离单元作业流程图。
组合的空气分离单元和发电系统包括空气分离单元(ASU),该单元接收从燃气轮机空气压缩机来的压缩空气,该燃气轮机还包括(例如通过轴)连接于空气压缩机的燃气轮机膨胀器,以便在系统操作期间将膨胀器的机械能直接输送到压缩机,还可以将一个或多个额外的气轮机以优选的方式组合到系统中,以便另外向空气压缩机输送动力,从而以有效和节省成本的方式向ASU输送空气。用于这种系统的例示性ASU是低温系统。然而该ASU可以包括任何一种或多种适合于将两种或多种混合气体成分和/或液体成分分离的系统,这些系统包括膜系统和吸收系统,但不限于这些系统。
发电系统最好包括一个或者多个燃烧单元,以便向燃气轮机膨胀器和一个或者多个额外的气轮机输送气体。适合用在本发明中的燃烧单元有助于氧和碳氢化合物燃料的燃烧,从而可以提高用来驱动气轮机的驱动气体(例如二氧化碳和/或蒸汽)的温度。可以用在本发明中的燃烧单元的例示类型包括燃烧器、再加热器和锅炉,但不限于这些。当采用例如燃烧器和再加热器时,燃烧产物(蒸汽和二氧化碳)最好构成气轮机的至少部分驱动气体。在采用例如锅炉时,可利用燃烧产物在锅炉中将驱动气体(例如蒸汽)加热到要求的温度和压力,然后再输送到气轮机。
在图1的例示性系统中,两个蒸汽轮机与燃气轮机膨胀器一起连接于空气压缩机。还配置两个燃烧单元,即高压燃烧器和再加热器,以便将处于选定温度和压力的驱动气体输送到燃气轮机膨胀器和蒸汽轮机。参照图1,系统1包括燃气轮机单元2和低温ASU12,该ASU接收燃气轮机单元的压缩空气。该燃气轮机单元2包括空气压缩机4和经转轴7连接于该压缩机的燃气轮机膨胀器6。如下所述,该转轴7通过输送到燃气轮机膨胀器的气体驱动。该空气压缩机接收空气流8,并将该空气流压缩到适当压力,然后输送到ASU12。从空气压缩机排出的被压缩空气流其绝对压力最好在约5~25巴的范围内。位于空气压缩机4下游的是热交换器10,该热交换器接收空气压缩机排出的压缩空气流9,并用水流24输送流水将该压缩空气流冷却到要求的温度,该水流输送到热交换器的单独的入口。该热交换器最好将压缩空气流冷却到约20~50℃的温度。热交换器10的空气流出口连接于ASU12,将冷却的压缩空气流11输送到该ASU。
该ASU生产分开的分别主要由氮气和氧气构成的产品气流13和14。还可以选择生产由其它气体产品构成的额外气流(例如氩气、氦气等)。气体产品气流可以输送到其它装置或者储存装置,或者以要求的方式利用该气体产品的装置。从主要的氧气产品流14中分出部分氧气,将其输送到燃烧单元,以便产生驱动膨胀器和气轮机的驱动气体。具体是,从主要氧气产品气流分出第一氧气流16,将其输送到高压(HP)燃烧器20,同时还从主要氧气流中分出第二氧气流18,将其输送到再加热器22,如下所述。
高压燃烧器20作成为可以接收ASU来的第一氧气流16以及碳氢化合物燃料流17。本文所说的“高压”,除非另有说明,一般是指至少约为15巴(绝对)的操作压力。同样,本文所用的术语“低压”,除非另有说明,一般是指不大于1.5巴(绝对)的操作压力。碳氢化合物燃料气流包括任何可燃的碳氢化合物燃料源,该源包括天然气源、合成气体源和石油加工气体源,但不限于这些气体源。第一氧气流和碳氢化合物燃料气流在高压燃烧气中混合并反应,产生蒸汽和二氧化碳产物。氧气和碳氢化合物气流16和17输送到压缩机27和28,然后进入燃烧器20。利用电能驱动压缩机27和28,或者换一种方式,将系统1以适当的方式作成可以通过任何一个或者多个燃气轮机膨胀器6和/或下述的高压或低压蒸汽轮机将机械动力输送到压缩机27和28。进入高压燃烧器的氧气和碳氢化合物燃料气流其绝对压力最好在25~150巴的范围内。
热交换器10的水/蒸汽出口连接于高压燃烧器20,从而可以将水和/或蒸汽流26(即用于冷却压缩空气的气流)输送到高压燃烧器,使其与进入的氧气和碳氢化合物燃料气流混合。控制水流26进入燃烧器20的流量,使得从燃烧器排出的输出气流30达到要求温度。燃烧器输出气流的温度最好在400~600℃之间。在输出气流30中的燃烧器排出产物主要是蒸汽和二氧化碳。
位于燃烧器下游的用于接收燃烧器排出气流30的是高压(HP)蒸汽轮机32。进入高压蒸汽轮机的气流其温度最好在约400~600℃的范围内,其压力最好在50~150巴的范围内。高温蒸汽轮机包括转轴33,该转轴通过高压蒸汽轮机中气流30的膨胀而受到驱动。高压蒸汽轮机的转轴33连接于燃气轮机膨胀器6的转轴7。因此高压蒸汽轮机通过与燃气轮机的连接间接连接于空气压缩机。另外,应注意到,高压蒸汽轮机可以以另外的方式连接于空气压缩机,以实现将动力传送到空气压缩机。该高压蒸汽轮机的出口排出输送到再加热器22的蒸汽和二氧化碳气流34。该高压排出气流其压力最好在约10~30巴之间。
除接收从高压蒸汽轮机出口来的排出气流34之外,再加热器22还接收从主要氧气产物气流分出的第二氧气流18(如上所述)以及碳氢化合物燃料气流19。该再加热器的出口将具有预定高温的主要由二氧化碳和蒸汽构成的气流36输送到燃气轮机膨胀器6的入口。应当注意到,可选择性控制高压蒸汽轮机排出气流34的出口压力和再加热器排出气流36的出口温度(例如控制输送到高压蒸汽轮机和再加热器之间的氧气与碳氢化合物燃料气流的流量和/或压力,控制输送到高压燃烧器的包含水和/或蒸汽的流体26的流量等),从而在该气流36进入燃气轮机膨胀器时达到要求的温度和压力范围。进入燃气轮机膨胀器的入口气流其入口温度最好在约800~1400℃之间,而其绝对压力约在10~30巴之间,从燃气轮机膨胀器排出的输出气流其绝对压力最好约为1巴。
低压(LP)蒸汽轮机40配置在燃气轮机膨胀器6的下游,用于接收该燃气轮机膨胀器排出的排出气流38。该低压蒸汽轮机包括转轴41,该转轴连接于高压蒸汽轮机32的转轴33。该转轴41通过流过低压燃气轮机气流的膨胀而被驱动。因此低压蒸汽轮机通过与高压蒸汽轮机的连接间接连接于空气压缩机。另外,应当注意到,低压蒸汽轮机可以用任何适当的方式连接于空气压缩机,使得可以将动力输送到空气压缩机。
