CH694661A5 - A method of connecting at least two existing plastic pipe and / or wall elements. - Google Patents
A method of connecting at least two existing plastic pipe and / or wall elements. Download PDFInfo
- Publication number
- CH694661A5 CH694661A5 CH00718/00A CH7182000A CH694661A5 CH 694661 A5 CH694661 A5 CH 694661A5 CH 00718/00 A CH00718/00 A CH 00718/00A CH 7182000 A CH7182000 A CH 7182000A CH 694661 A5 CH694661 A5 CH 694661A5
- Authority
- CH
- Switzerland
- Prior art keywords
- laser
- plastic
- wall elements
- pipe
- transition region
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L47/00—Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
- F16L47/02—Welded joints; Adhesive joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1629—Laser beams characterised by the way of heating the interface
- B29C65/1635—Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1677—Laser beams making use of an absorber or impact modifier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/112—Single lapped joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/112—Single lapped joints
- B29C66/1122—Single lap to lap joints, i.e. overlap joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/116—Single bevelled joints, i.e. one of the parts to be joined being bevelled in the joint area
- B29C66/1162—Single bevel to bevel joints, e.g. mitre joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/12—Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
- B29C66/122—Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
- B29C66/1222—Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/12—Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
- B29C66/122—Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
- B29C66/1224—Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/13—Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
- B29C66/131—Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/50—General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
- B29C66/51—Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
- B29C66/53—Joining single elements to tubular articles, hollow articles or bars
- B29C66/534—Joining single elements to open ends of tubular or hollow articles or to the ends of bars
- B29C66/5344—Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially annular, i.e. of finite length, e.g. joining flanges to tube ends
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/50—General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
- B29C66/51—Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
- B29C66/53—Joining single elements to tubular articles, hollow articles or bars
- B29C66/534—Joining single elements to open ends of tubular or hollow articles or to the ends of bars
- B29C66/5346—Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
- B29C66/53465—Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat said single flat elements being provided with holes facing the tube ends, e.g. for making heat-exchangers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/50—General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
- B29C66/51—Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
- B29C66/54—Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/50—General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
- B29C66/51—Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
- B29C66/54—Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
- B29C66/545—Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles one hollow-preform being placed inside the other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/50—General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
- B29C66/61—Joining from or joining on the inside
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/50—General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
- B29C66/61—Joining from or joining on the inside
- B29C66/612—Making circumferential joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/739—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/7392—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
- B29C66/73921—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1603—Laser beams characterised by the type of electromagnetic radiation
- B29C65/1612—Infrared [IR] radiation, e.g. by infrared lasers
- B29C65/1616—Near infrared radiation [NIR], e.g. by YAG lasers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/71—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/16—Fillers
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- Toxicology (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Abstract
A laser-welding method for plastic tubes and/or wall elements, especially for containers, apparatus, housings and conduits, in which the contact surfaces in the tubular transition zone are in the form of a cylinder or truncated cone, held together by applied pressure while heat is supplied to a laser-absorbing plastic by laser irradiation from the laser-transparent side. An Independent claim is also included for a joint between at least two plastic tubes and/or wall elements, in which the plastic facing the laser is transparent to laser radiation and the plastic on the side away from the laser contains laser-absorbing particles, the contact surfaces are as described above, the elements are bonded by laser action and the weld seam is in the hidden part of the transition zone between the elements.
Description
Die Erfindung betrifft ein Verfahren und die daraus resultierende Verbindung mindestens zweier aus Kunststoff bestehender Rohr- und/oder Wandelemente durch Wärmeeinwirkung im Übergangsbereich für insbesondere Behälter, Apparate, Gehäuse und Leitungskanäle zur Aufnahme und/oder zum Transport von gasförmigen oder flüssigen Medien, wobei ein lasertransparenter Kunststoff mit einem Laserstrahlen absorbierenden Kunststoff durch Lasereinwirkung verschweisst wird.
