CH700971A1 - Flexible glass elements. - Google Patents

Flexible glass elements. Download PDF

Info

Publication number
CH700971A1
CH700971A1 CH00706/09A CH7062009A CH700971A1 CH 700971 A1 CH700971 A1 CH 700971A1 CH 00706/09 A CH00706/09 A CH 00706/09A CH 7062009 A CH7062009 A CH 7062009A CH 700971 A1 CH700971 A1 CH 700971A1
Authority
CH
Switzerland
Prior art keywords
glass
elements
flexible
webs
micro
Prior art date
Application number
CH00706/09A
Other languages
German (de)
Inventor
Robert Baehler
Original Assignee
Albers & Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Albers & Co filed Critical Albers & Co
Priority to CH00706/09A priority Critical patent/CH700971A1/en
Priority to EP20100160951 priority patent/EP2251497B1/en
Publication of CH700971A1 publication Critical patent/CH700971A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/86Sound-absorbing elements slab-shaped

Abstract

Es werden Glaselemente (3) vorgeschlagen, die als «biegsames Glas» bezeichnet und eingesetzt werden können. Unter diesem Begriff werden Materialien wie Glas- und harte Kunstglasbauteile mit einer Vielzahl von Stegen und zwischen den Stegen angeordneten Mikroschlitzen verstanden, die durch Befestigung auf, vorzugsweise Verklebung mit, einem elastischen Trägermaterial wie zum Beispiel Kunststoff biegsam gemacht sind. Die verfahrenstechnischen Probleme zur industriellen Herstellung von biegsamem Glas konnten durch die neuen Glaselemente einer Lösung zugeführt werden. In der Innenarchitektur, in vielerlei Gebrauchsgegenständen wie Spiegeln, aber auch in der Optik und in der Asphärentechnologie können nun die neuartigen gebogenen Gläser die alten kompliziert und aufwendig geschliffenen Gläser ersetzen. Die vorliegende Erfindung erlaubt es, transparente biegsame Elemente zu erzeugen, welche mit variablen Radien zu gekrümmten, zylindrischen, gewellten oder in sich verdrehten Formen oder Kombinationen der vorgenannten geformt werden können. Die erzeugten Glasbauteile sind von hoher optischer Qualität. Die Schlitz- und Stegbreiten sind ebenso variierbar wie die Grösse der fertigen Glasbauteile.It glass elements (3) are proposed, which can be called "flexible glass" and used. This term is understood to mean materials such as glass and hard synthetic glass components having a multiplicity of webs and micro-slits arranged between the webs, which are made flexible by attachment to, preferably bonding to, an elastic carrier material such as plastic. The procedural problems for the industrial production of flexible glass could be supplied by the new glass elements of a solution. In interior design, in many everyday objects such as mirrors, but also in optics and in aspheric technology, the new bent glasses can now replace the old complicated and elaborately cut lenses. The present invention makes it possible to produce transparent flexible elements which can be formed with variable radii into curved, cylindrical, corrugated or twisted shapes or combinations of the foregoing. The glass components produced are of high optical quality. The slot and web widths are just as variable as the size of the finished glass components.

Description

       

  [0001]    Die vorliegende Erfindung betrifft flexible Glaselemente gemäss dem Oberbegriff des unabhängigen Patentanspruchs 1 sowie Verfahren zur Herstellung von flexiblen Glaselementen gemäss Oberbegriff des Patentanspruchs 6.

  

[0002]    In der Patentanmeldung EP 07 405 023.8 der Anmelderin sind Verfahren zum Erstellen von Mikroperforationen und Mikroschlitzen mittels abrasiver Wasserstrahltechnik in Glasplatten beschrieben. Diese Verfahren erlauben es, mittels abrasiver Wasserstrahltechnik auf Anlagen mit einer Mehrzahl von Düsenköpfen Löcher mit einem Durchmesser von 0,2 bis 0,8 mm in Glasscheiben anzubringen. Es wurde eine Prozesssteuerung entwickelt, die das Zerstörungsrisiko der zu perforierenden Glasscheiben zu Beginn des Perforationsvorganges minimiert.

   Es wurde erkannt, dass a) auch ein kleines Risiko pro Loch beim Erstellen von 40 000 durchgehenden Mikrolöchern zu einer enormen Ausschussquote führt und wirtschaftlich nicht rentabel ist und b) die Prozesssicherheit in einem zwangsweisen "stop and go" Betrieb, bei einer solch hohen Anzahl von Mikroperforationen kaum beherrschbar ist und c) die Bohrzeiten in diesem "stop and go" Betrieb mit allen heute bekannten Verfahren erheblich zu lang sind, um grössere Glasbauteile in vertretbarer Zeit zu perforieren.

  

[0003]    Da beim Durchbohren von Verbundgläsern mit innenliegenden Kunststoffmembran der Wasserstrahl beim Übergang vom Glas zur elastischen Kunststoffmembran kurzzeitig unscharf wird und dadurch ungewollte Kavitäten im Grenzbereich der Glasschichten zum Kunststoff entstehen, die wiederum zu ungewünschten optischen Effekten und Trübungen führen wird, in der EP 07 405 023.8 vorgeschlagen, die Gläser nach dem erfolgreichen Durchbohren, mittels des abrasiven Wasserstrahles mit erheblich gesenktem Zerstörungsrisiko zu Schlitzen oder zu Schneiden. Die unerwünschte Kavitätenbildung im Bereich der Kunststofffolie bei Verbundgläsern bleibt beim Schneiden nach dem Durchbohren aus und die Breite der Mikroschlitze lässt sich im Gegensatz zum Durchmesser der Löcher auf bis zu 0.1 mm senken.

   Anstelle der Vielzahl von Bohrungen oder Mikroperforationen wird eine wesentlich reduzierte Anzahl von Schlitzen im Glas angebracht.

  

[0004]    Die Vorteile eines solchen mikrogeschlitzten Schallabsorbers in Glas bestehen darin, dass die Verwirbelung und Reibung der Luft im Mikroschlitz, mit dahinten angeordneten veränderbarem Hohlraum und schallharter Begrenzung durch beliebige Variierung der Schlitzlänge und Schlitzbreite sowie durch die beliebige Anordnung der Mikroschlitze in der Fläche herstellungstechnisch äusserst effizient erhöht oder verringert werden kann. Die Schallenergie wird in einstellbaren Frequenzbereichen in Wärmeenergie umgewandelt und die Nachhallzeit in einem breiten Frequenzbereich reduziert. Die erforderliche offene Fläche im Glas, im Ausmass von zirka 0,8 bis 3,0% der Beschallungsfläche, kann durch geeignete Schneidverfahren mit ausreichender Prozesssicherheit und mit einer, um den Faktor 10 verringerten Bearbeitungszeit gegenüber Bohrungen hergestellt werden.

   Die Gefahr von Mikrorissen kann durch kontrolliertes Schlitzschneiden gegenüber dem Mikrolochbohren verringert werden. Durch eine offensichtliche Reduzierung, der "stop and go" Verluste, kann die Produktivität wesentlich gesteigert werden.

  

[0005]    Für die Akustikelemente gilt im Innenraumbereich mit Personenaufenthalt das Erfordernis der Splitterfreiheit. Das Anbringen von Mikrolöchern oder Mikroschlitze mit einer offenen Fläche von über 1% direkt in Trägerglasplatten verursacht oft Abplatzer und Muscheln im Glas, so dass das Trägerglas nicht als ESG oder VSG verwendet werden kann. Die Vielzahl von kleinen Mikrolöchern und schmalen Mikroschlitzen mit einer offenen Fläche von über 1% macht das Trägerglas zudem statisch unstabil. Da heutzutage in der Architektur grossflächige Akustikelemente gefragt sind, bei denen die Formate von 1 m2 überschritten werden, müssen auch die Trägergläser entsprechend grossformatig sein. Dadurch werden direkt mit Mikroperforierung oder Mikroschlitzung versehene Gläser unwirtschaftlich.

   Die Prozesse bei direkter Trägerglasbearbeitung werden durch die grosse Anzahl Mikroeingriffe unbeherrschbar und der zu erwartende Ausfall erheblich. Es ist daher bereits in der EP 07405023.8 vorgeschlagen, dass in bestimmten Ausführungsformen rondellenartige mikrogeschlitzte Bauteile in entsprechende in eine Grundplatte eingeschnittene Öffnungen eingesetzt sind. Es ist vorgeschlagen, die ausgeschnittenen Kreisscheiben oder Rondellen in einem separaten Bearbeitungsprozess vom äusseren Umfang her mit Mikroschlitzen zu versehen, so dass ein zentraler Steg entsteht, der die Zinken zweier Kämme trägt. Diese Kammscheiben werden anschliessend wieder in die Grundglasscheibe eingesetzt, respektive eingeklebt. Sie können auch mit separaten Haltern lösbar oder fest in die jeweiligen Öffnungen eingesetzt werden.