低压蒸汽轮机可以选择性包括另一转轴42,该转轴连接于发电机44,从而除开产生用来操作空气压缩机4的机械动力以外,还可发电。该低压蒸汽轮机的输入气流其温度在约300~700℃之间,而其绝对压力约为1巴,从低压蒸汽轮机排出的输出气流或者排出气流其绝对压力最好在约0.05~0.30巴之间。
冷凝器48接收低压蒸汽轮机40排出的排出气流46,并利用封闭的冷却水水流47使气流46分离成二氧化碳气体和主要是水的冷凝物。另外还应该注意到,可以采用任何其它合适的分离装置,将低压蒸汽轮机排放气流中的二氧化碳与水基本上分离。从冷凝器排出二氧化碳气流49,将其作为一个产物输送到其它装置,或者输送到储存装置,或者输送到以要求方式利用的装置,同时使水流24再循环到热交换器10,以便冷却从空气压缩机4排出的压缩空气流。可以在水流上配置适当的泵装置50,将水以要求的流量和压力输送到热交换器。另外,可以在冷凝器48和热交换器10之间的适当位置从水流24中排出过量的水31。
在操作时,空气吸入空气压缩机4,然后被加压,并在选定的压力(最好约为5~25巴(绝对))下排放到热交换器10。该热交换器将该压缩的空气冷却到选定的温度(最好约为20~50℃),并将气流11排到ASU12,至少由主要氮气和主要氧气组成的两个产品气流13和14从ASU排出,一部分氧气流14分成第一和第二气流16和18,该气流分别输送到高压燃烧器20和再加热器22。用于冷却热交换器10中压缩空气流9的水流24从热交换器排出,形成水流26,该水流包括水和/或蒸汽,并以选定的流量输送到再加热器。
压缩第一氧气流16(最好压缩到约25~150巴的绝对压力),并随压缩的碳氢化合物燃料气流17和由水和/或蒸汽组成的水流26一起输送到燃烧器20。从高压燃烧器排出的排放气流30主要包括二氧化碳和蒸汽,将此气流(例如约400~600℃的温度和绝对压力在约50~150巴的压力)输送到高压蒸汽轮机32,以便驱动转轴33,该转轴连接于燃气轮机的转轴7。将高压蒸汽轮机排放的气流(其绝对压力最好约在10~30巴之间)送到再加热器22,在该加热器中,该排出气流34与第二氧气流18和碳氢化合物燃料气流19化合,产生主要由二氧化碳和蒸汽构成的排出气流36(其温度最好约为800~1400℃,而其绝对压力最好约为10~30巴)。该气流36进入燃气轮机膨胀器6,并驱动燃气轮机的转轴7,该转轴连接于空气压缩机4。从燃气轮机膨胀器排出的冷却气流38(其温度最好约在300~700℃之间,而其绝对压力约为1巴)被输送到低压蒸汽轮机40。该低压蒸汽轮机驱动连接于高压蒸汽轮机转轴33的转轴41,并选择性驱动连接于发电机44的转轴42。从低压蒸汽轮机排出的气流46(其绝对压力约在0.05~0.30巴之间)输送到冷凝器48,以便从系统中除去二氧化碳,形成二氧化碳气流49。冷凝的蒸汽24主要包括水,从冷凝器中排出,并再循环到热交换器10。
应当注意到,还可以这样进行发电,方法是从ASU的高压柱抽出高压氮气(在图1中表示为气流52),在热交换器10中加热该氮气流(最好加热到约400~1400℃的温度),然后将加热的高压氮气气流(图1中表示为气流54)输送到氮气气轮机56,从而驱动发电机60。在本文中所用的术语“高压氮气”是指绝对压力至少为3巴的氮气。另外或者除驱动发电机而外,该氮气气轮机还可以以类似的方式连接于空气压缩机,从而直接向发电机提供另外的机械动力。然后将膨胀的氮气流(在图1中表示为气流58)作为产品输送到其它系统或者储存装置,或者输送到以要求方式应用它的装置。
燃气轮机膨胀器、高压和低压蒸汽轮机分别经其相应的气轮机转轴连接于发电机,以便在操作期间直接驱动燃气轮机压缩机,而同时可以消除通常在机械能和电能转换时产生的动力损失(即将气轮机转轴的动力转换为电力,然后再将电力转换成驱动空气压缩机的机械动力)。因此系统1可以采用优化的用气体作动力的可进行零排放作业的多气轮机系统,该系统用ASU(例如氧气和氮气)和发电系统(例如二氧化碳)两种装置生产多个产品。与常规的ASU系统相比,该气轮机系统还尽量增大了循环效率,与常规ASU系统比较降低了燃料和氧气成本。
在另一实施例中,采用锅炉替代图1中所示系统的高压燃烧器,该锅炉产生输送到高压蒸汽轮机的高压蒸汽。这种系统的例示性实施例示于图2。具体是,系统100基本上与上述图1所示系统相似,高压和低压蒸汽轮机相对于燃气轮机膨胀器的配置是相同的。然而,系统100包括串联在热交换器10和高压蒸汽轮机32之间的锅炉102,其中水流26包括水和/或蒸汽,该水流从热交换器排出,输送到锅炉的入口。碳氢化合物燃料气流103和空气流101也输送到锅炉,从而将蒸汽流26加热成高压蒸汽,该高压蒸汽作为气流104从锅炉排出,从锅炉排出的烟气形成气流105。由锅炉排出的高压蒸汽(其温度最好在约400~600℃,而其绝对压力约为50~150巴)输送到高压蒸汽轮机32,从锅炉排出的蒸汽流106输送到再加热器22。从图2可以清楚看出,系统100按另一种类似于上述系统1的操作方式操作。
图2的锅炉系统比图1的燃烧器系统消耗的氧气少,并且生产较少的二氧化碳产品,如下面的表1所示。然而由于其效率降低,所以锅炉系统比燃烧器系统需要更多碳氢化合物燃料。另外,和燃烧器系统不同,锅炉系统不是零排放操作作业。然而,假定系统100的锅炉其效率约为90%,则与图1所示的系统相比,在系统100中生产单位量氧气所需的碳氢化合物燃料量较少。
本发明组合的空气分离和氧助发电系统与常规ASU装置相比降低了动力成本,在常规ASU装置中,主要的空气压缩机由马达驱动,该马达接收电网的电力或者接收现场发电装置(例如废热发电装置或者联合的循环发电装置)的电力。另外,图1和图2所示各个系统的燃气轮机膨胀器和蒸汽轮机其操作温度和压力完全在现有商品装置的设计范围内。因此,本发明不需要使用特别设计的非常规装置来使系统进行操作。
