CH86913A - Process for increasing the heat transfer from heating gases to physical surfaces flushed by liquids or vapors. - Google Patents

Process for increasing the heat transfer from heating gases to physical surfaces flushed by liquids or vapors.

Info

Publication number
CH86913A
CH86913A CH86913DA CH86913A CH 86913 A CH86913 A CH 86913A CH 86913D A CH86913D A CH 86913DA CH 86913 A CH86913 A CH 86913A
Authority
CH
Switzerland
Prior art keywords
vapors
liquids
heat transfer
heating gases
increasing
Prior art date
Application number
Other languages
German (de)
Inventor
Meisterhans Robert
Original Assignee
Meisterhans Robert
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisterhans Robert filed Critical Meisterhans Robert
Publication of CH86913A publication Critical patent/CH86913A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B9/00Steam boilers of fire-tube type, i.e. the flue gas from a combustion chamber outside the boiler body flowing through tubes built-in in the boiler body
    • F22B9/18Component parts thereof; Accessories therefor, e.g. stay-bolt connections

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Description

  

  Verfahren zum Vergrössern der Wärmeübertragung von     Heizgasen    an von  Flüssigkeiten oder Dämpfen bespülte     körperliche    Flächen.    Bekanntlich ist die     Wärmeüberleitungs-          fäbigkeit    von Heizgasen an Heizflächen be  deutend geringer als die     Wärmeableitungs-          fähigkeit    von Flüssigkeiten oder Dämpfen.  



  Zur Vergrösserung der Wärmeübertragung  der Heizgase ' an von Flüssigkeiten oder  Dämpfen bespülte körperliche Flächen werden  nun gemäss der Erfindung durch die Heizgase  auch noch in die     Heizgaswege    eingebaute  Metallkörper     geheitzt,    welche ihre     Wärme     durch Strahlung ebenfalls an die     obenge-          nannten    Flächen übertragen.  



  In beiliegender Zeichnung sind Beispiele  zur Ausführung des Verfahrens geeigneter  Einrichtungen dargestellt.  



       Fig.    1 stellt den Längsschnitt,     Fig.    2 den  Querschnitt eines Röhrenkessels dar. a sind  eingewalzte, wasserumspülte Heizröhren,     L     lose eingeschobene, zur Wärmestrahlung die  nende Metallkörper, welche die verschiedensten  Formen haben können.

   Behufs leichter Reini  gung können diese Wärmestrahlkörper     heraus-          genommen        werden.    Die Heizgase     strömen,     wie mit Pfeilen angedeutet,     inner-    und ausser-    halb der     Wärmestrahlkörper    durch, wodurch  eine grosse     Oberfläche    zur     Wärmeaufnahme     geboten ist.  



  In     Fig.    3 sind     Heizkanäle    mit länglichem       Querschnitte    dargestellt. Die     Wärmestrahl-          körper    sind bei c einfache Bleche, bei     d          Doppeibleclie.    Die     Wärmeaufnahme    und  Wärmeabgabe ist selbstverständlich bei     d          grüsses    als bei c.

   In Fällen, wo das Wasser       in    den Röhren zirkuliert und die Heizgase  dieselben umspülen, werden auch die     Wä        rine-          strahlkürpcr        ausserhalb    der     Röhren    angeordnet.



  Process for increasing the heat transfer from heating gases to physical surfaces flushed by liquids or vapors. It is well known that the heat transfer capacity of hot gases on heating surfaces is significantly lower than the heat transfer capacity of liquids or vapors.



  To increase the heat transfer of the heating gases to physical surfaces flushed with liquids or vapors, metal bodies built into the heating gas paths are now heated according to the invention by the heating gases, which also transfer their heat to the above-mentioned surfaces by radiation.



  The attached drawing shows examples of suitable devices for implementing the method.



       Fig. 1 shows the longitudinal section, Fig. 2 shows the cross section of a tubular boiler. A are rolled-in, water-flushed heating tubes, L loosely inserted metal bodies for heat radiation which can have the most varied of shapes.

   These radiant heaters can be removed for easy cleaning. As indicated by arrows, the heating gases flow inside and outside the radiant heaters, which means that a large surface area is required for heat absorption.



  In Fig. 3 heating channels are shown with elongated cross-sections. The radiant heaters at c are simple sheets, at d double cellos. The heat absorption and heat emission is of course greater with d than with c.

   In cases where the water circulates in the tubes and the hot gases wash around them, the heat radiation bodies are also arranged outside the tubes.

