BE332036A - - Google Patents

Info

Publication number
BE332036A
BE332036A BE332036DA BE332036A BE 332036 A BE332036 A BE 332036A BE 332036D A BE332036D A BE 332036DA BE 332036 A BE332036 A BE 332036A
Authority
BE
Belgium
Prior art keywords
alkali
gas mixture
sodium
ammonia
synthesis
Prior art date
Application number
Other languages
French (fr)
Publication of BE332036A publication Critical patent/BE332036A/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Description

       

   <Desc/Clms Page number 1> 
 



  "PROCEDE DE   FABRICATION     SYNTHETIQUE   DE   L'AMMONIAQUE   A PARTIR DE SES ELEMENTS" 
Lorsque,dans la synthèse de l'ammoniaque, on fait usage de catalyseurs très actifs, on constate que ces derniers sont ex- trêmement sensibles aux plus minimes traces d'impuretés, telles .que l'oxygène, la vapeur d'eau et l'oxyde de carbone, en présence dans le mélange gazeux employé pour la synthèse, et que, par con- séquent, la durée de leur existence est très limitée.      



   On a essayé de diverses manières de débarrasser le mélange gazeux de ces impuretés, avant la catalyse, par l'action d'agents d'épuration spéciaux,   mais jusqu'à,   présent les substances pro- posées ne se sont pas montrées suffisamment efficaces pour permet-      tre, d'une manière durable, l'emploi d'un catalyseur de grande activité. 



   Par exemple, on a proposé d'épurer le mélange de gaz, immé- diatement avant catalyse, à l'aide de sodium ou d'une amide de sodium. Ces deux substances, à l'état liquide ou solide, laissent toutefois subsister de faibles quantités d'oxygène,, lesquelles influent de façon désavantageuse, et en un temps relativement court, sur l'activité du catalyseur. 



   On a d'autre part également proposé de dissoudre du sodium métallique dans l'ammoniaque liquide, à l'effet   d'obtenir,   par suite de l'état de fine division du sodium colloïdal dissous, une action améliorée. Ce moyen est outefois   insuffi-        

 <Desc/Clms Page number 2> 

 sant, en ce sens que, l'opération s'effectuant nécessaire- ment à la température ordinaire, ou même en-dessous, la vi-      tesse de la réaction   est trop! peu   élevée pour permettre la rétention de traces d'oxygène d'un ordre de grandeur de 
0,00001% en volume. 



   On a constaté que la dissolution d'un métal alcalin ou   alcalino-terreux,   tel le sodium, dans l'amide fondue d'un alcali, et par exemple l'amide, de sodium, permet d'obtenir un agent d'épuration qui répond à toutes les conditions, 
En pareil cas, non seulement le métal dissous sous forme      colloïdale, mais également l'agent de dispersion agissent comme agents d'épuration, et il est en outre possible de faire passer le mélange'gazeux à des températures comprises entre 200 et 300 C, en augmentant par conséquent, de façon sensible, la capacité de réaction. Il s'en suit la   possibili-        té d'épurer le mélange gazeux tout en maintenant au cataly- seur son activité pendant une durée presque illimitée. 



   Avantageusement, le passage du mélange gazeux est ef-      fectué sous pression, et l'on pourrait également faire passer séparément les gaz hydrogène et azote dans l'agent d'épura- tion avant leur mélange.



   <Desc / Clms Page number 1>
 



  "PROCESS FOR THE SYNTHETIC MANUFACTURING OF AMMONIA FROM ITS ELEMENTS"
When very active catalysts are used in the synthesis of ammonia, they are found to be extremely sensitive to the smallest traces of impurities, such as oxygen, water vapor and water. carbon monoxide, present in the gas mixture employed for the synthesis, and that, consequently, the duration of their existence is very limited.



   Various attempts have been made to rid the gas mixture of these impurities, prior to catalysis, by the action of special scavenging agents, but so far the proposed substances have not been shown to be effective enough to achieve this. allow, in a sustainable manner, the use of a high activity catalyst.



   For example, it has been proposed to purify the gas mixture, immediately before catalysis, with sodium or a sodium amide. These two substances, in the liquid or solid state, however leave small quantities of oxygen, which influence disadvantageously, and in a relatively short time, the activity of the catalyst.