下面根据每天氧气产量为2000公吨的装置,用表列出本发明与具有现场发电设备的常规ASU相比较的有利之点。具体是,图1和图2所示的系统完全与接有发电装置的常规ASU装置相当。
组合的ASU系统与常规ASU的操作参数比较
操作参数     常规ASU     系统1(图1)     系统100(图2)
生产的氧气(总重)     2000mt/day     2000mt/day     2000mt/day
消耗的氧气     无     360mt/day     244mt/day
生产的氧气(净重)     2000mt/day     1640mt/day     1756mt/day
空气压缩机功率     31.5MW     44.9MW     44.9MW
消耗的天然气     7793Nm3/hr     5763Nm3/hr     5969Nm3/hr
每吨氧消耗的天然气     93.5Nm3/mt     84.3Nm3/mt     81.6Nm3/mt
生产的二氧化碳     无     247mt/day     167mt/day
mt/day=吨/天
MW=兆瓦
Nm3/hr=标准立方米/小时
Nm3/mt=标准立方米/吨
根据以下其它参数计算上面列举的操作参数:
(1)常规的ASU包括燃天然气的循环,其净效率(8500Btu/kWh)为40%,压缩机的排出压力为16巴(绝对),四级压缩机相互冷却;
(2)系统1(图1)包括燃天然气的循环,高压蒸汽轮机的入口温度为550℃,绝对压力为150巴(绝对),燃气轮机入口温度为980℃,绝对压力为16巴,低压蒸汽轮机出口压力为0.07巴(绝对),压缩机排放压力为16巴(绝对),没有压缩机相互冷却;
(3)系统100(图2)包括烧天然气的锅炉,90%的效率,气轮机和压缩机的状态与系统1第“(2)”条相同。
如上述列举的操作条件所示,基于每天生产2000吨氧气的装置,图1和图2两个系统与常规的具有现场发电机装置的ASU相比,天然气消耗总量以及生产每吨氧气消耗的天然气均较小。另外,图1和图2的所示的系统可以生产出售的二氧化碳产品,从而降低了系统操作期间的燃料费用,因此降低了ASU产品的总价格。
本发明的组合空气分离氧助发电系统还可以组合在现有的发电装置中。这种系统的例示性实施例示于图3,在图3中,发电装置包括兰金蒸汽循环,该循环具有至少一个装有蒸汽抽出口的高压蒸汽轮机。可以组合进空气分离单元的例示性发电装置包括烧粉化煤的装置、烧燃气的联合循环装置以及结合煤气发生器的联合循环装置(IGCC装置),但不限于这些装置。该系统特别利于需要ASU产品的发电装置(例如IGCC装置,该装置需要大量工作氧气)。
参考图3,ASU212接收燃气轮机单元202的压缩气体,其接收方式基本上与上述图1和图2所示系统的方式相同。燃气轮机单元202包括通过转轴207连接于燃气轮机膨胀器206的空气压缩机204。空气流208进入该空气压缩机,并在要求的压力下排出气流209,该压缩的空气流209在热交换器210中冷却用冷却水流252或者从下面说明的发电装置250的锅炉供水。用于冷却该压缩空气流的水流从热交换器排出,形成水流254,并输送到锅炉或者发电装置的补热蒸汽发生器(未示出)。冷却压缩空气的排出气流211进入ASU212的入口,使得空气成分被分离成主要氮气流213和主要氧气流214,这些气流从ASU排出。主氧气流部分214分流出气流218,输送到再加热器222,以便向燃气轮机膨胀器输送驱动气体,如下所述。
在发电装置(总的用虚线250示出)中,蒸汽从高压蒸汽轮机251的排出口抽出,该高压蒸汽轮机构成发电的兰金蒸汽循环的一部分。为简便起见,在图3的发电装置中,仅示出蒸汽轮机251。高压蒸汽流260从发电装置的锅炉或者补热蒸汽发生器输送到高压蒸汽轮机251的入口。而气流262从高压蒸汽轮机的主要出口排到发电装置的冷凝器,该高压蒸汽轮机产生装置用的电力。另外,蒸汽流256从高压蒸汽轮机251的至少一个排出口排出,并输送到再加热器222。可选择从高压蒸汽轮机排出蒸汽的位置,使得送到再加热器的蒸汽压力与再加热器的操作压力相同或者相似。碳氢化合物燃料气流219还随氧气流218一起进入再加热器,该氧气流是从ASU排出的主要氧气流214分流出来的。由于碳氢化合物燃料和氧气之间发生燃烧反应,该气流在再加热器中被加热,主要包含二氧化碳和蒸汽的气流236从再加热器排出,并在要求的压力和温度下输送到燃气轮机膨胀器206。利用直接来自再加热的气流236,该燃气轮机膨胀器将通过转轴207驱动空气压缩机。从膨胀器206排出的排出气流238输送到低压蒸汽轮机240,该蒸汽轮机驱动连接于膨胀器转轴207的转轴242。
低压蒸汽轮机排出气流246,该气流包括输送到冷凝器248的蒸汽和二氧化碳。该冷凝器利用输送的冷却水247使水从二氧化碳中分离出来。该二氧化碳气流249从冷凝器排出,作为产品输送到其它系统,或者输送到储存装置,或者输送到以要求的方式利用的装置。主要包括水的冷凝物汇成水流258从冷凝器排出,然后回到发电装置的冷却系统。
因此系统200利用从发电装置蒸汽轮机排出的蒸汽来产生一部分操作ASU所需的动力,同时也可利用ASU产生的一部分氧制品来产生ASU所用的电力。另外,可以将用来冷却热交换器中压缩空气的水流输送到发电装置的涡轮或者补热蒸汽装置,由此可以回收热量,用于发电装置。虽然未示出,但是系统200还可以通过将一个或多个发电机组合在系统中进行发电,其方式基本上类似于图1和图2所示的上述系统的方式。和前面系统的情况一样,和常规的ASU系统例如上述系统相比,系统200还需要较小的能量来生产ASU的产品。
虽然已经说明这种新颖的组合的空气分离氧助发电系统和相应的方法,但是应当清楚,按照本发明的说明,技术人员可以提出其它的改型和改变。因此应当明白,所有这些改型和改变应当属于由附属权利要求书所确定的本发明的范围。