   Die beim Erstellen der Aufnahmeöffnungen anfallenden Rondelle können auch verworfen werden, so dass in die Öffnungen Kammscheiben aus separater Produktion eingesetzt werden. Die Erstellung der Aufnahmeöffnungen muss nicht mit einem Mikroschneid-prozess erfolgen, sondern kann mit herkömmlichen Verfahren mit hinreichender Toleranz erfolgen. Die Aufnahmeöffnungen lassen sich sogar schon während der Herstellung der Glasscheiben anbringen. Die Kanten der Aufnahmeöffnungen müssen im Gegensatz zu den Kanten der Mikroschlitze nicht scharf sein.

  

[0006]    In der EP 07 405 023.8 ist ebenfalls offenbart, dass zwecks Erhöhung der mechanischen Stabilität und insbesondere beim Einsatz von Scheiben aus Sicherheitsglas zweiteilige Glasbausteine eingesetzt werden. Die Grundplatten aus Glas werden wie oben beschrieben mit grösseren Bohrungen/Aufnahmeöffnungen versehen und mit vorgefertigten mikrogeschlitzten Glaseinsätzen bestückt. Die bei der Absorption wirksamen Einsätze können gemäss der EP 07 405 023.8 in weiteren bevorzugten Ausführungsformen der Erfindung in unterschiedlichen Stärken aus Glas, aber auch aus anderen Materialien wie Kunstglas, anderen Kunststoffen oder Metall bestehen. Die mikrogeschlitzten Einsätze werden wie bereits erwähnt mit Einlagen, Haltern oder Verklebungen in die Aufnahmeöffnungen der Grundglasplatte eingepasst.

   Diese Nicht-Glaseinsätze lassen sich zwar auch mit der abrasiven Wasserstrahltechnik herstellen, sie können aber im Gegensatz zum Glas auch mit anderen bekannten Schneid- oder Stanzverfahren hergestellt werden.

  

[0007]    Insbesondere bei den Ausführungsformen, bei denen die Absorptions-Einsätze mittels Einlagen oder Haltern in den Aufnahmeöffnungen gehalten sind, ist das Verletzungsrisiko und die Bruchgefahr auf ein Minimum reduziert, da sich die Haltekraft auf die Stabilität des Absorptions-Einsatzes anpassen lässt. Fällt oder stösst jemand gegen den Einsatz, so löst sich dieser aus der Grundplatte bevor er bricht. Dieser Vorteil kommt vor allem bei Einsätzen aus Glas zum Tragen.

  

[0008]    Aus der Europäischen Patentanmeldung Nr. 080 100 114.2 der Anmelderin sind weitere Akustikelemente mit schallabsorbierenden Eigenschaften aus Glas und weiterentwickelte Herstellungsverfahren bekannt. Für die breitbandigen mikrogeschlitzten Absorber werden Schlitzbreiten von unter 0.3 mm benötigt und gleichzeitig muss die offene Fläche auf über 3% zur Grundfläche des Akustikelements erhöht werden. Als unerwartetes alternatives Verfahren zum abrasiven Wasserstrahlschneiden ist in der Patentanmeldung Nr. 080 100 114.2 das Slurry-Drahtsägen offenbart. Mit diesem Verfahren können die Schlitzbreiten gegenüber dem abrasiven Wasserstrahlschneiden massiv verkleinert werden und es lassen sich Schlitzbreiten von 0.1 bis 0.3 mm erreichen.

   Das wirtschaftlich interessante Slurry-Drahtsäge-Verfahren für solche Abmessungen ist vom Waferschneiden aus der Halbleiterindustrie bekannt. Mit diesem Verfahren lassen sich nicht nur sehr schmale Schlitze von bis zu 0.1 mm sägen, sondern es lassen sich auch schmale Stege von unter 2 mm Breite herstellen, ohne dass diese während dem Sägen brechen. Die geforderte Leistung kann durch das Schichten von mehreren Glasplatten hintereinander zu Blöcken und das gleichzeitige Sägen von mehreren Blöcken erreicht werden.

  

[0009]    Für dieses Slurry-Drahtsäge-Verfahren sind auf dem Markt Maschinen und Betriebsmittel, zum Beispiel für die Silizium-Waferfabrikation, erhältlich. Durch entsprechende Applikationsanpassungen können Glaseinsätze in Kammform derart gesägt werden, dass dieses Verfahren den Anforderungen für die effiziente Herstellung von entkoppelten Einsätzen mit einer hohen Dichte von feinen Schlitzen entsprechen kann, so dass die Kosten für die Maschinen-Investition und vor allem die Betriebskosten für die Verschleissmaterialien Draht und Trennflüssigkeit gerechtfertigt sind. Die so gesägten filigranen entkoppelten Elemente müssen zum Einsetzen in das Trägerglas vorerst auf drei Seiten vorzugsweise mit Glasstäbchen verleimt und stabilisiert werden.

  

[0010]    Als alternatives Verfahren zur Herstellung akustisch wirksamer Absorberelemente wird in der Patentanmeldung Nr. 080 100 114.2 vorgeschlagen, Absorberelemente mit Mikrospalten aus einzelnen dünnen Glasstäbchen aufzubauen. Die einzelnen Stäbchen sind dabei vorzugsweise recht oder mehreckig und werden mit Abständen von zum Beispiel 0.2 mm zu einem Element zusammengesetzt und vorzugsweise verklebt, so dass Mikrospalten von 0.2 mm entstehen. Bei einer Stäbchenbreite von zum Beispiel 1.8 mm und einem Abstand von 0.2 mm zwischen den Stäbchen lassen sich Absorber mit einer offenen Mikrospaltfläche von 10% bezogen auf die Oberfläche des Absorberelements herstellen. Es hat sich gezeigt, dass die Spaltenbreite zwischen 0.1 und 0.8 mm liegen sollte. Breitere Spalten zeigen nur noch sehr unbefriedigende Absorptionsleistungen.

   Vorzugsweise liegen die Spaltbreiten bei 1.5 bis 3 mm. Die Dicke der Stäbchen, und damit die Breite der Stege, sollte zwischen 1 und 8 mm gewählt werden, vorteilhafterweise liegt sie zwischen 1.5 und 3 mm. In bevorzugten Ausführungsbeispielen ist sie bei 1.8 mm gewählt.

  

[0011]    Aus 100 Glasstäbchen mit rechteckigem Querschnitt und einer Grösse von 1.8 mm * 4 mm * 200 mm, welche am Markt erhältlich sind, lassen sich zum Beispiel Absorberelemente in der Grösse von 200 * 200 mm mit 99 Mikrospalten von 0.2 mm Breite wirtschaftlich effizient herstellen.

  

[0012]    Die rationelle Herstellung feiner Glasstäbchen kann mittels Glasritzen und Brechen oder über andere bekannte Verfahren wie Ziehen, Pressen oder Giessen erfolgen. Wesentlich dabei ist, dass die Glasflächen ohne Muscheln und Abplatzer sowie vorzugsweise spiegelblank bleiben. Im Format der fertigen Glaselemente wird eine Rahmenkonstruktion aus Glas oder Kunstglas so verklebt, dass die feinen Glasstäbchen eine zusätzliche Stabilität erhalten, zum Beispiel durch ein Profilrahmen. Das Verleimen der Glasstäbchen mit Zwischenräumen, welche der geforderten Schlitzbreite entsprechen, erfolgt weitgehend vollautomatisch, mittels einem Montageroboter.

   Die muschelfreien Glasstäbchen werden nach der Kalibrierung vorzugsweise chemisch oder thermisch gehärtet, so dass diese wie die Trägerplatten aus Glas splitterfrei den passiven Sicherheitsanforderungen in öffentlichen und privaten Räumen entsprechen. Im Weiteren wird damit eine Erhöhung der Schlagfestigkeit, Biegefestigkeit und Kratzfestigkeit erreicht. Die Vorteile dieser Aufbaumethode gegenüber der Mikroperforier- oder Mikroschlitzmethoden sind transparente Einsatzelemente ohne Trübung der Kantenflächen, eine höhere Festigkeit der gehärteten Stäbchen und eine Erhöhung der passiven Sicherheit der Absorber-Einsätze.