 

Claims (1)

PATENTANSPRUCH: Verfahren zur V ergrül; ei-ung der Wärme- übertragung von Heizgasen an von Flüssig keiten oder Dämpfen bespülte l@örpei-liche Flächen, die von Heizgasen bestrichen werden, dadurch gekennzeichnet, dass durch die Heiz gase auch noch in die Heizgaswege eingebaute Metallkörper geheizt werden, welche ihre Wärme durch Strahlung ebenfalls an die obengenannten Flächen übertragen. PATENT CLAIM: Process for grievance; The heat transfer of heating gases to bodily surfaces flushed with liquids or vapors, which are coated by heating gases, characterized in that the heating gases also heat metal bodies built into the heating gas paths, which generate their heat also transmitted by radiation to the above-mentioned surfaces.
CH86913D 1920-01-10 1920-01-10 Process for increasing the heat transfer from heating gases to physical surfaces flushed by liquids or vapors. CH86913A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH86913T 1920-01-10

Publications (1)

Publication Number Publication Date
CH86913A true CH86913A (en) 1920-10-16

Family

ID=4343594

Family Applications (1)

Application Number Title Priority Date Filing Date
CH86913D CH86913A (en) 1920-01-10 1920-01-10 Process for increasing the heat transfer from heating gases to physical surfaces flushed by liquids or vapors.

Country Status (1)

Country Link
CH (1) CH86913A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3207495A (en) * 1961-02-17 1965-09-21 Dominion Magnesium Ltd Device for condensing metal vapours
US4351392A (en) * 1980-12-22 1982-09-28 Combustion Engineering, Inc. Heat exchange tube with heat absorptive shield
US4559998A (en) * 1984-06-11 1985-12-24 The Air Preheater Company, Inc. Recuperative heat exchanger having radiation absorbing turbulator
US4705106A (en) * 1986-06-27 1987-11-10 Aluminum Company Of America Wire brush heat exchange insert and method
WO2005068926A1 (en) * 2004-01-15 2005-07-28 Pycos Engineering (Uk) Ltd. Enhanced radiant heat exchanger apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3207495A (en) * 1961-02-17 1965-09-21 Dominion Magnesium Ltd Device for condensing metal vapours
US4351392A (en) * 1980-12-22 1982-09-28 Combustion Engineering, Inc. Heat exchange tube with heat absorptive shield
US4559998A (en) * 1984-06-11 1985-12-24 The Air Preheater Company, Inc. Recuperative heat exchanger having radiation absorbing turbulator
US4705106A (en) * 1986-06-27 1987-11-10 Aluminum Company Of America Wire brush heat exchange insert and method
WO2005068926A1 (en) * 2004-01-15 2005-07-28 Pycos Engineering (Uk) Ltd. Enhanced radiant heat exchanger apparatus
US7503289B2 (en) 2004-01-15 2009-03-17 Pycos Engineering Ltd Enhanced radiant heat exchanger apparatus

Similar Documents

Publication Publication Date Title
CH86913A (en) Process for increasing the heat transfer from heating gases to physical surfaces flushed by liquids or vapors.
DE487175C (en) Tubular boiler designed as a vertical shaft boiler with heating tubes located in the radiation chamber
DE367976C (en) Boiler for central heating and hot water supply
AT10394B (en) Air pipe for tiled stoves.
DE537771C (en) Steam boiler with indirect heating by an auxiliary device
AT86289B (en) Counterflow radiator.
AT107654B (en) Sectional boiler for small hot water heating systems.
SU10667A1 (en) Device for heating water or oil with steam
DE542550C (en) Independent steam heater
AT119592B (en) Steam generator.
AT110076B (en) Process for cleaning the heating surface of steam boilers on which the heating gases are applied.
AT105144B (en) Stove or oven attachment.
CH184820A (en) Liquid heater designed as an oven attachment.
DE600335C (en) Smoke tube steam boiler for high heating gas temperatures with upstream water pipes
DE484690C (en) Equipment for the preparation of hot water, especially on cookers
DE366389C (en) Iron room stove
DE467262C (en) Indirectly heated steam generator
DE462952C (en) Device for starting and regulating furnaces for steam generators
DE469321C (en) Vapor generator to be built into the oven
AT19468B (en) Process for increasing the luminosity of incandescent gas light.
AT138576B (en) Device for utilizing the excess or remaining heat in steam ovens for space heating with hot water.
DE354640C (en) Device for cooking and drying organic matter
DE446021C (en) Procedure for preheating the combustion air for steam boiler firing
AT86457B (en) Steam boiler.
DE519981C (en) Heat storage plate to be placed on the Heizrohrkoepfe of a steam oven