Claims (30)

1.一种组合的空气分离和发电系统,包括:
燃气轮机单元,包括空气压缩机、连接于该空气压缩机的燃气轮机膨胀器和燃烧单元,该燃烧单元位于该膨胀器的上游,用于向该膨胀器输送驱动气体;
空气分离单元,该单元接收空气压缩机的压缩空气,并产生至少两种产品气流,该产品气流主要包括氧气,由该空气分离单元产生的一部分氧气流输送到燃烧单元;
第二气轮机,连接于空气压缩机,位于膨胀器的下游,用于接收从该膨胀器排出的驱动气体;以及
第三气轮机,连接于空气压缩机,用于在驱动气体流过该第三气轮机时驱动空气压缩机;
其中,当驱动气体流过该膨胀器和第二气轮机时,该膨胀器和第二气轮机均驱动空气压缩机。
并且其中,该燃烧单元位于第三气轮机的下游,接收从第三气轮机排出的驱动气体。
2.如权利要求1所述的系统,其特征在于,还包括:
第二燃烧单元,直接配置在第三气轮机的上游,向第三气轮机输送驱动气体。
3.如权利要求2所述的系统,其特征在于,还包括:
热交换器,配置在空气压缩机的下游和空气分离单元的上游,用于接收和冷却从空气压缩机排出的压缩空气,然后再将该压缩空气输送到该空气分离单元;
其中,包含水的冷却流输入到热交换器,以便冷却压缩空气,包含水和蒸汽中至少一种的排出流从热交换器输送到第二燃烧单元。
4.如权利要求3所述的系统,其特征在于,第二燃烧单元产生燃烧产品,该燃烧产品包括输送到第三气轮机的二氧化碳和蒸汽。
5.如权利要求4所述的系统,其特征在于,由空气分离单元生产的第二部分氧气流输送到第二燃烧单元。
6.如权利要求4所述的系统,其特征在于,控制从热交换器输送到第二燃烧单元的排出气流的流量,以便在第三气轮机的入口达到预定的供气温度。
7.如权利要求3所述的系统,其特征在于,上述第二燃烧单元包括锅炉,该锅炉接收从热交换器排出的排放气流,并加热该排放气流,以在预定温度和压力下向第三气轮机的入口提供包含蒸气的气流。
8.如权利要求3所述的系统,其特征在于,使排出第二气轮机的排出气流再循环,由此得到输入到热交换器的冷却气流。
9.如权利要求8所述的系统,其特征在于,从第二气轮机排出的气流包含蒸汽和二氧化碳,该系统还包括:
冷凝器,位于第二气轮机的下游和热交换器的上游,其中,分离器接收从第二气轮机排出的气流,并使该排出的气流分离成包含二氧化碳的产品气流和输送到热交换器的冷却气流。
10.如权利要求1所述的系统,其特征在于,第二气轮机的操作压力不大于1.5巴(绝对)的压力,第三气轮机的压力至少为15巴(绝对)的压力。
11.如权利要求1所述的系统,其特征在于,该系统的操作状态可受控制,使第三气轮机的入口温度为400~600℃,第三气轮机的入口压力为50~150巴(绝对),而第三气轮机的出口压力为10~30巴(绝对)。
12.如权利要求1所述的系统,其特征在于,该系统的操作状态可受控制,使得膨胀器的入口温度为800~1400℃,膨胀器的入口压力为10~30巴(绝对),而膨胀器的出口压力为1巴(绝对)。
13.如权利要求1所述的系统,其特征在于,该系统的操作状态可受控制,使得第二气轮机的入口温度为300~700℃,第二气轮机的入口压力为1巴(绝对),而第二气轮机的出口压力为0.05~0.30巴(绝对)。
14.如权利要求1所述的系统,其特征在于,还包括:
发电机,连接于第二气轮机,其中,当驱动气体流过第二气轮机时,该第二气轮机除驱动空气压缩机外,还驱动发电机。
15.如权利要求1所述的系统,其特征在于,该空气分离单元还包括主要由氮气构成的高压气流,该系统还包括:
热交换器,用于将高压氮气流的温度升高到400~1400℃之间的温度;
氮气气轮机,其配置成接收从热交换器排出的至少一部分高温高压氮气流;
其中,当高压氮气流流过氮气气轮机时,该氮气气轮机至少驱动空气压缩机和连接于氮气气轮机的发电机之一。
16.如权利要求1所述的系统,其特征在于,还包括:
第三气轮机与发电装置串联,以接收发电装置排出的驱动气体,并产生该发电装置所用动力,第三气轮机包括至少一个取出口,该取出口将输入到第三气轮机的驱动气体的一部分在等于燃烧单元的操作压力的压力下输送到燃烧单元。
17.一种通过组合发电系统向空气分离单元提供动力的方法,该组合发电系统包括第一气轮机、第二气轮机、空气压缩机、第三气轮机和燃烧单元,其中,第一、第二和第三气轮机连接于空气压缩机,该方法包括:
使氧气与碳氢化合物燃料在燃烧单元中发生反应,产生用于第一气轮机的驱动气体;
将该驱动气体从燃烧单元直接输送到第一气轮机,然后输送到第二和第三气轮机,使得空气压缩机被驱动;
将第三气轮机排出的驱动气体输送到燃烧单元;
由于空气压缩机由第一和第二气轮机驱动,所以利用空气压缩机产生压缩空气流;