  

[0013]    In der Patentanmeldung Nr. 080 100 114.2 ist beschrieben, dass die Tragelemente als plattenförmige Bauteile mit einer annähernd planen ersten Oberfläche ausgebildet sind. In bevorzugten Ausführungsformen sind die Tragelemente Trägerglasplatten aus Flachglas oder Spezialglas in Stärken zwischen 2 und 12 mm, die mit Ausnehmungen zur Aufnahme der Absorber versehen werden.

  

[0014]    Die von den Absorbern eingenommene Fläche in den transparenten oder transluzenten Tragelementen wird durch das Erfordernis der Lichtdurchlässigkeit und der Festigkeitsbeanspruchung, respektive die Bruchsicherheit der Akustikelemente auf einen oberen Grenzwert von etwa 60% begrenzt. Die untere Grenze wird hingegen durch die Absorptionsleistung in dem zu absorbierenden Frequenzbereich bestimmt.

   Um in einem breiten Frequenzbereich, zum Beispiel im Sprachbereich von 125 Hz bis 1250 Hz, besonders gute Absorptionsleistungen erreichen, werden gemäss erster Ausführungsformen der Erfindung Absorber eingesetzt,' bei denen die akustisch wirksame offene Fläche durch Mikroperforation, Mikroschlitzen, Mikrospalten oder einer Kombination davon gebildeten wird, wobei diese akustisch wirksame offene Fläche 1 bis 12%, vorzugsweise 7 bis 12%, besonders bevorzugt 10% der Gesamtfläche einer ersten Oberfläche des Absorbers entspricht. Es lassen sich dabei sowohl verschiedene Absorptionselemente mit Mikroperforation, Mikroschlitzen oder Mikrospalten in einem Tragelement kombinieren, oder innerhalb eines Absorbers können Mikroperforationen, Mikroschlitze und/oder Mikrospalten kombiniert werden.

   Sowohl Mikroperforation, Mikroschlitze wie auch Mikrospalten lassen sich mit verschiedenen Durchmessern und/oder Breiten im selben oder in verschiedenen Absorbern einsetzen. Die Breiten lassen sich auch innerhalb eines Mikroschlitzes oder innerhalb einer Mikrospalte variieren.

  

[0015]    Gemäss der Patentanmeldung Nr. 080 100 114.2 lassen sich die Absorber als Einfachelemente oder als Sandwichkonstruktionen mit oder ohne Vliesmaterial herstellen. All diese Kombinationsmöglichkeiten erlauben es, die Bandbreite an wirksam absorbierten Schallfrequenzen zu verbreitern. Es hat sich in Versuchen gezeigt, dass unterschiedliche Schlitz- und Spaltbreiten und unterschiedliche Lochdurchmesser sowie Einfachelemente oder Sandwichkonstruktionen Absorptionsmaxima in unterschiedlicher Breite in unterschiedlichen Frequenzbereichen aufweisen. So werden zum Beispiel neben einlagigen mehrlagige Glasaufbauten mit Mikrospalten zu Sandwichkonstruktionen zusammengefügt. Durch solch einen mehrlagigen Aufbau entstehen zusätzliche Resonatoren, welche die Absorption verstärkten und den Frequenzbereich verbreitern. Dadurch entstehen insgesamt breitbandigere Absorber.

  

[0016]    Trotz der relativ hohen Vielfalt an absorbierbaren Frequenzbereichen und verschiedenen Konstruktionsmöglichkeiten besteht weiterhin Bedarf an zusätzlichen und alternativen Absorberkonstruktionen.

  

[0017]    Es ist daher Aufgabe der vorliegenden Erfindung Glasbauteile für Schallabsorber und andere Verwendungszwecke und Verfahren zur Herstellung derselben zur Verfügung zu stellen, die es erlauben solche Produkte effizient in grösseren Mengen und Dimensionen herzustellen. Es ist eine weitere Aufgabe der Erfindung Glasbauteile zur Verfügung zu stellen die auf Wunsch transparent sein können und mit vertretbarem technischen Aufwand schnell und wirtschaftlich herstellbar sind und weitere Nachteile der bekannten Glasbauteile vermeiden.

  

[0018]    Diese Aufgaben wird erfindungsgemäss durch die Glasbauteile gemäss Anspruch 1 und die Herstellungsverfahren gemäss Anspruch 6 gelöst, vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen.

  

[0019]    Die erfindungsgemässen Glasbauteile werden im Folgenden auch als "biegsames Glas" bezeichnet. Unter diesem Begriff werden Materialien wie Glas- und harte Kunstglasbauteile mit einer Vielzahl von Stegen und zwischen den Stegen angeordneten Mikroschlitzen verstanden, die durch Befestigung auf, vorzugsweise Verklebung mit, einem elastischen Trägermaterial wie zum Beispiel Kunststoff biegsam gemacht sind.

  

[0020]    Die verfahrenstechnischen Probleme zur industriellen Herstellung von biegsamem Glas konnten bisher keiner Lösung zugeführt werden. In der Innenarchitektur, in vielerlei Gebrauchsgegenständen wie Spiegeln, aber auch in der Optik und in der Asphärentechnologie müssen gebogene Gläser kompliziert und aufwendig geschliffen werden. Die vorliegende Erfindung erlaubt es transparente biegsame Elemente zu erzeugen welche mit variablen Radien zu gekrümmten, zylindrischen, gewellten oder in sich verdrehten Formen oder Kombinationen der vorgenannten geformt werden können. Die erzeugten Glasbauteile sind von hoher optischer Qualität. Die Schlitz- und Stegbreiten sind ebenso variierbar wie die Grösse der fertigen Glasbauteile.

  

[0021]    Die vorliegende Erfindung erlaubt es die biegsamen Glaselemente, auch als Glasbauteile bezeichnet, in grossen Mengen und Dimensionen zu schaffen, die durchsichtig, technisch und wirtschaftlich rationell herstellbar sind.

  

[0022]    Vorteile bei der Herstellung der neuen mikrogeschlitzten biegsamen Glasbauteile, umfassend Mikroschlitze und Stege, ergeben sich unter anderem daraus, dass die Stege vorzugsweise mittels Slurry-Sägeverfahren hergestellt werden und beim Prozessschritt des Sägens mit einem Quersteg verbunden bleiben. Das Slurry-Sägeverfahren erlaubt es die Glasbauteile, insbesondere die Mikroschlitze zwischen den Stegen sehr genau mit kleinsten Toleranzen herzustellen, wobei Steg- und Schlitzbreiten innerhalb sinnvoller Bereiche frei gewählt und variiert werden können. Dadurch lassen sich auch die möglichen Biegeformen und Radien der fertigen Glasbauteile leicht beeinflussen.

  

[0023]    Die mikrogesägten Glaselemente, bei denen die Stege kammartig auf dem Quersteg angeordnet sind, werden anschliessend mit einem flexiblen Träger zu einem Halbfabrikat flexibel verbunden, vorzugsweise verklebt.

  

[0024]    Die Biegsamkeit kann durch die Wahl der Trägermaterialien wie Kunststoffrahmen, Kunststoffbänder, faserverstärkte Kunststoffe, Metall oder Glasfasern variabel eingestellt werden.

  

[0025]    Als letzter Prozessschritt wird am starren Halbfabrikat der Quersteg allenfalls zusammen mit Teilen des Trägers vorzugsweise mittels Wasserstrahl abgeschnitten. Aus dem starren Halbfabrikat wird dadurch das biegsame Glaselement gemäss der Erfindung. In den Ausführungsformen gemäss der folgenden Figuren laufen die Trageelemente entlang aller vier Kanten um. Dies ist jedoch nicht zwingend nötig. Um ein Abbrechen der empfindlichen Stege im Kamm des Halbfabrikates bei Belastung der freien Stegenden während dem Wasserstrahlschneiden zu verhindern hat es sich als äusserst vorteilhaft erwiesen zumindest diese Kante durch ein Tragelement zu stabilisieren.

  

[0026]    In weiteren Schritten lässt sich das biegsame Glaselement nun in die gekrümmte, zylindrische, gewellte oder in sich verdrehten Form oder in eine Kombination der vorgenannten bringen. Es ist offensichtlich, dass es die vorliegende Erfindung erlaubt Glaselemente herzustellen, die jede von einer ebenen Form abweichende Form annehmen können, sofern die Integrität der einzelnen Stege gewahrt bleibt. Es lassen sich Elemente mit einfacher Drehrichtung wie Zylindermäntel oder Teile davon, aber auch Elemente mit zwei oder mehreren Drehrichtungsänderungen wie S-Formen oder Wellen. Der Abstand zwischen den Stegen, das heisst die Schlitzbreite und die Höhe der Stege gibt den maximalen Crad der Biegbarkeit vor.