   On the other hand, it has also been proposed to dissolve metallic sodium in liquid ammonia, with the effect of obtaining, as a result of the state of fine division of the dissolved colloidal sodium, an improved action. However, this means is insufficient.

 <Desc / Clms Page number 2>

 in the sense that, since the operation is necessarily carried out at room temperature, or even below, the rate of the reaction is too high! low to allow the retention of traces of oxygen of an order of magnitude of
0.00001% by volume.



   It has been found that the dissolution of an alkali or alkaline earth metal, such as sodium, in the molten amide of an alkali, and for example the amide, of sodium, makes it possible to obtain a purifying agent which meets all the conditions,
In such a case, not only the dissolved metal in colloidal form, but also the dispersing agent acts as scavenging agents, and it is furthermore possible to pass the gas mixture at temperatures between 200 and 300 ° C. thereby significantly increasing the reaction capacity. This results in the possibility of purifying the gas mixture while maintaining the activity of the catalyst for an almost unlimited period of time.



   Advantageously, the passage of the gas mixture is carried out under pressure, and it is also possible to pass the hydrogen and nitrogen gases separately into the purifying agent before they are mixed.


    

Claims (1)

REVENDICATION ET RESUME EMI2.1 ?:-..^¯9c32ciQ?,-#-.'='.=?Sïa?:=a, .c¯^¯n Procédé de fabrication synthétique de l'ammoniaque, en partant de ses éléments, procédé caractérisé par le fait ,que les gaz utilisés pour la synthèse sont amenés, séparé- ment ou en mélange, et de préférence sous pression, avant la catalyse, dans la solution d'un métal alcalin ou alcaline- terreux dans l'amide fondue d'un alcali. CLAIM AND SUMMARY EMI2.1 ?: - .. ^ ¯9c32ciQ?, - # -. '='. =? Sïa?: = A, .c¯ ^ ¯n Process for the synthetic manufacture of ammonia, starting from its elements, process characterized in that the gases used for the synthesis are brought, separately or as a mixture, and preferably under pressure, before catalysis, into the solution of an alkali or alkaline earth metal in the molten amide of an alkali.
BE332036D BE332036A (en)

Publications (1)

Publication Number Publication Date
BE332036A true BE332036A (en)

Family

ID=11026

Family Applications (1)

Application Number Title Priority Date Filing Date
BE332036D BE332036A (en)

Country Status (1)

Country Link
BE (1) BE332036A (en)

Similar Documents

Publication Publication Date Title
US7070746B1 (en) Process for nitrous oxide purification
FR2620849A1 (en) PROCESS FOR THE DECONTAMINATION OF THE RESIDUAL GAS OF A NUCLEAR FUSION REACTOR
Green Industrial catalysis
FR2362656A1 (en) IMPROVED PROCESS FOR DESULFURING HOT REDUCING GAS
BE332036A (en)
WO2009122108A1 (en) Improved method for manufacturing nitric acid
US6113871A (en) Catalytic decomposition of ammonia and hydrogen cyanide in coke-oven gas
WO1996011243A1 (en) Process for removing ammonia from gasification gas
EP2175966B1 (en) Method for deoxygenation of oxycombustion flue gases
EP1542924B1 (en) Method for purifying hydrogen sulphide on porous supports
FR2514030A1 (en) ZIRCONIUM-VANADIUM INTERMETALLIC COMPOUND STABILIZED BY OXYGEN
Cheng Selective CO oxidation in presence of H 2 over Cu/Cr/Ba catalysts
BE491320A (en)
BE1007691A3 (en) Treatment process oxidation liquid bath.
JP4448220B2 (en) Carbon oxide hydrogenation process
SU1027880A1 (en) Homogeneous catalyst for oxidizing carbon monoxide
CH94682A (en) Process for the synthesis of ammonia from its elements.
BE660509A (en)
SU170476A1 (en) METHOD FOR CLEANING GAS FROM CYANIC HYDROGEN
BE671847A (en)
BE493468A (en)
JPH01180222A (en) Production of molded body for cleaning up exhaust gas
EP0082864A1 (en) A process of reducing the oxygen content in gas mixtures.
JP2000328160A (en) Hydrogen occluding alloy for purifying hydrogen and purification method of hydrogen-containing gas
CH221011A (en) Process for recovering precious metals entrained during the transformation of gas using precious metal catalysts.