将所述压缩空气流从空气压缩机输送到空气分离单元;
在所述空气分离单元中处理该压缩空气流,生产出包括主要为氧气流的至少两种产品气流;以及
将由空气分离单元产生的一部分氧气流输送到燃烧单元。
18.如权利要求17所述的方法,其特征在于,该系统还包括第二燃烧单元,该方法还包括:
在第二燃烧单元中产生用于第三气轮机的驱动气体;以及
将第二燃烧单元的驱动气体输送到第三气轮机。
19.如权利要求18所述的方法,其特征在于,该系统还包括位于空气压缩机下游和空气分离单元上游的热交换器,该方法还包括:
将空气压缩机的压缩空气输送到热交换器;
用包括水的冷却流冷却输送到热交换器的压缩空气;
将热交换器排出的压缩空气输送到空气分离单元;以及
将热交换器排出的冷却流输送到第二燃烧单元,其中,从空气压缩单元排出的冷却流包含水和蒸汽中的至少一种流体。
20.如权利要求19所述的方法,其特征在于,被输送到第三气轮机的驱动气体包括蒸汽和二氧化碳,该方法还包括将空气分离单元生产的第二部分氧气流输送到第二燃烧单元。
21.如权利要求20所述的方法,其特征在于,还包括:
控制从热交换器排放到第二燃烧单元的冷却流流量,以便使预定温度的驱动气体输送到第三气轮机。
22.如权利要求19所述的方法,其特征在于,该第二燃烧单元包括锅炉,该方法还包括:
在锅炉中加热从热交换器排出的冷却流,以便产生在预定的温度和压力下作为驱动气体被输送到第三气轮机的蒸汽。
23.如权利要求19所述的方法,其特征在于,该系统还包括在第二气轮机紧下游的冷凝器,从第二燃气轮机排出的气体包括蒸汽和二氧化碳,该方法还包括:
将第二气轮机的排出气体送到该冷凝器;以及
将排出气体分离成包括二氧化碳的产品气流和再循环到热交换器的冷却流。
24.如权利要求17所述的方法,其特征在于,第二气轮机的操作压力不超过1.5巴(绝对),而第三气轮机的操作压力至少为15巴(绝对)。
25.如权利要求17所述的方法,其特征在于,还包括:
控制该系统的操作状态,使得第三气轮机的入口温度为400~600℃,第三气轮机的入口压力为50~150巴(绝对),而第三气轮机的出口压力为10~30巴(绝对)。
26.如权利要求17所述的方法,其特征在于,还包括:
控制该系统的操作状态,使得第一气轮机的入口温度为800~1400℃,第一气轮机的入口压力为10~30巴(绝对),而第一气轮机的出口压力为1巴(绝对)。
27.如权利要求17所述的方法,其特征在于,还包括:
控制该系统的操作状态,使得第二气轮机的入口温度为300~700℃,第二气轮机的入口压力为1巴(绝对),而第二气轮机的出口压力为0.05~0.30巴(绝对)。
28.如权利要求17所述的方法,其特征在于,该第二气轮机还连接于发电机,该方法还包括:
当驱动气体流过第二气轮机时,用第二气轮机驱动发电机进行发电。
29.如权利要求17所述的方法,还包括:
用空气分离单元生产主要由氮气构成的高压气流;
使该主要为氮气的高压气流流过热交换器,以加热该主要为氮气的高压气流;
将加热的主要为氮气的高压气流输送到氮气气轮机,以便驱动空气压缩机和连接于氮气气轮机的发电机中至少一种装置以进行发电。
30.一种通过与发电装置相结合的组合式发电系统向空气分离单元提供动力的方法,该组合式发电系统包括第一气轮、第二气轮机、空气压缩机和燃烧单元,其中,第一和第二气轮机与空气压缩机相结合,发电装置包括第三气轮机,该方法包括:
使氧气与碳氢化合物燃料在燃烧单元中发生反应,产生用于第一气轮机的驱动气体;
将该驱动气体从燃烧单元直接输送到第一气轮机,然后输送到第二气轮机,从而驱动空气压缩机;
由于空气压缩机由第一和第二气轮机驱动,故利用空气压缩机产生压缩空气流;
将该压缩空气流从空气压缩机输送到空气分离单元;
在所述空气分离单元中处理该压缩空气流,以生产出包括主要为氧气流的至少两种产品气流;以及
将由空气分离单元产生的一部分氧气流输送到燃烧单元;以及
将从发电装置排出的驱动气体输送到第三气轮机以产生用于该发电装置的动力;以及
在第三气轮机中,从至少一个抽出口抽出一部分驱动气体,该驱动气体的预定压力与燃烧单元的操作压力相同;以及
将从第三气轮机抽出的驱动气体输送到燃烧单元,以形成一部分输送到第一气轮机的驱动气体。
CNB038035820A 2002-02-11 2003-02-10 组合的空气分离和氧助发电系统以及利用该系统向空气分离单元提供动力的方法 Expired - Fee Related CN100348839C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35610502P 2002-02-11 2002-02-11
US60/356,105 2002-02-11