Zum Transportieren, Lagern und Ab- oder Weiterleiten von hochkorrosiven Gasen oder Flüssigkeiten werden Behälter, Container und entsprechende Verbindungskanäle benötigt, die eine gas- und flüssigkeitsdichte und korrosionsbeständige Verbindung aufweisen. Derartige hochkorrosive Gase oder Flüssigkeiten stammen in der Regel von Microchipfabriken, Chemikalienproduzenten und -distributoren sowie Kraftwerken, Müllverbrennungsanlagen und zahlreichen industriellen Prozessanlagen. Für die Behälter und Verbindungskanäle werden in der Regel Kunststoffe eingesetzt, die miteinander verschweisst werden. Hierbei werden Verfahrenstechniken, wie das Warmgasziehschweissen, das Heizelementkontaktschweissen, das Infrarotschweissen und das Elektromuffenschweissen angewendet.
Nachteile des Warmgasziehschweissens bestehen beispielsweise darin, dass sehr grosse Schmelzquerschnitte erforderlich sind und zu einer zeit- und kostenintensiven Verarbeitung führen. Ferner sind präzise Nahtvorbereitungen und eine lange Schweissnahtfixierung beim Abkühlen erforderlich, so dass bei rohrförmigen Fügebereichen das Schweissverfahren unwirtschaftlich wird. Ferner wird bei diesem Schweiss verfahren Schweissmaterial zusätzlich erforderlich, welches die Produktionskosten weiterhin verteuert.
Das handelsübliche Heizelementkontaktschweissen ist hingegen bei hochfluorierten Thermoplasten wie z. B. PFA, FEP, MFA, in der Regel nicht anwendbar. Das Elektromuffenschweissen benötigt für den Schweissvorgang eine Schweiss muffe und wird ebenfalls bislang nicht bei hochfluorierten Thermoplasten eingesetzt. Das Infrarotschweissen ist für hochfluorierte Thermoplaste ebenfalls nur bedingt einsetzbar.
Für alle vorgenannten Schweissverfahren ergibt sich im Weiteren ein Nachteil dadurch, dass eine aufwendige Fixierung der zu verbindenden Teile notwendig ist, um einen Verzug in der Abkühlphase zu vermeiden. Des Weiteren werden aufgrund der grossen Schmelzvolumen relativ grosse Zykluszeiten zum Aufheizen, Verbinden und Abkühlen benötigt. Insbesondere bei kleinen Wandstärken ist es sehr schwierig, eine sichere Schweissnaht mit den herkömmlichen Schweisstechniken zu erzielen.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Schweissverbindung aufzuzeigen, welche sich durch wesentlich verkürzte Montage- und Schweisszeiten auszeichnet und darüber hinaus eine betriebssichere gas- und flüssigkeitsdichte Schweissverbindung ermöglicht.
Erfindungsgemäss ist zur Lösung der Verfahrensaufgabe vorgesehen, dass zur Verbindung mindestens zweier aus Kunststoff bestehender Rohr- und/oder Wandelemente, die sich berührenden Flächen der Rohr- und/oder Wandelemente im Übergangsbereich aus der Mantelfläche eines Zylinders oder Kegelstumpfes bestehen und im Zeitraum der Wärmeeinwirkung durch einen aufzubringenden Anpressdruck zusammengehalten werden und die Lasereinwirkung von der lasertransparenten Kunststoffseite her erfolgt.
Bei der erfindungsgemässen Laserschweissung durchdringt der Laserstrahl eine lasertransparente Schicht, um in einer mit entsprechenden Additiven versehenen Schicht absorbiert zu werden. Durch die frei werdende Wärme wird an der Oberfläche der laserabsorbierenden Fläche ein dünner Schmelzfilm von beispielsweise 0,1 bis 0,2 mm Dicke gebildet. Durch die lokale Wärmeentwicklung wird der sich in Kontakt befindliche Verbindungspartner ebenfalls erwärmt und an der Oberfläche leicht angeschmolzen, so dass die Oberflächen gewissermassen verschmelzen und nach der Abkühlung sehr fest miteinander verbunden sind. Die an den Oberflächen bzw. Kontaktflächen gebildete Schmelzmasse ist so gering, dass gegenüber herkömmlichen Schweissverfahren eine wesentlich reduzierte Aufwärmphase, Schweiss- und Abkühlzeit erforderlich ist.
