CH93573A - Process for carrying out catalytic reactions. - Google Patents
Process for carrying out catalytic reactions.Info
- Publication number
- CH93573A CH93573A CH93573DA CH93573A CH 93573 A CH93573 A CH 93573A CH 93573D A CH93573D A CH 93573DA CH 93573 A CH93573 A CH 93573A
- Authority
- CH
- Switzerland
- Prior art keywords
- rays
- catalytic reactions
- hydrogen
- carrying
- out catalytic
- Prior art date
Links
- 238000006555 catalytic reaction Methods 0.000 title claims description 5
- 238000000034 method Methods 0.000 title claims 2
- 239000001257 hydrogen Substances 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 9
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052762 osmium Inorganic materials 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- -1 oxides Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- DNYWZCXLKNTFFI-UHFFFAOYSA-N uranium Chemical compound [U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U] DNYWZCXLKNTFFI-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/12—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
- B01J19/122—Incoherent waves
- B01J19/123—Ultraviolet light
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/12—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
- B01J19/122—Incoherent waves
- B01J19/125—X-rays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/2415—Tubular reactors
- B01J19/243—Tubular reactors spirally, concentrically or zigzag wound
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
Procède pour exécuter des réactions catalytiques.
La présente invention a pour objet un
procède d exécution de réactions catalytiques
caractérisée en ce que l'on soumet au moins
l'un des corps appelés a réagir a Faction de
rayons de faible longueur d'onde.
Les rayons de faible longueur d'onde
peuvent tre des rayons ultra-violets, des rayons X ou d'autres radiations ayant une
action ionisante.
Les corps appelés à réagir seront, par
exemple, l'hydrogène, t'oxygène, l'azote ou d'autres gaz ou d'autres liquides, éléments ou
composés.
Les catalyseurs peuvent tre les substances catalysantes habituellement employées telles que les métaux ou composés finement divisés ou répartis dans un support poreux, comme les mousses do platine, de rhodium, d'osmium, de nickel, l'oxyde de fer, certains azotures ou carboazotures.
Généralement les réactions catalytiques opérées en présence de ces catalyseurs né cessitent des conditions de température et de pression qui les rendent d'une exécution difficile, et le rendement n'est guère satisfaisant,
Selon la présente invention il est désormais possible d'effectuer ces réactions à des températures et pressions modérées et d'obte- nu m) rendement meilleur en soumettant l'un des corps appelés à réagir a l'action de rayons ultra-violets ou de rayons Roentgen, par exemple en faisant passer l'un des gaz à combiner dans un serpentin en quartz entourant une lampe à vapeur de mercure.
Cette forme d'exécution peut s'appliquer, par exemple, aux synthèses suivantes :
Lorsque l'on met en présence de l'hydro- gène et de l'azote pour la production d'am- moniac et que 1 on a préalablement soumis l'hydrogène a l'action des rayons susdits, on peut constater que la température et la pression de réaction sont plus basses et le rendement plus grand que si l'hydrogène n'a pas été traite.
Dans la formation de l'anhydride sulfu- rique par l'union directe de l'anhydride sulfureux et de l'oxygène la, réaction marche fort bien avec le platine divisé, mais d'une façon incomplète ou ralentie avec des cata lyseurs tels que les oxydes métalliques (fer, maganèse ou uranium). Or si l'on soumet préalablement l'oxygène à l'influence des rayons ultra-violets, on peut constater qu'avec le platine divisé la vitesse de réaction est considérablement accrue et qu'avec l'oxyde de fer le rendement est remarquablement augmenté.
Dans l'oxydation de l'azote par l'oxygène sous l'influence de l'arc électrique, le rendement ordinaire en oxyde d'azote n'est guère que de 1, 5"/o du mélange gazeux employé.
Ce rendement augmente, il est vrai, si l on introduit de l'oxygène dans le mélange. Or on a trouvé qu'il est encore supérieur si l'on fait arriver sur l'arc de l'oxygène préalablement activé par des rayons ultra-violets ou les rayons X.
La combinaison directe de l'oxyde de carbone et d'hydrogène pour la formation de formaldéhyde selon la formule C 0-)-2H =
HCOH n'est pas réalisable par contact simple de ces gaz. Si on les dirige dans de l'eau contenant en suspension certaines substances catalysantes, telles que, par exemple, le nie- kel divisé, le rhodium, le platine etc., et qu'on a soumis préalablement l'hydrogène à l'influence des rayons ultra-violets ou X, on arrive à la formation directe de formaldéhyde qui reste en solution.
La mme réaction peut tre obtenue sans emploi d'eau si l'on dirige le mélange d'oxyde de carbone et d'hydro- gène préalablement influencé par les rayons mentionnés sur des catalyseurs tels que des oxydes,métauxetc.,chauffésà des temperatures variables.
La réduction de l'aldéhyde par l'hydro- gène en alcool peut se faire à l'état gazeux en utilisant un énorme excès d'hydrogène, avec une élévation de la température et en présence de Ni divisé. On peut avec plus de facilité effectuer la mme réduction de l'al- déhyde à l'état liquide ou en solution, lorsqu'on se sert de noir de Ni, de Pt, Rh ou d'Os et que l'on opère avec de l'hydrogène soumis préalablement à l'influence de rayons ultra-violets ou X.
Proceeds to perform catalytic reactions.