  

[0027]    Die einzelnen Stege entsprechen in bevorzugten einfachen Ausführungsformen Geraden die alle dieselbe Länge aufweisen. Gemäss der Erfindung können die Stege jedoch auch unterschiedliche Längen aufweisen und eine von der geraden abweichende Grundform.

  

[0028]    Vorzugsweise sind die Mirkroschlitze zwischen den Glasstegen mit einer Breite von 0,1 bis 1,0 mm ausgebildet und homogen oder unregelmässig auf die Fläche verteilt. Die Schlitze können gerade/linear oder in geschwungener Ausführung beliebig in Abhängigkeit von ästhetischen Ansprüchen und unter Berücksichtigung von Festigkeitsbeanspruchung angeordnet werden.

  

[0029]    Die Glasstege mit einer Breite von 0.15 bis 20.0 mm können wiederum homogen oder unregelmässig auf die Fläche verteilt, in gerader oder geschwungener Ausführung beliebig, auf ästhetische Ansprüche und auf Festigkeitsbeanspruchung angeordnet werden.

  

[0030]    In Abhängigkeit der geforderten mechanischen Stabilität und insbesondere beim Einsatz von Sicherheitsglas können erfindungsgemäss Gläser von unterschiedlichen Dicken zum Einsatz kommen. Zur Erzielung gewünschter optischer Effekte können unterschiedliche Glassorten zur Anwendung kommen.

  

[0031]    Geeignet sind alle gängigen Glasplatten oder -bausteine in Stärken zwischen 2 und 12 mm als ebene oder gewölbte Elemente.

  

[0032]    Gemäss einem alternativen Verfahren werden die Glaselemente nicht im Slurry-Sägeverfahren hergestellt, sondern wie oben zum Stand der Technik beschrieben aus einzelnen Stegen aufgebaut. Sobald diese Einzelstege in den flexiblen Träger eingebracht und mit diesem verbunden, vorzugsweise verklebt sind, unterscheiden sich die weiteren Bearbeitungsschritte des Halbfabrikate nicht wesentlich voneinander.

  

[0033]    Die erfindungsgemässen Glaselemente lassen sich bevorzugt als Akustikelemente einsetzen, die einerseits völlig neuartige dreidimensionale Formen aufweisen können und den Gestaltungsspielraum des Architekten, Designers und/oder Akustikers enorm erweiterten, andererseits lassen sich durch das Biegen der Elemente die effektiv akustisch wirksamen Schlitzbreiten annähernd beliebig einstellen. Wird der Biegeradius, den die Schlitzbreiten und Steghöhen der Halbfabrikate zulassen, maximal ausgenutzt, so berühren sich die Stege zumindest an einer Kante und die Schlitze sind im akustischen Sinne vollständig geschlossen.

   In einem Element lassen sich entsprechend in Abhängigkeit des Biegeradius vollständig offene Schlitze erzeugen (an ebenen Stellen ohne Biegung) bis hin zu vollständig geschlossenen Schlitzen an Stellen mit maximalem Biegeradius, ohne dass die Schlitze bei der Herstellung der zugehörigen Halbfabrikate variiert werden müssen.

  

[0034]    Bei erfindungsgemässen Glaselementen, die einfach in sich verdreht sind variiert die Querschnittsform der einzelnen Schlitze nicht, die Oberflächen der einzelnen Stege sind aber in Abhängigkeit vom Abstand von der Torsionsachse, um die die Stege gegeneinander verdreht sind, immer weiter voneinander entfernt. Werden die Elemente zusätzlich zur Verdrehung auch noch gebogen, so variiert die Querschnittsform der einzelnen Schlitze über deren Länge.

  

[0035]    in weiteren bevorzugten Ausführungsformen sind die Glaselemente absitmmbar ausgebildet. Dazu greifen am elastischen Tragrahmen Einstellelemente an, mittels derer die Biegung variiert werden kann. Diese Einstellelemente können mechanisch, elektromechanisch, pneumatisch oder hydraulisch wirken. Bei einem derartigen Akustikelement lässt sich zum Beispiel durch das Verändern des Biegeradius die Absorptionswirkung einstellen/ändern. Bei einem optisch wirksamen, zum Beispiel einem biegbaren, verspiegelten Glaselement lässt sich derart der Fokus des reflektierten Lichts verändern.

Kurzbeschreibung der Figuren

  

[0036]    Anhand von Figuren, welche lediglich Ausführungsbeispiele darstellen, wird die Erfindung im Folgenden erläutert. Es zeigen
<tb>Fig. 1 a<sep>eine perspektivische Draufsicht auf eine erste Oberfläche eines Halbfabrikats gemäss einer Ausführungsform der Erfindung bei dem ein Quersteg noch nicht abgeschnitten ist,


  <tb>Fig. 1b<sep>eine Ansicht auf das Halbfabrikat gemäss Fig. 1a, nach Entfernen des Querstegs,


  <tb>Fig. 2<sep>eine perspektivische Ansicht eines Glaselements gemäss einer Ausführungsform der Erfindung mit einer einfachen Biegung,


  <tb>Fig. 3<sep>eine perspektivische Ansicht eines Glaselements gemäss einer weiteren Ausführungsform der Erfindung mit einer einfachen Biegung,


  <tb>Fig. 4<sep>eine Ausschnittsvergrösserung einer Seitenansicht eines Glaselements gemäss Fig. 2, und


  <tb>Fig. 5<sep>eine Ausschnittsvergrösserung einer Seitenansicht eines Glaselements gemäss einer weiteren Ausführungsform der Erfindung.

  

[0037]    In der Figur 1 ist eine perspektivische Draufsicht auf ein Halbfabrikat 11 zur Herstellung eines Glaselements gemäss einer Ausführungsform der Erfindung, bei dem eine Glasplatte nach dem Slurry-Drahtsägen eine Vielzahl von Stegen 10 mit dazwischen angeordneten Mikroschlitzen 20 aufweist und bereits auf ein flexibles, respektive biegbares Tragelement 40 aufgeklebt ist. Da die Schnitte die Glasplatte nicht in der vollen Breite durchsetzen sind die Stege 10 alle noch über einen Quersteg 50 miteinander verbunden. Das Halbfabrikat 11 ist daher noch nicht biegsam. In der Fig. 1b ist das Halbfabrikat 12 dargestellt nachdem der Quersteg, vorzugsweise mittels Wasserstrahlschneiden abgeschnitten ist. Das Halbfabrikat ist nun biegsam und kann der weiteren Bearbeitung zugeführt werden.

  

[0038]    In den Fig. 2 und 3 sind zwei Ausführungsformen von erfindungsgemässen Glaselementen 1 und 3 dargestellt, die unterschiedliche Krümmungsradien und unterschiedlich abgemessene Grundformen aufweisen.

  

[0039]    In der Fig. 4 ist eine Ausschnittsvergrösserung A einer Seitenansicht eines Glaselements 1 gemäss Fig. 2gezeigt. Die einzelnen Stege 10 weisen einen rechteckigen Querschnitt auf und sind gleichmässig voneinander beabstandet auf dem flexiblen Träger 40 aufgeklebt 16. Durch die Biegung des Trägers 40 sind die Stege voneinander entfernt und in einem Winkel [alpha] geöffnet. Die Schlitzbreite an der Basis des Schlitzes D2 entspricht annähernd der Breite des Schlitzes im ungebogenen Halbfabrikat. Die Schlitzbreite D1 an der - einer ersten Oberfläche 11 des Glaselements zugewandten - Schlitzöffnung ist entsprechend breiter als D2. Die Schlitze 20 im Element 1 gemäss der Fig. 2 und 4 weisen in Folge der gleichmässigen Biegung alle eine annähernd identische Querschnittsform auf.

  

[0040]    Im Ausführungsbeispiel gemäss der Fig. 5ist das Glaselement hingegen in einer Wellenform gebogen, so dass sich die Drehrichtung der Biegung von R1 zu R2 umkehrt und dazwischen ein Tangentialer Bereich durchlaufen wird, in dem der Schlitz 20 unverändert vorliegt, da der zugehörige Abschnitt des Trägers eben ist. An beiden Seiten von Schlitz 20 verjüngen sich die Schlitze mit Winkel [beta] nach oben zur Oberseite 11 hin oder sie erweitern sich mit Winkel [alpha].