Beispielsweise wird für das Laserschweissen gegenüber dem Warmgasziehschweissen nur 1/15 der Energie benötigt. Der Zeitaufwand für den Schweissvorgang reduziert sich auf zirka 1/4 der beim Warmgasziehschweissen benötigten Zeit. Durch die reduzierten Bearbeitungszeiten ist somit eine schnellere Montage möglich. Ferner wird die Belastung des Kontaktbereiches beim erfindungsgemässen Schweissverfahren durch Scherung bei unterschiedlichen Abkühlungsgeschwindigkeiten der miteinander verbundenen Kunststoffe wesentlich verringert. Durch die kleinere Wärmeeinflusszone ergibt sich des Weiteren eine wesentlich kürzere Schweissnahtfixierung, wodurch die Produktionsrate erhöht und die Fertigungskosten gesenkt werden können.
Eine besondere Schweissnahtvorbereitung ist beim Laserschweissen nicht erforderlich und es werden auch keine Schweisszusatzstoffe benötigt, so dass die Kosten verringert und die Handhabung im weiteren vereinfacht wird. Durch die Verringerung der Abkühlzeiten können ferner grössere Stückzahlen wirtschaftlich verarbeitet und einem Automatisationsprozess mit einer hohen Reproduzierbarkeit zugeführt werden.
Als besonderer Vorteil des erfindungsgemässen Schweissverfahrens ist bei hochfluorierten Kunststoffen durch den geringeren Energieübertrag und das geringe Schweissvolumen eine erheblich reduzierte Emission von umwelt- und gesundheitschädlichen Gasen von Bedeutung.
Ein weiterer Vorteil des Laserschweissens besteht darin, dass der Einsatz auch bei hochfluorierten Thermoplasten möglich ist. Aufgrund der geringeren Wärmeeinflusszonen ist ein Verzug der zu verbindenden Kunststoffteile minimiert, so dass keine aufwendige und lange Fixierung der Teile notwendig ist, wodurch die Zykluszeiten, wie Aufheizen, Verbinden und Abkühlen, wesentlich reduziert werden können. Das erfindungsgemässe Laserschweissverfahren ist ferner durch die verhältnismässig kleinen Wärmeeinflusszonen in vorteilhafter Weise bei dünnen Wandstärken anwendbar.
Zur Erzeugung eines notwendigen Anpressdruckes zwischen den zu verbindenden Rohr- und/oder Wand-elementen kann beispielsweise das Rückstellvermögen eines zuvor thermoplastisch verformten Rohr- und/oder Wandelementes eingesetzt werden oder alternativ besteht die Möglichkeit durch mechanische Einwirkung den entsprechenden Anpressdruck zu erzeugen. Um den notwendigen Anpressdruck aufzubringen kann beispielsweise in dem flachen Werkstück eine Bohrung oder eine Ausnehmung eingebracht werden, deren Randbereich so erwärmt wird, dass das rohrförmige Werkstück unter gleichzeitiger Aufweitung der Bohrung bzw. des Durchbruchs eingedrückt werden kann. Während des Abkühlprozesses legt sich somit das Material des ersten Werkstücks dicht an das rohrförmige zweite Werkstück an, unter gleichzeitiger Aufbringung eines entsprechenden Anpressdrucks.
Die nachträglich vorgenommene Schweissung mittels Lasertechnik führt somit zu einer besonders haltbaren und gasdichten Verbindung der beiden Werkstücke.
Das aufgezeigte Laserschweissverfahren zeichnet sich insbesondere durch die Verwendbarkeit bei identischen oder artgleichen Kunststoffmaterialien aus, welche ggf. durch kunststoffübliche Füllstoffe, wie beispielsweise Glas-, Kohle-Aramidfasern oder dergleichen, oder durch plättchenförmige Füllstoffe, wie z.B. Talkum oder andere, verstärkt sein können.