The present invention relates to a
carries out catalytic reactions
characterized in that at least one submits
one of the bodies called upon to react to the action of
low wavelength rays.
Low wavelength rays
can be ultraviolet rays, X-rays or other radiations having a
ionizing action.
The bodies called to react will, for
example, hydrogen, oxygen, nitrogen or other gases or other liquids, elements or
compounds.
The catalysts can be the catalyzing substances usually used, such as metals or compounds finely divided or distributed in a porous support, such as foams of platinum, rhodium, osmium, nickel, iron oxide, certain azides or carboazides. .
Generally, the catalytic reactions carried out in the presence of these catalysts require temperature and pressure conditions which make them difficult to carry out, and the yield is hardly satisfactory,
According to the present invention, it is now possible to carry out these reactions at moderate temperatures and pressures and to obtain a better yield by subjecting one of the bodies called upon to react to the action of ultraviolet rays or of rays. Roentgen rays, for example by passing one of the gases to be combined through a quartz coil surrounding a mercury vapor lamp.
This embodiment can be applied, for example, to the following summaries:
When hydrogen and nitrogen are brought together for the production of ammonia and the hydrogen has previously been subjected to the action of the aforesaid rays, it can be seen that the temperature and the reaction pressure are lower and the yield greater than if the hydrogen was not treated.
In the formation of sulfur dioxide by the direct union of sulfur dioxide and oxygen, the reaction proceeds very well with divided platinum, but incompletely or slower with catalysts such as metal oxides (iron, maganese or uranium). Now if the oxygen is subjected beforehand to the influence of ultraviolet rays, it can be seen that with divided platinum the reaction rate is considerably increased and that with iron oxide the yield is remarkably increased. .
In the oxidation of nitrogen by oxygen under the influence of the electric arc, the ordinary yield of nitrogen oxide is scarcely more than 1.5 "/ o of the gas mixture employed.
This yield increases, it is true, if oxygen is introduced into the mixture. However, it has been found that it is even higher if oxygen is brought to the arc previously activated by ultraviolet rays or X-rays.
The direct combination of carbon monoxide and hydrogen for the formation of formaldehyde according to the formula C 0 -) - 2H =
HCOH is not achievable by simple contact of these gases. If they are directed into water containing in suspension certain catalyzing substances, such as, for example, divided nickel, rhodium, platinum, etc., and the hydrogen has previously been subjected to the influence ultraviolet or X rays, we arrive at the direct formation of formaldehyde which remains in solution.
The same reaction can be obtained without the use of water if the mixture of carbon monoxide and hydrogen, previously influenced by the rays mentioned, is directed onto catalysts such as oxides, metals, etc., heated to variable temperatures. .
The reduction of the aldehyde by hydrogen to alcohol can take place in the gaseous state using a huge excess of hydrogen, with an increase in temperature and in the presence of divided Ni. The same reduction of the aldehyde can be carried out more easily in the liquid state or in solution, when Ni, Pt, Rh or Os black is used and the operation is carried out with hydrogen previously subjected to the influence of ultraviolet or X rays.
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH93573T | 1919-12-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
CH93573A true CH93573A (en) | 1922-03-16 |
Family
ID=4351124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CH93573D CH93573A (en) | 1919-12-17 | 1919-12-17 | Process for carrying out catalytic reactions. |
Country Status (1)
Country | Link |
---|---|
CH (1) | CH93573A (en) |
-
1919
- 1919-12-17 CH CH93573D patent/CH93573A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CH93573A (en) | Process for carrying out catalytic reactions. | |
Zhu et al. | Plasma reforming of glycerol for synthesis gas production | |
US2886596A (en) | Process for the production of cyclohexanone oxime | |
US1492193A (en) | Method of producing hydrocyanic acid | |
US1284888A (en) | Process for the manufacture of phthalic anhydrid, phthalic acid, benzoic acid, and naphthaquinones. | |
JPS5833846B2 (en) | Formaldehyde manufacturing method | |
US1870104A (en) | Production of oxygenated aliphatic compounds | |
SU194798A1 (en) | METHOD OF OBTAINING METACROLEIN | |
US1783726A (en) | Metallic apparatus for carrying out chemical and other processes | |
US1875722A (en) | Catalyst for synthetic methanol production | |
US4233248A (en) | Process for oxidation of methanol to formaldehyde with nitrous oxide | |
US2077586A (en) | Production of acetaldehyde from | |
US3892780A (en) | Production of maleic anhydride by catalytic vapor phase oxidation of glutaric acid or anhydride | |
US1982195A (en) | Preparation of monocarboxylic acids | |
US1244901A (en) | Method of producing acetaldehyde. | |
US1408826A (en) | Process for the manufacture of hexamethylene tetramine | |
SU217295A1 (en) | ||
BE450633A (en) | ||
BE371375A (en) | ||
BE332036A (en) | ||
CH221011A (en) | Process for recovering precious metals entrained during the transformation of gas using precious metal catalysts. | |
SU923941A1 (en) | Process for producing technical hydroxylamine sulphate | |
US2012174A (en) | Production of nitrogenous condensation products from acetylene and ammonia | |
BE489230A (en) | ||
FR2812823A1 (en) | Purification of nitrogen comprises use of combination of methane oxidation catalyst and nitrogen-saturated zirconium getter alloy |