  

[0041]    Bei den erfindungsgemässen Glaselementen die als Akustikelemente eingesetzt werden sollen unterscheiden sich die groben Dimensionierung nicht von den vorbekannten. Gemäss dem Ausführungsbeispiel der Figur 2sind zwischen die Stege 10 Mikrospalten in einer Breite von 0.2 mm gesägt. Werden auf diese Weise 100 Stege erzeugt, so entsteht zum Beispiel nach dem Entfernen des Querstegs eine Absorberplatte mit einer Fläche von 200 x 200 mm und 99 durchgehenden Mikrospalten 20, die sich zu einer akustisch wirksamen Fläche von annähernd 10% bezogen auf die erste Oberfläche 11 der Absorberplatte addieren.

  

[0042]    Die Biegeformen: konkav, konvex, Wellen, Schrauben etc. und die Masse, die in den Ausführungsbeispielen zu den erfindungsgemässen Glaselementen mit Mikrospalten gegeben sind, sollen den Vergleich dieser Platten mit den vorbekannten erlauben und nicht den Eindruck erwecken, dass sich mittels der beschriebenen Verfahren nur Elemente mit den angegebenen Massen und Formen herstellen lassen. Die beschriebenen Herstellungsverfahren lassen dem Fachmann vielmehr eine grosse Freiheit bei der Dimensionierung und der Einstellung der Form der erfindungsgemässen Elemente und damit der Absorberleistung der bei akustisch aktiven Absorberplatten und der Reflexion, Lichtbrechung und oder Streuung bei optisch aktiven Elementen und Kombinationen davon.

   Es versteht sich, dass die Elemente sowohl allein in einfachen wie auch zu zweit oder zu mehreren in zusammengesetzten Bauteilen verwendet werden können. Gemäss bevorzugten Ausführungsformen werden gleichzeitig eine Vielzahl von Halbfabrikaten für die Glaselemente aus Glasscheiben mittels Slurry-Drahtsägen und anschliessendem Abschneiden des Querstegs mittels Wasserstrahl hergestellt.

  

[0043]    Die derart hergestellten Halbfabrikate sind zumindest an zwei Endbereichen, vorzugsweise stirnseitig oder besonders bevorzugt umlaufend mit Rahmenelementen stabilisiert und gesichert.

  

[0044]    Angesichts der oben offenbarten Technischen Lehre der vorliegenden Erfindung ist es für den Fachmann offensichtlich, dass im Hinblick auf die Materialauswahl und bautechnische Varianten und insbesondere auch hinsichtlich Form Glaselemente enorme Variationsmöglichkeiten bestehen.

  

[0045]    Gemäss weiteren nicht in den Figuren dargestellten Ausführungsformen werden die transparenten und/oder transluzenten Glaselemente mit Beleuchtungsmitteln kombiniert, um Lichteffekte zu erzeugen. Verstellbare oder abstimmbare Glaselemente wie sie vorgängig beschrieben sind bieten sich in idealer Weise an, um in Kombination mit LEDs, Lichtleitern oder anderen Lichtquellen veränderbare Lichtakzente zu generieren.

Liste der Bezugszeichen

  

[0046]    
<tb>1, 2, 3<sep>Glaselement


  <tb>11<sep>Halbfabrikat


  <tb>12<sep>Halbfabrikat


  <tb>3<sep>Absorber


  <tb>10<sep>Steg


  <tb>11<sep>erste Oberfläche


  <tb>12<sep>zweite Oberfläche


  <tb>16<sep>Verklebung


  <tb>20<sep>Mikroschlitz


  <tb>D1<sep>Schlitzbreite


  <tb>D2<sep>Schlitzbreite


  <tb>[alpha]<sep>Schlitz-Öffnungswinkel


  <tb>[beta]<sep>Schlitz-Öffnungswinkel


  <tb>[gamma]<sep>Schlitz-Öffnungswinkel


  <tb>40<sep>Tragelement


  <tb>41<sep>innere Oberfläche


  <tb>R1<sep>Drehrichtung 1


  <tb>R2<sep>Drehrichtung 2


  <tb>50<sep>Quersteg



  The present invention relates to flexible glass elements according to the preamble of independent claim 1 and to methods for producing flexible glass elements according to the preamble of patent claim 6.

  

In the patent application EP 07 405 023.8 the applicant process for creating micro-perforations and micro-slots are described by means of abrasive water jet technology in glass plates. These methods make it possible to apply holes with a diameter of 0.2 to 0.8 mm in glass sheets on systems with a plurality of nozzle heads by means of abrasive water jet technology. A process control has been developed which minimizes the risk of destruction of the glass sheets to be perforated at the beginning of the perforation process.

   It has been recognized that a) even a small risk per hole in creating 40,000 continuous microholes results in an enormous scrap rate and is not economically viable and b) process safety in a forced stop-and-go operation with such a high number c) the drilling times in this "stop and go" operation are considerably too long with all methods known today to perforate larger glass components within a reasonable time.

  

Since the piercing of laminated glass with internal plastic membrane of the water jet at the transition from the glass to the elastic plastic membrane is temporarily out of focus and thereby unwanted cavities in the boundary region of the glass layers to plastic arise, which in turn will lead to unwanted optical effects and turbidity in EP 07 405,023.8 proposed to slit or cut the glasses after successful piercing, using the abrasive jet of water with a greatly reduced risk of destruction. The unwanted cavity formation in the area of the plastic film in the case of laminated glass does not remain after cutting after cutting and the width of the micro-slits can be reduced to 0.1 mm, in contrast to the diameter of the holes.

   Instead of the multiplicity of holes or microperforations, a significantly reduced number of slots are made in the glass.

  

The advantages of such a micro-slotted sound absorber in glass are that the turbulence and friction of the air in the micro slot, with the latter arranged variable cavity and high-fidelity by any variation of the slot length and slot width and by the arbitrary arrangement of micro-slots in the surface manufacturing technology can be increased or decreased extremely efficiently. The sound energy is converted into heat energy in adjustable frequency ranges and the reverberation time is reduced over a wide frequency range. The required open area in the glass, to the extent of approximately 0.8 to 3.0% of the sound area, can be produced by suitable cutting processes with sufficient process reliability and with a 10 times shorter machining time compared to bores.

   The risk of microcracks can be reduced by controlled slitting as opposed to microhole drilling. By an obvious reduction, the "stop and go" losses, the productivity can be substantially increased.

  

For the acoustic elements applies in the interior area with persistence the requirement of fragmentation freedom. Applying micro holes or micro-slots with an open area of more than 1% directly into carrier glass plates often causes chipping and shells in the glass, so that the carrier glass can not be used as ESG or VSG. The multitude of small micro-holes and narrow micro-slots with an open area of more than 1% also makes the carrier glass unstable statically. Since large-scale acoustic elements are nowadays in demand in architecture, in which the formats of 1 m2 are exceeded, the carrier glasses must also be correspondingly large-format. As a result, glasses provided directly with microperforations or micro-slits become uneconomical.

   The processes in direct carrier glass processing are unmanageable due to the large number of micro-interventions and the expected failure considerably. It is therefore already proposed in EP 07405023.8 that in certain embodiments, rondelle-like micro-slit components are inserted into corresponding openings cut in a base plate. It is proposed to provide the cut-out circular disks or roundels in a separate machining process from the outer periphery with micro-slots, so that a central web is formed, which carries the teeth of two combs. These comb discs are then inserted back into the base glass pane, respectively glued. They can also be used with separate holders releasably or firmly in the respective openings.

   The resulting rondelles when creating the receiving openings can also be discarded, so that in the openings comb discs from separate production can be used. The preparation of the receiving openings does not have to be done with a micro-cutting process, but can be done with conventional methods with sufficient tolerance. The receiving openings can even be attached during the production of the glass panes. The edges of the receiving openings need not be sharp, unlike the edges of the micro slots.

  

In EP 07 405 023.8 is also disclosed that two-part glass blocks are used to increase the mechanical stability and in particular when using glass panes of safety glass. The base plates made of glass are provided as described above with larger holes / receiving openings and equipped with prefabricated micro-slit glass inserts. The active in the absorption inserts can according to EP 07 405 023.8 in other preferred embodiments of the invention in different strengths of glass, but also from other materials such as art glass, other plastics or metal. As already mentioned, the micro-slit inserts are fitted with inserts, holders or adhesions into the receiving openings of the base glass plate.