Für die Anwendung des Laserschweissverfahrens eignen sich herkömmliche Festkörperlaser, Gaslaser oder Halbleiterlaser, um den Wärmeeintrag vorzunehmen.
Eine nach dem Laserschweissverfahren hergestellte Verbindung mindestens zweier aus Kunststoff bestehender Rohr- und/oder Wandelemente zeichnet sich dadurch aus, dass die sich berührenden Flächen der Rohr- und/oder Wandelemente im Übergangsbereich aus der Mantelfläche eines Zylinders oder Kegelstumpfes bestehen und die Rohr- und/oder Wandelemente durch Lasereinwirkung verschweisst sind, wobei der dem Laser zugewandte Kunststoff lasertransparent ausgebildet ist und der dem Laser abgewandte Kunststoff Laserstrahlen absorbierende Partikel, sogenannte Additive, enthält.
Durch die besondere Ausbildung des Übergangsbereiches zwischen den zu verbindenden Elementen mit einer Mantelfläche eines Zylinders oder Kegelstumpfes wird ein grossflächiger Übergangsbereich gebildet, der in vorteilhafter Weise mittels der Laserschweisstechnik miteinander gas- und flüssigkeitsdicht verbunden werden kann.
Die Übergangsbereiche können hierbei insbesondere aus Rohrenden, Schlauchabschnitten, Fittingenden oder Folienaushalsungen bestehen. Die Verwendung von identischen oder artgleichen Kunststoffen für die zu verbindenden Elemente erweitert den Anwendungsbereich der Laserschweisstechnik. In vorteilhafter Weise sind Fluorkunststoffe, wie z.B. PFA, MFA, FEP, PTFE, ECTFE, PVDF, mit dem aufgezeigten Laserschweissverfahren miteinander zu verbinden, welche ggf. durch kunststoffübliche Füllstoffe, wie beispielsweise Glas-, Kohle-, Aramidfasern oder dergleichen, oder durch plättchenförmige Füllstoffe, wie z.B. Talkum oder andere, verstärkt ausgeführt sind.
Zur Anwendung des Laserschweissverfahrens wird der dem Laser zugewandte Kunststoff lasertransparent ausgeführt und der dem Laser abgewandte Kunststoff mit absorbierenden Partikeln versetzt, welche vorzugsweise eine Wellenlänge von 400 bis 2000 nm absorbieren. Beispielsweise können Farbpigmente in Form von Russteilchen als Additive eingesetzt werden. Das Verschweissen kann mittels Festkörper-, Gas- oder Halbleiterlaser erfolgen, die Laserstrahlen entsprechender Wellenlänge erzeugen.
Die Laserstrahlen absorbierenden Kunststoffe können im optischen oder nichtoptischen Wellenlängenbereich transparent oder nichttransparent ausgebildet sein, wobei bei der Verwendung von eingefärbten nichttransparenten Kunststoffen diese bei der Montage unter den transparenten Kunststoffen sehr gut zu erkennen sind, so dass die beiden miteinander zu verbindenden Rohr- und/oder Wandelemente gut sichtbar positioniert werden können und das Lasergerät exakt und überprüfbar im Übergangsbereich der zu vorbindenden Elemente eingesetzt werden kann.
Zur Anwendung kommt das Laserschweiss verfahren bei Rohrelementen aus Vollkunststoff, stahlummanteltem Kunststoff, oder kunststoffbeschichteten Stahlrohren und Wandelementen aus tragenden oder nicht tragenden Kunststoffwänden oder Behälterauskleidungen.