Publications (2)

Publication Number Publication Date
CN1630769A CN1630769A (zh) 2005-06-22
CN100348839C true CN100348839C (zh) 2007-11-14

Family

ID=27734607

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038035820A Expired - Fee Related CN100348839C (zh) 2002-02-11 2003-02-10 组合的空气分离和氧助发电系统以及利用该系统向空气分离单元提供动力的方法

Country Status (7)

Country Link
US (2) US7284362B2 (zh)
EP (1) EP1476641A1 (zh)
CN (1) CN100348839C (zh)
AU (1) AU2003245059B2 (zh)
PL (1) PL370247A1 (zh)
WO (1) WO2003069132A1 (zh)
ZA (1) ZA200405609B (zh)

Families Citing this family (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2858398B1 (fr) * 2003-07-30 2005-12-02 Air Liquide Procede et installation d'alimentation d'une unite de separation d'air au moyen d'une turbine a gaz
DE20313279U1 (de) * 2003-08-27 2003-10-16 Siemens Ag Dampfkraftwerk
US7637109B2 (en) * 2004-08-02 2009-12-29 American Air Liquide, Inc. Power generation system including a gas generator combined with a liquified natural gas supply
US20060225432A1 (en) * 2005-03-29 2006-10-12 Awdalla Essam T Supercharged open cycle gas turbine engine
EP1717420B1 (de) * 2005-04-29 2014-10-22 Siemens Aktiengesellschaft Kraftwerksanlage mit Luftzerlegungsanlage
DE102005026534B4 (de) * 2005-06-08 2012-04-19 Man Diesel & Turbo Se Dampferzeugungsanlage
US20070006566A1 (en) * 2005-07-05 2007-01-11 General Electric Company Syngas turbine
WO2007017387A2 (de) * 2005-08-05 2007-02-15 Siemens Aktiengesellschaft Verfahren zur steigerung des wirkungsgrads eines kombinierten gas- und dampfkraftwerks mit integrierter brennstoffvergasung
US20110126549A1 (en) * 2006-01-13 2011-06-02 Pronske Keith L Ultra low emissions fast starting power plant
US20070199300A1 (en) * 2006-02-21 2007-08-30 Scott Macadam Hybrid oxy-fuel combustion power process
US7895822B2 (en) * 2006-11-07 2011-03-01 General Electric Company Systems and methods for power generation with carbon dioxide isolation
US7739864B2 (en) * 2006-11-07 2010-06-22 General Electric Company Systems and methods for power generation with carbon dioxide isolation
US7827778B2 (en) * 2006-11-07 2010-11-09 General Electric Company Power plants that utilize gas turbines for power generation and processes for lowering CO2 emissions
AU2008272719A1 (en) * 2007-07-04 2009-01-08 Jacobs Engineering U.K. Limited Process for the separation of pressurised carbon dioxide from steam
WO2009031747A1 (en) * 2007-09-06 2009-03-12 Korea Institute Of Machinery And Materials Power plant having pure oxygen combustor
DE102007056841A1 (de) * 2007-11-23 2009-05-28 Forschungszentrum Jülich GmbH Membran-Kraftwerk und Verfahren zum Betreiben eines solchen
US8963347B2 (en) * 2007-12-06 2015-02-24 Sustainable Energy Solutions, Llc Methods and systems for generating power from a turbine using pressurized nitrogen
US20090193785A1 (en) * 2008-01-31 2009-08-06 General Electric Company Power generating turbine systems
US20090193782A1 (en) * 2008-01-31 2009-08-06 General Electric Company Power generating turbine systems
US20090193784A1 (en) * 2008-01-31 2009-08-06 General Electric Company Power generating turbine systems
WO2009121008A2 (en) 2008-03-28 2009-10-01 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
CA2715186C (en) 2008-03-28 2016-09-06 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
CN102177326B (zh) 2008-10-14 2014-05-07 埃克森美孚上游研究公司 控制燃烧产物的方法与装置
US9328631B2 (en) * 2009-02-20 2016-05-03 General Electric Company Self-generated power integration for gasification
WO2010099452A2 (en) 2009-02-26 2010-09-02 Palmer Labs, Llc Apparatus and method for combusting a fuel at high pressure and high temperature, and associated system and device
US8596075B2 (en) 2009-02-26 2013-12-03 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US10018115B2 (en) 2009-02-26 2018-07-10 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US8418472B2 (en) 2009-05-22 2013-04-16 General Electric Company Method and system for use with an integrated gasification combined cycle plant
CN102459850B (zh) 2009-06-05 2015-05-20 埃克森美孚上游研究公司 燃烧器系统和使用燃烧器系统的方法
CA2769955C (en) * 2009-09-01 2017-08-15 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
FR2949845B1 (fr) * 2009-09-09 2011-12-02 Air Liquide Procede d'operation d'au moins un appareil de separation d'air et d'une unite de combustion de combustibles carbones
EA023673B1 (ru) 2009-11-12 2016-06-30 Эксонмобил Апстрим Рисерч Компани Система и способ для низкоэмиссионного производства электроэнергии и извлечения углеводородов
FR2957408B1 (fr) * 2010-03-09 2015-07-17 Air Liquide Procede et appareil de chauffage d'un gaz de l'air provenant d'un appareil de separation d'air
AU2011271633B2 (en) 2010-07-02 2015-06-11 Exxonmobil Upstream Research Company Low emission triple-cycle power generation systems and methods
CA2801499C (en) 2010-07-02 2017-01-03 Exxonmobil Upstream Research Company Low emission power generation systems and methods
MX341981B (es) 2010-07-02 2016-09-08 Exxonmobil Upstream Res Company * Combustion estequiometrica con recirculacion de gas de escape y enfriador de contacto directo.
MY160833A (en) 2010-07-02 2017-03-31 Exxonmobil Upstream Res Co Stoichiometric combustion of enriched air with exhaust gas recirculation