   Although these non-glass inserts can also be produced using abrasive water jet technology, they can also be produced using other known cutting or punching methods, in contrast to glass.

  

In particular, in the embodiments in which the absorption inserts are held by means of inserts or holders in the receiving openings, the risk of injury and the risk of breakage is reduced to a minimum, since the holding force can be adapted to the stability of the absorption insert. If someone hits or pushes against the insert, it will be released from the base plate before it breaks. This advantage is especially useful for inserts made of glass.

  

From the European patent application no. 080 100 114.2 of the Applicant further acoustic elements with sound-absorbing properties of glass and advanced manufacturing processes are known. For the broadband micro-slotted absorbers, slit widths of less than 0.3 mm are required, and at the same time, the open area must be increased to over 3% of the base area of the acoustic element. As an unexpected alternative method of abrasive water jet cutting, the patent application no. 080 100 114.2 discloses slurry wire sawing. With this method, the slot widths compared to the abrasive water jet cutting can be massively reduced and it can achieve slot widths of 0.1 to 0.3 mm.

   The economically interesting slurry wire sawing process for such dimensions is known from wafer cutting in the semiconductor industry. With this method, not only very narrow slits of up to 0.1 mm can be sawed, but also narrow webs of less than 2 mm in width can be produced without these breaking during sawing. The required performance can be achieved by stacking several glass plates in succession into blocks and simultaneously sawing several blocks.

  

For this slurry wire sawing process, machinery and equipment, for example for silicon wafer fabrication, are available on the market. By appropriate application adjustments, combed glass inserts can be sawn in such a way that this method can meet the requirements for the efficient production of decoupled inserts with a high density of fine slots, so that the cost of the machine investment and especially the operating costs of the wear materials Wire and separating liquid are justified. The so sawn filigree decoupled elements must first be glued and stabilized for insertion into the carrier glass on three sides, preferably with glass rods.

  

As an alternative method for producing acoustically active absorber elements is proposed in the patent application no. 080 100 114.2 to build absorber elements with micro-columns of individual thin glass rods. The individual rods are preferably rectangular or polygonal and are assembled at intervals of, for example, 0.2 mm into an element and preferably glued, so that micro gaps of 0.2 mm are formed. With a rod width of, for example, 1.8 mm and a distance of 0.2 mm between the rods, absorbers with an open micro-gap area of 10% based on the surface of the absorber element can be produced. It has been shown that the column width should be between 0.1 and 0.8 mm. Broader columns show only very unsatisfactory absorption performances.

   Preferably, the gap widths are 1.5 to 3 mm. The thickness of the rods, and thus the width of the webs, should be chosen between 1 and 8 mm, advantageously between 1.5 and 3 mm. In preferred embodiments, it is selected at 1.8 mm.

  

From 100 glass rods with a rectangular cross-section and a size of 1.8 mm * 4 mm * 200 mm, which are available on the market, for example, absorber elements in the size of 200 * 200 mm with 99 micro-columns of 0.2 mm width economically efficient produce.

  

The efficient production of fine glass rods can be done by means of glass scratches and breaking or other known methods such as drawing, pressing or casting. It is essential that the glass surfaces without shells and chipping and preferably remain mirror-like. In the format of the finished glass elements, a frame construction made of glass or art glass is glued so that the fine glass rods receive additional stability, for example through a profile frame. The gluing of the glass rods with gaps, which correspond to the required slot width, is largely fully automatic, by means of a mounting robot.

   The clam-free glass rods are preferably chemically or thermally cured after calibration, so that these, like the glass carrier plates, meet the passive safety requirements in public and private spaces without splintering. Furthermore, an increase in impact resistance, flexural strength and scratch resistance is achieved. The advantages of this construction method over microperforation or microslot methods are transparent inserts without edge surface haze, higher strength of the hardened rods, and increased passive safety of the absorber inserts.

  

In the patent application no. 080 100 114.2 is described that the support elements are designed as plate-shaped components with an approximately plan first surface. In preferred embodiments, the support elements are carrier glass plates made of flat glass or special glass in thicknesses between 2 and 12 mm, which are provided with recesses for receiving the absorber.

  

The area occupied by the absorber surface in the transparent or translucent support elements is limited by the requirement of light transmission and the strength stress, and the fracture resistance of the acoustic elements to an upper limit of about 60%. The lower limit, on the other hand, is determined by the absorption power in the frequency range to be absorbed.

   In order to achieve particularly good absorption performance in a wide frequency range, for example in the speech range from 125 Hz to 1250 Hz, according to the first embodiments of the invention, absorbers are used in which the acoustically effective open surface is formed by microperforations, micro-slots, micro-gaps or a combination thereof is, wherein this acoustically effective open area corresponds to 1 to 12%, preferably 7 to 12%, particularly preferably 10% of the total area of a first surface of the absorber. It is possible to combine both different absorption elements with microperforation, micro-slots or micro-gaps in a support element, or microperforations, micro-slits and / or micro-gaps can be combined within an absorber.

   Both microperforations, micro-slots and micro-gaps can be used with different diameters and / or widths in the same or in different absorbers. The widths can also be varied within a micro-slot or within a micro-column.

  

According to the patent application no. 080 100 114.2, the absorbers can be produced as single elements or as sandwich constructions with or without nonwoven material. All these combination possibilities make it possible to widen the bandwidth of effectively absorbed sound frequencies. It has been shown in experiments that different slot and gap widths and different hole diameters and single elements or sandwich constructions have absorption maxima in different widths in different frequency ranges. For example, in addition to single-layer multilayer glass structures with micro-gaps, they are joined together to form sandwich constructions. Such a multi-layered construction creates additional resonators that enhance absorption and widen the frequency range. This results in a total broadband absorber.

  

Despite the relatively high variety of absorbable frequency ranges and various design options, there is still a need for additional and alternative absorber designs.

  

It is therefore an object of the present invention to provide glass components for sound absorbers and other uses and methods for producing the same, which make it possible to produce such products efficiently in larger quantities and dimensions. It is a further object of the invention to provide glass components which, if desired, can be transparent and can be produced quickly and economically with reasonable technical effort and avoid further disadvantages of the known glass components.

  

These objects are achieved according to the invention by the glass components according to claim 1 and the manufacturing method according to claim 6, advantageous embodiments will be apparent from the dependent claims.

  

The novel glass components are hereinafter also referred to as "flexible glass". This term is understood to mean materials such as glass and hard synthetic glass components having a multiplicity of webs and micro-slits arranged between the webs, which are made flexible by attachment to, preferably bonding to, an elastic carrier material such as plastic.

  

The procedural problems for the industrial production of flexible glass have so far no solution can be supplied. In interior design, in many everyday objects such as mirrors, but also in optics and in aspherical technology, bent glass has to be ground in a complicated and costly way. The present invention makes it possible to produce transparent flexible elements which can be formed with variable radii into curved, cylindrical, corrugated or twisted shapes or combinations of the foregoing. The glass components produced are of high optical quality. The slot and web widths are just as variable as the size of the finished glass components.

  

The present invention allows the flexible glass elements, also referred to as glass components to create in large quantities and dimensions that are transparent, technically and economically efficient to produce.

  

Advantages in the production of the new micro-slit flexible glass components, comprising micro-slots and webs, result, inter alia, from the fact that the webs are preferably produced by slurry sawing and remain connected to a crossbar in the process step of sawing. The slurry sawing method makes it possible to produce the glass components, in particular the micro slots between the webs very precisely with the smallest tolerances, web and slot widths can be freely selected and varied within reasonable ranges. As a result, the possible bending shapes and radii of the finished glass components can be easily influenced.

  

The micro-sawn glass elements, in which the webs are arranged comb-like on the crosspiece, are then flexibly connected to a semi-finished product with a flexible carrier, preferably glued.

  

The flexibility can be variably adjusted by the choice of the support materials such as plastic frame, plastic bands, fiber-reinforced plastics, metal or glass fibers.

  

As the last process step, the transverse web is preferably cut off at the rigid semifinished product together with parts of the carrier, preferably by means of a water jet. From the rigid semifinished product is thereby the flexible glass element according to the invention. In the embodiments according to the following figures, the carrying elements run along all four edges. However, this is not absolutely necessary. In order to prevent the delicate webs from breaking off in the comb of the semifinished product when the free web ends are loaded during the water jet cutting, it has proved to be extremely advantageous to stabilize this edge by a support element.