Verschiedene Konstruktionsbeispiele von Verbindungen zwischen Rohr- und/oder Wandelementen sind aus den Fig. 1 bis 6 ersichtlich
Es zeigt Fig. 1 eine Schweissverbindung zwischen einem Rohrelement und einer ausgehalsten Folie; Fig. 2 eine Schweissverbindung zwischen einem kunststoffbeschichteten Stahlrohr und einer ausgehalsten Folie; Fig. 3 eine Schweissverbindung bei zwei koaxial angeordneten Rohrelementen; Fig. 4 eine Schweissverbindung bei einem kegelstumpfartigen Übergangsbereich zweier Rohrelemente, Fig. 5 eine Schweissverbindung eines Rohrelementes mit Flanschkragen an einer Behälterwandung und einer Korrosionsschutzfolie und Fig. 6 eine Schweissverbindung eines Rohrelementes an einem Wandelement bzw. mit einer Korrosionsschutzfolie mittels Formstück.
Fig. 1 zeigt ein erstes Konstruktionsbeispiel einer Laserverschweissung zwischen einem Rohrelement 1 und einer ausgehalsten Folie 2. Die Aushalsung der Folie besteht aus einer ringförmig an dem Rohrelement 1 anliegenden Aushalsung 3, welche bündig mit dem Rohrelement 1 abschliesst. Der Übergangsbereich 4 der beiden zu verbindenden Elemente 1, 2 besteht aus einer Zylinderfläche, welche durch eine Laserschweissung, wie durch die angedeuteten Blitzpfeile charakterisiert, durch eine Verschmelzung der beiden Kunststoffe verbunden ist. Die Verschmelzungsfläche 5 liegt mittig im Übergangsbereich 4 und wird durch den erfindungsgemässen Energieeintrag des Laser erzielt.
Während die rechte Figurenhälfte ein Rohrelement 1 mit laserabsorbierenden Partikeln und einer fasertransparenten Folie 2 zeigt, ist in der linken Figurenhälfte ein lasertransparentes Rohrelement 1 und eine Laserstrahlen absorbierende Folie 2 gezeigt. Der Laserschweissvorgang findet bei beiden Ausführungsvarianten von dem lasertransparenten Element her statt. Zur Erzeugung des Anpressdrucks ist erfindungsgemäss vorgesehen, dass beispielsweise in einem flachen Werkstück eine Bohrung oder eine Ausnehmung eingebracht wird, deren Randbereich so erwärmt wird, dass das rohrförmige Werkstück von unten oder oben unter gleichzeitiger Aufweitung der Bohrung bzw. des Durchbruchs eingedrückt werden kann.
Während des Abkühlprozesses legt sich das Material des ersten Werkstücks dicht an das rohrförmige zweite Werkstück an, wodurch ein entsprechender Anpressdruck erzeugt wird. Die nachträglich vorgenommene Schweissung mittels Lasertechnik führt im Weiteren zu einer besonders haltbaren und gasdichten Verbindung der beiden Werkstücke.
Fig. 2 zeigt ein Stahlrohrelement 10, welches eine Kunststoffbeschichtung 11 aufweist. Das Stahlrohr-element 10 ist ebenfalls mit einer ausgehalsten Folie 12 durch eine Laserschweissung verbunden. Die ringförmige Verschmelzungsfläche 13 befindet sich wiederum mittig im Übergangsbereich 14 der zu verbindenden Elemente 11, 12
Fig. 3 zeigt eine Verbindung zwischen zwei koaxial ineinander geschobenen Rohrelementen 20, 21, welche einen sich überlappenden Übergangsbereich 22 aufweisen, der in Längsrichtung ausgebildet ist und annähernd mittig eine ringförmige Verschmelzungsfläche 23 aufweist. Die rechte Figurenhälfte der Fig. 3 zeigt ein lasertransparentes innenliegendes Rohrelement 21 und ein laserabsorbierendes äusseres Rohrelement 20, während die linke Figurenhälfte eine umgekehrte Anordnung zeigt.
Fig. 4 zeigt zwei kegelstumpfartige Rohrelemente 30, 31, welche ebenfalls einen überlappenden Übergangsbereich 32 aufweisen, der durch eine ringförmige Verschmelzungsfläche 33 miteinander verbunden ist. Die beiden Figurenhälften zeigen eine Ausführung mit innenliegendem lasertransparenten Rohrelement 31 und eine solche mit laserabsorbierenden innenliegenden Rohrelement 31 und den jeweils zugehörigen aussenliegenden Rohrelementen 30.