TWI593878B (zh) 2010-07-02 2017-08-01 艾克頌美孚上游研究公司 用於控制燃料燃燒之系統及方法
WO2012009575A2 (en) 2010-07-14 2012-01-19 Gtlpetrol Llc Generating power using an ion transport membrane
CN105736150B (zh) 2010-08-06 2018-03-06 埃克森美孚上游研究公司 优化化学计量燃烧的系统和方法
US9399950B2 (en) 2010-08-06 2016-07-26 Exxonmobil Upstream Research Company Systems and methods for exhaust gas extraction
US20120067054A1 (en) 2010-09-21 2012-03-22 Palmer Labs, Llc High efficiency power production methods, assemblies, and systems
US9410481B2 (en) 2010-09-21 2016-08-09 8 Rivers Capital, Llc System and method for high efficiency power generation using a nitrogen gas working fluid
US8869889B2 (en) 2010-09-21 2014-10-28 Palmer Labs, Llc Method of using carbon dioxide in recovery of formation deposits
WO2012051315A2 (en) 2010-10-12 2012-04-19 Gtlpetrol, Llc Generating power using an ion transport membrane
US8752391B2 (en) 2010-11-08 2014-06-17 General Electric Company Integrated turbomachine oxygen plant
US9546814B2 (en) * 2011-03-16 2017-01-17 8 Rivers Capital, Llc Cryogenic air separation method and system
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
US8671659B2 (en) * 2011-04-29 2014-03-18 General Electric Company Systems and methods for power generation using oxy-fuel combustion
CN104040274B (zh) * 2011-05-26 2016-09-14 普莱克斯技术有限公司 空气分离、功率生成的集成
CN102320237B (zh) * 2011-06-28 2013-08-07 陈明军 一种新型电动车
US8205455B2 (en) * 2011-08-25 2012-06-26 General Electric Company Power plant and method of operation
EA033615B1 (ru) 2011-11-02 2019-11-11 8 Rivers Capital Llc Комбинированный цикл регазификации топлива и производства энергии
CN104428490B (zh) 2011-12-20 2018-06-05 埃克森美孚上游研究公司 提高的煤层甲烷生产
AU2013216767B2 (en) 2012-02-11 2017-05-18 8 Rivers Capital, Llc Partial oxidation reaction with closed cycle quench
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US10161312B2 (en) 2012-11-02 2018-12-25 General Electric Company System and method for diffusion combustion with fuel-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
WO2014133406A1 (en) 2013-02-28 2014-09-04 General Electric Company System and method for a turbine combustor
AU2014226413B2 (en) 2013-03-08 2016-04-28 Exxonmobil Upstream Research Company Power generation and methane recovery from methane hydrates
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
CN105209732B (zh) * 2013-03-15 2017-05-10 帕尔默实验室有限责任公司 使用二氧化碳循环工作流体高效发电的系统和方法
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
JP6250332B2 (ja) 2013-08-27 2017-12-20 8 リバーズ キャピタル,エルエルシー ガスタービン設備
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
CN103912385B (zh) * 2014-04-03 2016-08-17 华北电力大学 集成氧离子传输膜富氧燃烧法捕集co2的igcc系统
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
TWI691644B (zh) 2014-07-08 2020-04-21 美商八河資本有限公司 具改良效率之功率生產方法及系統
US11231224B2 (en) 2014-09-09 2022-01-25 8 Rivers Capital, Llc Production of low pressure liquid carbon dioxide from a power production system and method
EA035969B1 (ru) 2014-09-09 2020-09-08 8 Риверз Кэпитл, Ллк Способ получения жидкого диоксида углерода под низким давлением из системы генерации мощности
US11686258B2 (en) 2014-11-12 2023-06-27 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US10961920B2 (en) 2018-10-02 2021-03-30 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
MA40950A (fr) 2014-11-12 2017-09-19 8 Rivers Capital Llc Systèmes et procédés de commande appropriés pour une utilisation avec des systèmes et des procédés de production d'énergie
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
CN104827925A (zh) * 2015-04-14 2015-08-12 刘泽法 60v自发电型电动车
CN104875625A (zh) * 2015-04-14 2015-09-02 刘泽法 72v自发电型电动车
CN104859477A (zh) * 2015-04-14 2015-08-26 刘泽法 84v自发电型电动车
CN104859476A (zh) * 2015-04-14 2015-08-26 刘泽法 24v自发电型电动车
CN104827924A (zh) * 2015-04-14 2015-08-12 刘泽法 48v自发电型电动车
EA036619B1 (ru) 2015-06-15 2020-11-30 8 Риверз Кэпитл, Ллк Система и способ запуска установки генерации мощности
CN105936220A (zh) * 2015-10-07 2016-09-14 刘泽法 168v自发电型电动车
CN105351020A (zh) * 2015-11-16 2016-02-24 南京师范大学 一种基于氮气资源化利用降低富氧燃烧电站能耗的系统及方法
US9970354B2 (en) * 2015-12-15 2018-05-15 General Electric Company Power plant including an ejector and steam generating system via turbine extraction and compressor extraction
AU2017220796B2 (en) 2016-02-18 2019-07-04 8 Rivers Capital, Llc System and method for power production including methanation
CN109072783B (zh) 2016-02-26 2021-08-03 八河流资产有限责任公司 用于控制发电设备的系统和方法
AU2017318652A1 (en) 2016-08-30 2019-03-07 8 Rivers Capital, Llc Cryogenic air separation method for producing oxygen at high pressures
EA039851B1 (ru) 2016-09-13 2022-03-21 8 Риверз Кэпитл, Ллк Система и способ выработки энергии с использованием частичного окисления
JP6783160B2 (ja) * 2017-02-03 2020-11-11 川崎重工業株式会社 水素酸素当量燃焼タービンシステム
US10712088B1 (en) * 2017-05-05 2020-07-14 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Temperature balancing for thermal integration of an air separation unit (ASU) with a power generation system
BR112020003886A2 (pt) 2017-08-28 2020-09-01 8 Rivers Capital, Llc otimização de calor de baixo grau de ciclos de energia de co2 supercrítico recuperável
JP7291157B2 (ja) 2018-03-02 2023-06-14 8 リバーズ キャピタル,エルエルシー 二酸化炭素作動流体を用いた電力生成のためのシステムおよび方法
FR3090812B1 (fr) * 2018-12-21 2022-01-07 Grtgaz Poste de détente d’un gaz