  

In further steps, the flexible glass element can now bring in the curved, cylindrical, corrugated or twisted shape or in a combination of the aforementioned. It is obvious that the present invention allows glass elements to be made that can take any shape deviating from a planar shape as long as the integrity of the individual lands is maintained. It can be elements with single direction of rotation such as cylinder jackets or parts thereof, but also elements with two or more directions of rotation changes such as S-shapes or waves. The distance between the webs, ie the slot width and the height of the webs gives the maximum Crad of the flexibility.

  

The individual webs correspond in preferred simple embodiments straight lines which all have the same length. However, according to the invention, the webs may also have different lengths and one of the straight deviating basic shape.

  

Preferably, the micro-slits are formed between the glass webs with a width of 0.1 to 1.0 mm and distributed homogeneously or irregularly on the surface. The slots can be arranged in a straight / linear or curved design as desired, depending on the aesthetic requirements and in consideration of strength stress.

  

The glass webs with a width of 0.15 to 20.0 mm can in turn be distributed homogeneously or irregularly on the surface, in a straight or curved design arbitrarily, be arranged on aesthetic requirements and on strength stress.

  

Depending on the required mechanical stability and in particular when using safety glass according to the invention glasses of different thicknesses can be used. To achieve desired optical effects different types of glass can be used.

  

Suitable all common glass plates or modules in thicknesses between 2 and 12 mm as a flat or curved elements.

  

According to an alternative method, the glass elements are not produced in the slurry sawing process, but constructed as described above from the prior art of individual webs. Once these individual webs are introduced into the flexible carrier and connected to this, preferably glued, the other processing steps of the semi-finished products do not differ significantly from each other.

  

The inventive glass elements can be preferably used as acoustic elements, on the one hand can have completely novel three-dimensional shapes and the design freedom of the architect, designer and / or acoustician enormously expanded, on the other hand, by effectively bending the elements effectively effective slot widths almost arbitrarily to adjust. If the bending radius, which is permitted by the slot widths and web heights of the semi-finished products, is maximized, the webs touch each other at least at one edge and the slots are completely closed in the acoustic sense.

   In one element, correspondingly, depending on the bending radius, completely open slots can be produced (at flat places without bending) up to completely closed slots at locations with maximum bending radius, without the slots having to be varied during the production of the associated semi-finished products.

  

When glass elements according to the invention, which are simply twisted in itself, the cross-sectional shape of the individual slots does not vary, but the surfaces of the individual webs are always farther apart depending on the distance from the torsion axis about which the webs are rotated against each other. If the elements in addition to the twist also bent, the cross-sectional shape of the individual slots varies over the length.

  

In further preferred embodiments, the glass elements are formed absitmmbar. For this purpose, adjusting elements engage on the elastic support frame, by means of which the bending can be varied. These adjustment elements can act mechanically, electromechanically, pneumatically or hydraulically. With such an acoustic element, the absorption effect can be adjusted / changed, for example, by changing the bending radius. In the case of an optically effective, for example a bendable, mirrored glass element, the focus of the reflected light can be changed in this way.

Brief description of the figures

  

On the basis of figures, which represent only embodiments, the invention will be explained below. Show it
<Tb> FIG. 1 a <sep> is a perspective top view of a first surface of a semi-finished product according to an embodiment of the invention in which a transverse web has not yet been cut off,


  <Tb> FIG. 1b shows a view of the semifinished product according to FIG. 1a, after removal of the transverse web, FIG.


  <Tb> FIG. 2 <sep> is a perspective view of a glass element according to an embodiment of the invention with a simple bend,


  <Tb> FIG. 3 <sep> is a perspective view of a glass element according to another embodiment of the invention with a simple bend,


  <Tb> FIG. 4 is a partial enlargement of a side view of a glass element according to FIG. 2, and FIG


  <Tb> FIG. 5 <sep> is an enlarged detail of a side view of a glass element according to another embodiment of the invention.

  

In the figure 1 is a perspective plan view of a semi-finished product 11 for producing a glass element according to an embodiment of the invention, in which a glass plate after the slurry wire saws has a plurality of webs 10 with interposed micro slots 20 and already on a flexible , respectively bendable support member 40 is glued. Since the cuts do not penetrate the glass plate in its full width, the webs 10 are all still connected to one another via a transverse web 50. The semifinished product 11 is therefore not yet flexible. In Fig. 1b, the semi-finished product 12 is shown after the cross bar, preferably cut by water jet cutting. The semi-finished product is now flexible and can be supplied for further processing.

  

FIGS. 2 and 3 show two embodiments of glass elements 1 and 3 according to the invention, which have different radii of curvature and differently dimensioned basic shapes.

  

FIG. 4 shows a detail enlargement A of a side view of a glass element 1 according to FIG. 2. The individual webs 10 have a rectangular cross-section and are evenly spaced from each other on the flexible support 40 glued 16. Due to the bending of the carrier 40, the webs are removed from each other and at an angle [alpha] opened. The slot width at the base of the slot D2 corresponds approximately to the width of the slot in the unbent semifinished product. The slot width D1 at the slot opening facing a first surface 11 of the glass element is correspondingly wider than D2. The slots 20 in the element 1 according to FIGS. 2 and 4 all have an approximately identical cross-sectional shape as a result of the uniform bending.

  

In the embodiment according to FIG. 5, however, the glass element is bent in a waveform, so that the direction of rotation of the bend from R1 to R2 reverses and between a tangent region is traversed, in which the slot 20 is unchanged, since the associated section the support is level. On either side of slot 20, the slots taper at angles [beta] up to the top 11 or they expand at angle [alpha].

  

In the novel glass elements to be used as acoustic elements, the rough dimensions do not differ from the previously known. According to the exemplary embodiment of FIG. 2, between the webs 10, microsections are cut in a width of 0.2 mm. If 100 webs are produced in this way, an absorber plate with an area of 200 × 200 mm and 99 continuous microcolumns 20, for example, after removal of the transverse web, results in an acoustically effective area of approximately 10% relative to the first surface 11 add the absorber plate.

  

The bending shapes: concave, convex, waves, screws, etc., and the mass, which are given in the embodiments of the inventive glass elements with micro gaps, allow the comparison of these plates with the previously known and not give the impression that by means of the method described can only produce elements with the specified masses and shapes. On the contrary, the production methods described allow the person skilled in the art a great deal of freedom in dimensioning and adjusting the shape of the elements according to the invention and thus in the absorber performance of acoustically active absorber plates and the reflection, refraction and or scattering of optically active elements and combinations thereof.

   It will be appreciated that the elements may be used alone in simple as well as in twos or in several in composite components. According to preferred embodiments, a multiplicity of semifinished products for the glass elements are simultaneously produced from glass sheets by means of slurry wire saws and subsequent cutting off of the transverse web by means of a water jet.

  

The semifinished products produced in this way are stabilized and secured at least at two end regions, preferably on the front side or particularly preferably circumferentially with frame elements.

  

In view of the above-disclosed technical teaching of the present invention, it will be apparent to those skilled in the art that there are tremendous variations in the choice of materials and structural variations, and particularly in the shape of glass elements.

  

According to other embodiments not shown in the figures, the transparent and / or translucent glass elements are combined with lighting means to produce lighting effects. Adjustable or tunable glass elements as described above are ideally suited for generating changeable light accents in combination with LEDs, light guides or other light sources.

List of reference numbers

  

[0046]
<tb> 1, 2, 3 <sep> glass element


  <Tb> 11 <sep> Semi-finished product


  <Tb> 12 <sep> Semi-finished product


  <Tb> 3 <sep> absorber


  <Tb> 10 <sep> Steg


  <tb> 11 <sep> first surface


  <tb> 12 <sep> second surface


  <Tb> 16 <sep> bonding


  <Tb> 20 <sep> Micro slot


  <Tb> D1 <sep> slot width


  <Tb> D2 <sep> slot width


  <Tb> [alpha] <sep> slot opening angle


  <Tb> [beta] <sep> slot opening angle


  <Tb> [gamma] <sep> slot opening angle


  <Tb> 40 <sep> carrying element


  <tb> 41 <sep> inner surface


  <tb> R1 <sep> Rotation 1


  <tb> R2 <sep> Rotation 2


  <Tb> 50 <sep> crosspiece


    

Claims (10)