Fig. 5 zeigt ein mit einem Flanschkragen ausgebildetes Rohrelement 40, welches im Randbereich oder in einer Bohrung 41 einer Wand- oder Bodenplatte 43 aufgenommen ist. Die rechte Figurenhälfte der Fig. 5 zeigt im Weiteren eine auf dem Flanschkragen 42 angeschweisste Folie 44, wobei die Folie 44 aus einem transparenten Kunststoff und das Rohrelement 40 bzw. der Flanschkragen 42 aus einem laser-absorbierenden Kunststoff besteht. In der linken Figurenhälfte wird demgegenüber eine Verschweissung des Flanschkragens 42 mit der Wand- oder Bodenplatte 43 gezeigt, wobei der Flanschkragen 42 als lasertransparentes Material und die Wand- oder Bodenplatte 43 als laserabsorbierendes Material ausgebildet ist. Bei beiden Schweissvorgängen wird wiederum die Lasereinwirkung von der lasertransparenten Materialseite her vorgenommen.
Fig. 6 zeigt ein Rohrelement 50, welches in der rechten Figurenhälfte eine rechtwinklig angeordnete Wand- oder Bodenplatte 51 und in der linken Figurenhälfte eine angeschweisste Folie 52 aufweist. Das Rohrelement 50 ist mit der Wand- oder Bodenplatte 51 bzw. der Folie 52 mittels eines ringförmigen Formstückes 53 verbunden. In der rechten Figurenhälfte besteht sowohl das Rohrelement 50 als auch die Wand- oder Bodenplatte 51 aus einem laserabsorbierenden Material und das Formstück 53 wurde in einem lasertransparenten Material gefertigt, während in der linken Figurenhälfte das Rohrelement 50 und die Folie 52 als lasertransparentes Material und das Formstück 53 als laserabsorbierendes Material ausgestaltet ist.
Die Verschweissung des Formstückes 53 mit dem Rohrelement 50 bzw. der Wand- oder Bodenplatte 51 und der Folie 52 erfolgt hierbei mittels zweier ringförmiger Laserschweissnähte, welche zu einer Verschmelzungsfläche 54 zwischen dem Rohrelement 50 und dem Formstück 53 und zu einer Verschmelzungsfläche 55 zwischen dem Formstück 53 und der Wand- oder Bodenplatte 51 bzw. der Folie 52 führen.
Die in den Fig. 1 bis 6 gezeigten Konstruktionsbeispiele verdeutlichen die Vielseitigkeit der Laserschweisstechnik bei der Verbindung zweier gleichartiger oder identischer Kunststoffe, von denen einer als lasertransparentes Material und einer als laserabsorbierendes Material ausgebildet ist. Die zu verbindenden Elemente können hierbei auf den Stirnflächen bzw. Umfangsflachen in den Übergangsbereichen miteinander verschweisst werden. Hierbei wird durch das angewendete erfindungsgemässe Laserschweissverfahren nur ein geringer Energieeintrag in die zu verbindenden Kunststoffteile notwendig, so dass keine langen Abkühlzeiten erforderlich sind und demzufolge eine nur kurzzeitige Fixierung der zu verbindenden Elemente notwendig ist.
Um eine gas- und flüssigkeitsdichte Verbindung zwischen den Rohr- und/oder Wandelementen herzustellen, wird hierbei eine über den Umfang durchgehende Schweissnaht gezogen.
Das thermoplastische Verfahren zum Erzeugen eines Anpressdruckes kann ebenso bei ausschliesslich runden oder kegelig geformten Werkstücken angewendet werden, wenn entsprechende Massunter- oder -überschreitungen vorliegen und durch die Erwärmung eine Aufweitung vorgenommen wird, bevor nach der Abkühlung das Laserschweissverfahren angewendet wird.
