CH93573A - Process for carrying out catalytic reactions. - Google Patents

Process for carrying out catalytic reactions.

Info

Publication number
CH93573A
CH93573A CH93573DA CH93573A CH 93573 A CH93573 A CH 93573A CH 93573D A CH93573D A CH 93573DA CH 93573 A CH93573 A CH 93573A
Authority
CH
Switzerland
Prior art keywords
rays
catalytic reactions
hydrogen
carrying
out catalytic
Prior art date
Application number
Other languages
French (fr)
Inventor
Louis Prof Duparc
E Slatineanu
Original Assignee
Louis Prof Duparc
E Slatineanu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Louis Prof Duparc, E Slatineanu filed Critical Louis Prof Duparc
Publication of CH93573A publication Critical patent/CH93573A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/125X-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/243Tubular reactors spirally, concentrically or zigzag wound

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

  

  



  Procède pour exécuter des réactions catalytiques.



   La présente invention a pour objet un
 procède d exécution de réactions catalytiques
 caractérisée en ce que l'on soumet au moins
 l'un des corps appelés a réagir a Faction de
 rayons de faible longueur   d'onde.   



   Les rayons de faible longueur   d'onde   
 peuvent tre des rayons ultra-violets, des rayons   X    ou d'autres radiations ayant une
 action ionisante.



   Les corps appelés à réagir seront, par
 exemple, l'hydrogène,   t'oxygène,      l'azote ou    d'autres gaz ou d'autres liquides, éléments ou
 composés.



   Les catalyseurs peuvent tre les substances   catalysantes    habituellement employées telles que les métaux ou composés finement divisés ou répartis dans un support poreux, comme les mousses do platine, de rhodium, d'osmium, de nickel, l'oxyde de fer, certains   azotures ou carboazotures.   



   Généralement les réactions catalytiques opérées en présence de ces catalyseurs né  cessitent    des conditions de température et de pression qui les rendent d'une   exécution    difficile, et le rendement n'est guère satisfaisant,
 Selon la présente invention il est désormais possible d'effectuer ces   réactions    à des températures et pressions modérées et   d'obte-       nu m) rendement meilleur en soumettant      l'un    des corps appelés à réagir a l'action de rayons ultra-violets ou de rayons Roentgen, par exemple en faisant passer l'un des gaz à combiner dans un serpentin en quartz entourant une lampe à vapeur de mercure.



   Cette forme d'exécution peut s'appliquer, par exemple, aux synthèses suivantes :
 Lorsque l'on met en présence de   l'hydro-    gène et de l'azote pour la production   d'am-    moniac et que 1 on a préalablement soumis l'hydrogène a l'action des rayons susdits, on peut constater que la température et la pression de réaction sont plus basses et le rendement plus grand que si l'hydrogène n'a pas été traite.



   Dans la formation de   l'anhydride sulfu-    rique par l'union directe de l'anhydride sulfureux et de   l'oxygène la, réaction marche    fort bien avec le platine divisé, mais d'une   façon incomplète    ou ralentie avec des cata  lyseurs    tels que les oxydes métalliques (fer,   maganèse    ou uranium). Or si l'on soumet préalablement l'oxygène à l'influence des rayons ultra-violets, on peut constater qu'avec le platine divisé la vitesse de réaction est considérablement accrue et qu'avec l'oxyde de fer le rendement est remarquablement augmenté.



   Dans l'oxydation de l'azote par l'oxygène sous l'influence de l'arc électrique, le rendement ordinaire en oxyde d'azote n'est guère que de   1,      5"/o du mélange gazeux employé.   



  Ce rendement augmente, il est vrai, si   l on    introduit de l'oxygène dans le mélange. Or on a trouvé qu'il est encore supérieur si l'on fait arriver sur l'arc de l'oxygène préalablement activé par des rayons ultra-violets ou les   rayons X.   



   La combinaison directe de l'oxyde de carbone et d'hydrogène pour la formation de formaldéhyde selon la formule   C 0-)-2H =   
HCOH n'est pas réalisable par contact simple de ces gaz. Si on les dirige dans de l'eau contenant en suspension certaines substances   catalysantes,    telles que, par exemple, le   nie-    kel divisé, le rhodium, le platine etc., et qu'on a soumis préalablement   l'hydrogène à    l'influence des rayons ultra-violets ou X, on arrive à la formation directe de formaldéhyde qui reste en solution.

   La mme réaction peut tre obtenue sans emploi d'eau si l'on dirige le mélange d'oxyde de carbone et   d'hydro-    gène préalablement influencé par les rayons   mentionnés sur des catalyseurs tels que    des   oxydes,métauxetc.,chauffésà    des temperatures variables.



   La réduction de l'aldéhyde par   l'hydro-    gène en alcool peut se faire à l'état gazeux en   utilisant un énorme excès d'hydrogène,    avec une élévation de la température et en   présence    de Ni divisé. On peut avec plus de facilité   effectuer la mme réduction de l'al-      déhyde    à   l'état    liquide ou en solution, lorsqu'on se sert de noir de Ni, de Pt, Rh ou d'Os et que l'on opère avec de l'hydrogène soumis préalablement à l'influence de rayons ultra-violets ou   X.   




  



  Proceeds to perform catalytic reactions.



   The present invention relates to a
 carries out catalytic reactions
 characterized in that at least one submits
 one of the bodies called upon to react to the action of
 low wavelength rays.



   Low wavelength rays
 can be ultraviolet rays, X-rays or other radiations having a
 ionizing action.