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3276203A (en) * 1966-10-04 Top heat power cycle
US4434613A (en) * 1981-09-02 1984-03-06 General Electric Company Closed cycle gas turbine for gaseous production
US5724805A (en) * 1995-08-21 1998-03-10 University Of Massachusetts-Lowell Power plant with carbon dioxide capture and zero pollutant emissions

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868817A (en) * 1973-12-27 1975-03-04 Texaco Inc Gas turbine process utilizing purified fuel gas
US4148602A (en) * 1975-12-22 1979-04-10 Leblanc Research Corporation Phosphoramide-hydroxymethyl phosphine condensation products for textile fire retardation
US4785622A (en) * 1984-12-03 1988-11-22 General Electric Company Integrated coal gasification plant and combined cycle system with air bleed and steam injection
US4785621A (en) * 1987-05-28 1988-11-22 General Electric Company Air bottoming cycle for coal gasification plant
US5231837A (en) * 1991-10-15 1993-08-03 Liquid Air Engineering Corporation Cryogenic distillation process for the production of oxygen and nitrogen
US5388395A (en) * 1993-04-27 1995-02-14 Air Products And Chemicals, Inc. Use of nitrogen from an air separation unit as gas turbine air compressor feed refrigerant to improve power output
FR2704632B1 (fr) * 1993-04-29 1995-06-23 Air Liquide Procede et installation pour la separation de l'air.
US5555723A (en) * 1994-04-28 1996-09-17 Westinghouse Electric Corporation Ducting for an external gas turbine topping combustor
GB9425484D0 (en) * 1994-12-16 1995-02-15 Boc Group Plc Air separation
US5666823A (en) * 1996-01-31 1997-09-16 Air Products And Chemicals, Inc. High pressure combustion turbine and air separation system integration
US5901547A (en) * 1996-06-03 1999-05-11 Air Products And Chemicals, Inc. Operation method for integrated gasification combined cycle power generation system
US6148602A (en) * 1998-08-12 2000-11-21 Norther Research & Engineering Corporation Solid-fueled power generation system with carbon dioxide sequestration and method therefor
US6276171B1 (en) * 1999-04-05 2001-08-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Integrated apparatus for generating power and/or oxygen enriched fluid, process for the operation thereof
US6202442B1 (en) * 1999-04-05 2001-03-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'expoitation Des Procedes Georges Claude Integrated apparatus for generating power and/or oxygen enriched fluid and process for the operation thereof
FR2806755B1 (fr) * 2000-03-21 2002-09-27 Air Liquide Procede et installation de generation d'energie utilisant un appareil de separation d'air
SE518487C2 (sv) * 2000-05-31 2002-10-15 Norsk Hydro As Metod att driva en förbränningsanläggning samt en förbränningsanläggning
US6282901B1 (en) * 2000-07-19 2001-09-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Integrated air separation process
FR2819583B1 (fr) * 2001-01-12 2003-03-07 Air Liquide Procede integre de separation d'air et de generation d'energie et installation pour la mise en oeuvre d'un tel procede
FR2819584B1 (fr) * 2001-01-12 2003-03-07 Air Liquide Procede integre de separation d'air et de generation d'energie et installation pour la mise en oeuvre d'un tel procede
AU2002360505A1 (en) * 2001-12-03 2003-06-17 Clean Energy Systems, Inc. Coal and syngas fueled power generation systems featuring zero atmospheric emissions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3276203A (en) * 1966-10-04 Top heat power cycle
US4434613A (en) * 1981-09-02 1984-03-06 General Electric Company Closed cycle gas turbine for gaseous production
US5724805A (en) * 1995-08-21 1998-03-10 University Of Massachusetts-Lowell Power plant with carbon dioxide capture and zero pollutant emissions

Also Published As

Publication number Publication date
US20040016237A1 (en) 2004-01-29
US7284362B2 (en) 2007-10-23
AU2003245059B2 (en) 2008-11-20
AU2003245059A1 (en) 2003-09-04
PL370247A1 (en) 2005-05-16
CN1630769A (zh) 2005-06-22
ZA200405609B (en) 2005-06-23
EP1476641A1 (en) 2004-11-17
WO2003069132A1 (en) 2003-08-21
US20080034758A1 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
CN100348839C (zh) 组合的空气分离和氧助发电系统以及利用该系统向空气分离单元提供动力的方法
CN100400802C (zh) 包括结合有空分单元的燃氧燃烧器的优化的能源产生系统
US4528811A (en) Closed-cycle gas turbine chemical processor
US4831817A (en) Combined gas-steam-turbine power plant
US7124589B2 (en) Power cogeneration system and apparatus means for improved high thermal efficiencies and ultra-low emissions
US5313782A (en) Combined gas/steam power station plant
US6684643B2 (en) Process for the operation of a gas turbine plant
US5956937A (en) Reduced pollution power generation system having multiple turbines and reheater
US4785621A (en) Air bottoming cycle for coal gasification plant
US6276123B1 (en) Two stage expansion and single stage combustion power plant
CN100529360C (zh) 通过燃气轮机和蒸汽轮机的发电方法以及设备
EP2619428B1 (en) System and method for high efficiency power generation using a nitrogen gas working fluid
US6532745B1 (en) Partially-open gas turbine cycle providing high thermal efficiencies and ultra-low emissions
US7770376B1 (en) Dual heat exchanger power cycle
US20090193809A1 (en) Method and system to facilitate combined cycle working fluid modification and combustion thereof
US8375725B2 (en) Integrated pressurized steam hydrocarbon reformer and combined cycle process
US8833080B2 (en) Arrangement with a steam turbine and a condenser
JPH07151460A (ja) 空気分離とガスタービン発電の統合方法
CN101598066A (zh) 具有排气再循环和再加热的涡轮机系统
JP2011530033A (ja) 代替作動流体でガスタービンエンジンを作動させるシステム及び方法
US6058736A (en) Air separation plant
CN108278135B (zh) 一种多循环工质回收烟气余热富氧燃烧发电集成系统
US6050105A (en) Apparatus and method for compressing a nitrogen product
WO2014160104A9 (en) Method and apparatus for generating oxygen and diluent
Smith et al. Air separation unit integration for alternative fuel projects

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071114

Termination date: 20100210