1. Glaselemente 1, 2, 3 umfassend mindestens ein Tragelement 40 und eine Mehrzahl von Stegen 10 aus Glas zwischen denen Mikroschlitze 20 angeordnet sind, dadurch gekennzeichnet, dass die Tragelemente flexibel und oder biegbar gestaltet sind und die Glaselemente biegbar sind. 1. Glass elements 1, 2, 3 comprising at least one support element 40 and a plurality of webs 10 made of glass between which micro slots 20 are arranged, characterized in that the support elements are flexible and or bendable and the glass elements are bendable. 2. Biegsame Glaselemente 1, 2, 3 nach Anspruch 1, dadurch gekennzeichnet, dass sie zu gekrümmten, zylindrischen, gewellten oder in sich verdrehten Formen oder Kombinationen davon geformt sind. 2. Flexible glass elements 1, 2, 3 according to claim 1, characterized in that they are formed into curved, cylindrical, corrugated or twisted shapes or combinations thereof. 3. Biegsame Glaselemente 1, 2, 3 nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Träger aus Materialien wie Kunststoffrahmen, Kunststoffbändern oder Glasfaserbändern oder faserverstärkten Kunststoffen oder Metall gefertigt sind. 3. Flexible glass elements 1, 2, 3 according to claim 1 or 2, characterized in that the carriers are made of materials such as plastic frames, plastic bands or glass fiber ribbons or fiber-reinforced plastics or metal. 4. Biegsame Glaselemente 1, 2, 3 nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Stege mit den Tragelementen verklebt sind. 4. Flexible glass elements 1, 2, 3 according to any one of claims 1 to 3, characterized in that the webs are glued to the support elements. 5. Biegsame Glaselemente 1, 2, 3 nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass Einstellelemente an den Tragelementen angreifen oder mit den Stegen wirkverbunden sind über die sich die Biegung der Glaselemente verändern lässt. 5. Flexible glass elements 1, 2, 3 according to any one of claims 1 to 4, characterized in that adjusting engage the support elements or are operatively connected to the webs over which the bending of the glass elements can be changed. 6. Verfahren zur Herstellung vom Glaselementen 1, 2, 3 gemäss einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass eine im Slurry-Drahtsägeverfahren Mikroschlitze 20 in eine Glasplatte gesägt werden, wobei ein Quersteg 50 stehen gelassen wird, der die zwischen den Mikroschlitzen 20 entstandenen Stege 10 an einer Stirnseite miteinander verbindet, in einem weiteren Schritt die gesägte Platte mit einem biegbaren Tragelement versehen wird und in einem anschliessenden Schritt der Quersteg entfernt und das Glaselement in die gewünschte Form gebogen wird. 6. A process for the production of the glass elements 1, 2, 3 according to one of claims 1 to 5, characterized in that in the slurry wire saw micro-slots 20 are sawn into a glass plate, wherein a cross bar 50 is allowed to stand, which between the micro slots 20 resulting webs 10 connects at one end face together, in a further step, the sawed plate is provided with a bendable support member and removed in a subsequent step, the crossbar and the glass element is bent into the desired shape. 7. Verfahren gemäss Anspruch 6 dadurch gekennzeichnet, dass Glasplatte und Tragelement miteinander verklebt werden. 7. The method according to claim 6, characterized in that glass plate and support element are glued together. 8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der Quersteg mittels Wasserstrahl abgeschnitten wird. 8. The method according to claim 6 or 7, characterized in that the transverse web is cut off by means of a water jet. 9. Verfahren nach einem der vorhergehenden Ansprüche 6 bis 8, dadurch gekennzeichnet, dass das die biegsamen Glaselemente mit den biegbaren Tragelementen in vorgeformte Aufnahmen eingesetzt werden, die die Glaselemente in die gewünschte Form bringen. 9. The method according to any one of the preceding claims 6 to 8, characterized in that the flexible glass elements are used with the bendable support elements in preformed recordings, which bring the glass elements in the desired shape. 10. Akustikelement umfassend ein Glaselement gemäss einem der Ansprüche 1 bis 5. 10. Acoustic element comprising a glass element according to one of claims 1 to 5.
CH00706/09A 2009-05-04 2009-05-04 Flexible glass elements. CH700971A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CH00706/09A CH700971A1 (en) 2009-05-04 2009-05-04 Flexible glass elements.
EP20100160951 EP2251497B1 (en) 2009-05-04 2010-04-23 Flexible glass elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH00706/09A CH700971A1 (en) 2009-05-04 2009-05-04 Flexible glass elements.

Publications (1)

Publication Number Publication Date
CH700971A1 true CH700971A1 (en) 2010-11-15

Family

ID=42537482

Family Applications (1)

Application Number Title Priority Date Filing Date
CH00706/09A CH700971A1 (en) 2009-05-04 2009-05-04 Flexible glass elements.

Country Status (2)

Country Link
EP (1) EP2251497B1 (en)
CH (1) CH700971A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9321677B2 (en) 2014-01-29 2016-04-26 Corning Incorporated Bendable glass stack assemblies, articles and methods of making the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB520380A (en) * 1938-10-17 1940-04-23 Arnold Hauskind Improvements in or relating to the manufacture of lamp-fixtures and light-fittings and/or parts thereof or for same
GB817775A (en) * 1957-10-22 1959-08-06 Helmut Bierbrauer Improvements in or relating to transparent screens
WO2006101403A1 (en) * 2005-03-23 2006-09-28 Deamp As Sound absorbent

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1046294B (en) * 1956-02-20 1958-12-11 Licentia Gmbh Multiple pane window or wall
DE1026511B (en) * 1956-06-08 1958-03-20 Paul Trommer Component, in particular glazing unit for windows, with a cavity which has negative pressure
DE19917426A1 (en) * 1999-04-19 2000-10-26 Weidemann Unternehmensgruppe G Process for the production of curved laminated glass
CH700728B1 (en) * 2007-07-13 2010-10-15 Albers & Co Acoustic elements.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB520380A (en) * 1938-10-17 1940-04-23 Arnold Hauskind Improvements in or relating to the manufacture of lamp-fixtures and light-fittings and/or parts thereof or for same
GB817775A (en) * 1957-10-22 1959-08-06 Helmut Bierbrauer Improvements in or relating to transparent screens
WO2006101403A1 (en) * 2005-03-23 2006-09-28 Deamp As Sound absorbent

Also Published As

Publication number Publication date
EP2251497A2 (en) 2010-11-17
EP2251497A3 (en) 2013-05-15
EP2251497B1 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
EP2015291B1 (en) Acoustic elements
DE102011078234B4 (en) Injection molding produced cover element with undisturbed hole pattern
EP1950357B1 (en) Acoustic elements
EP2540926B1 (en) Acoustic dampening element and method for manufacturing the same
EP0487948B1 (en) Method and device for placing surface channels in panels of soft material and use of the device
EP1815460B1 (en) Cover layer and panel with sound-absorption properties and method for producing said layer and panel
DE102006008728B3 (en) Producing a three-dimensional framework useful for making structural components of aircraft comprises applying heat and force to a two-dimensional lattice of rods
EP0908578A2 (en) Façade panel for a curtain wall construction
EP2112256B1 (en) Method for producing a hollow fibre spinning nozzle
EP2406069A1 (en) Multilayer board for sound insulation
EP2937483B1 (en) Building panel, in particular wall or ceiling panel
DE60038696T2 (en) METHOD FOR THE PRODUCTION OF SUPPORTING CAPS
DE102004010920A1 (en) Decorative component for e.g. decorating interior or exterior of building, includes translucent carrier and thin opaque layer which enables passage of small amount of light
DE19923225B4 (en) Optical element for deflecting light rays and manufacturing processes
EP2251497B1 (en) Flexible glass elements
EP1233827B1 (en) Method for producing a membrane module
CH707224B1 (en) The sheet component.
EP1698452A1 (en) Composite panel
DE19957317C2 (en) Process for attaching predetermined breaking edges to a workpiece
WO2006133920A1 (en) Sound tongue for a wind instrument and a method for the production thereof
CH698892B1 (en) Sound-absorbing element for use in acoustic element, has safety glass plate consisting of micro slots with predetermined size, where micro slots form opened region of preset percentage on surface of glass plate
EP2575127B1 (en) Acoustic absorption element
DE102009021200B4 (en) Method for trimming sandwich honeycomb structures
EP1990159A1 (en) Method for manufacturing lightweight building boards
DE10134783B4 (en) A sound proofing

Legal Events

Date Code Title Description
PFA Name/firm changed

Owner name: ALBERS & CO.

Free format text: ALBERS & CO.#SCHANZENGASSE 14 POSTFACH 2016#8022 ZUERICH (CH) -TRANSFER TO- ALBERS & CO.#SCHANZENGASSE 14 POSTFACH 2016#8022 ZUERICH (CH)

AZW Rejection (application)