   The bodies called to react will, for
 example, hydrogen, oxygen, nitrogen or other gases or other liquids, elements or
 compounds.



   The catalysts can be the catalyzing substances usually used, such as metals or compounds finely divided or distributed in a porous support, such as foams of platinum, rhodium, osmium, nickel, iron oxide, certain azides or carboazides. .



   Generally, the catalytic reactions carried out in the presence of these catalysts require temperature and pressure conditions which make them difficult to carry out, and the yield is hardly satisfactory,
 According to the present invention, it is now possible to carry out these reactions at moderate temperatures and pressures and to obtain a better yield by subjecting one of the bodies called upon to react to the action of ultraviolet rays or of rays. Roentgen rays, for example by passing one of the gases to be combined through a quartz coil surrounding a mercury vapor lamp.



   This embodiment can be applied, for example, to the following summaries:
 When hydrogen and nitrogen are brought together for the production of ammonia and the hydrogen has previously been subjected to the action of the aforesaid rays, it can be seen that the temperature and the reaction pressure are lower and the yield greater than if the hydrogen was not treated.



   In the formation of sulfur dioxide by the direct union of sulfur dioxide and oxygen, the reaction proceeds very well with divided platinum, but incompletely or slower with catalysts such as metal oxides (iron, maganese or uranium). Now if the oxygen is subjected beforehand to the influence of ultraviolet rays, it can be seen that with divided platinum the reaction rate is considerably increased and that with iron oxide the yield is remarkably increased. .



   In the oxidation of nitrogen by oxygen under the influence of the electric arc, the ordinary yield of nitrogen oxide is scarcely more than 1.5 "/ o of the gas mixture employed.



  This yield increases, it is true, if oxygen is introduced into the mixture. However, it has been found that it is even higher if oxygen is brought to the arc previously activated by ultraviolet rays or X-rays.



   The direct combination of carbon monoxide and hydrogen for the formation of formaldehyde according to the formula C 0 -) - 2H =
HCOH is not achievable by simple contact of these gases. If they are directed into water containing in suspension certain catalyzing substances, such as, for example, divided nickel, rhodium, platinum, etc., and the hydrogen has previously been subjected to the influence ultraviolet or X rays, we arrive at the direct formation of formaldehyde which remains in solution.

   The same reaction can be obtained without the use of water if the mixture of carbon monoxide and hydrogen, previously influenced by the rays mentioned, is directed onto catalysts such as oxides, metals, etc., heated to variable temperatures. .



   The reduction of the aldehyde by hydrogen to alcohol can take place in the gaseous state using a huge excess of hydrogen, with an increase in temperature and in the presence of divided Ni. The same reduction of the aldehyde can be carried out more easily in the liquid state or in solution, when Ni, Pt, Rh or Os black is used and the operation is carried out with hydrogen previously subjected to the influence of ultraviolet or X rays.


 

Claims (1)

REVENDICATION : Procédé pour exécuter des réactions ca talytiques, caractérisé en ce que l'on soumet au moins l'un des corps appelés à réagir à l'action de rayons de faible longueur d'onde. CLAIM: Process for carrying out catalytic reactions, characterized in that at least one of the bodies which are to react is subjected to the action of rays of short wavelength.
CH93573D 1919-12-17 1919-12-17 Process for carrying out catalytic reactions. CH93573A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH93573T 1919-12-17

Publications (1)

Publication Number Publication Date
CH93573A true CH93573A (en) 1922-03-16

Family

ID=4351124

Family Applications (1)

Application Number Title Priority Date Filing Date
CH93573D CH93573A (en) 1919-12-17 1919-12-17 Process for carrying out catalytic reactions.

Country Status (1)

Country Link
CH (1) CH93573A (en)

Similar Documents

Publication Publication Date Title
CH93573A (en) Process for carrying out catalytic reactions.
Zhu et al. Plasma reforming of glycerol for synthesis gas production
US2886596A (en) Process for the production of cyclohexanone oxime
US1492193A (en) Method of producing hydrocyanic acid
US1284888A (en) Process for the manufacture of phthalic anhydrid, phthalic acid, benzoic acid, and naphthaquinones.
JPS5833846B2 (en) Formaldehyde manufacturing method
US1870104A (en) Production of oxygenated aliphatic compounds
SU194798A1 (en) METHOD OF OBTAINING METACROLEIN
US1783726A (en) Metallic apparatus for carrying out chemical and other processes
US1875722A (en) Catalyst for synthetic methanol production
US4233248A (en) Process for oxidation of methanol to formaldehyde with nitrous oxide
US2077586A (en) Production of acetaldehyde from
US3892780A (en) Production of maleic anhydride by catalytic vapor phase oxidation of glutaric acid or anhydride
US1982195A (en) Preparation of monocarboxylic acids
US1244901A (en) Method of producing acetaldehyde.
US1408826A (en) Process for the manufacture of hexamethylene tetramine
SU217295A1 (en)
BE450633A (en)
BE371375A (en)
BE332036A (en)
CH221011A (en) Process for recovering precious metals entrained during the transformation of gas using precious metal catalysts.
SU923941A1 (en) Process for producing technical hydroxylamine sulphate
US2012174A (en) Production of nitrogenous condensation products from acetylene and ammonia
BE489230A (en)
FR2812823A1 (en) Purification of nitrogen comprises use of combination of methane oxidation catalyst and nitrogen-saturated zirconium getter alloy