Bezugszeichenliste 1 Rohrelement 2 Folie 3 Aushalsung 4 Übergangsbereich 5 Verschmelzungsfläche 10 Stahlrohrelement 11 Beschichtung 12 Folie 13 Verschmelzungsfläche 14 Übergangsbereich 20 Rohrelement 21 Rohrelement 22 Übergangsbereich 23 Verschmelzungsfläche 30 Rohrelement 31 Rohrelement 32 Übergangsbereich 33 Verschmelzungsfläche 40 Rohrelement 41 Bohrung 42 Flanschkragen 43 Wand- oder Bodenplatte 44 Folie 50 Rohrelement 51 Wand- oder Bodenplatte 52 Folie <>f 53 Formstück 54 Verschmelzungsfläche 55 Verschmelzungsfläche
The invention relates to a method and the resulting compound of at least two existing plastic pipe and / or wall elements by heat in the transition region for particular containers, apparatus, housings and ducts for receiving and / or transport of gaseous or liquid media, wherein a laser-transparent Plastic is welded with a laser-absorbing plastic by laser action.
For transporting, storing and discharging highly corrosive gases or liquids containers, containers and corresponding connecting channels are required which have a gas- and liquid-tight and corrosion-resistant connection. Such highly corrosive gases or liquids typically come from microchip factories, chemical producers and distributors, as well as power plants, waste incinerators, and numerous industrial process equipment. For the containers and connecting channels plastics are usually used, which are welded together. In this process techniques, such as hot gas drawing welding, Heizelementkontaktschweissen, infrared welding and electric socket welding are applied.
Disadvantages of Warmgasziehschweissens, for example, that very large cross-sections are required and lead to a time and cost intensive processing. Furthermore, precise seam preparations and a long welding seam fixation during cooling are required, so that in tubular joint areas, the welding process is uneconomical. Furthermore, in this welding process welding material is additionally required, which continues to increase the cost of production.
The commercial Heizelementkontaktschweissen, however, is highly fluorinated thermoplastics such. As PFA, FEP, MFA, usually not applicable. The electric socket welding requires a welding sleeve for the welding process and is also not previously used in highly fluorinated thermoplastics. Infrared welding is also of limited use for highly fluorinated thermoplastics.
For all the above-mentioned welding methods, a further disadvantage results in that a complex fixation of the parts to be joined is necessary in order to avoid a delay in the cooling phase. Furthermore, due to the large melt volume, relatively long cycle times are required for heating, bonding and cooling. Especially with small wall thicknesses, it is very difficult to achieve a secure weld with conventional welding techniques.
The invention has for its object to provide a method and a welded connection, which is characterized by significantly reduced assembly and welding times and also enables a reliable gas and liquid-tight welded connection.
According to the invention is provided to solve the process task that for connecting at least two plastic existing pipe and / or wall elements, the contacting surfaces of the pipe and / or wall elements in the transition region from the lateral surface of a cylinder or truncated cone and in the period of heat through a contact pressure to be applied are held together and the laser action takes place from the laser-transparent plastic side.
In the case of the laser welding according to the invention, the laser beam penetrates a laser-transparent layer in order to be absorbed in a layer provided with appropriate additives. As a result of the heat released, a thin melt film of, for example, 0.1 to 0.2 mm thickness is formed on the surface of the laser-absorbing surface. Due to the local heat development of the contact partner in contact is also heated and slightly melted on the surface, so that the surfaces merge to some extent and are very firmly connected to each other after cooling. The melt mass formed on the surfaces or contact surfaces is so small that, compared to conventional welding methods, a significantly reduced warm-up phase, welding time and cooling time are required.
For example, only 1/15 of the energy is needed for the laser welding compared to the hot gas drawing welding. The time required for the welding process is reduced to about 1/4 of the time required for hot gas drawing welding. Due to the reduced processing times, a faster assembly is thus possible. Furthermore, the stress on the contact area in the welding method according to the invention is substantially reduced by shearing at different cooling rates of the interconnected plastics. Furthermore, the smaller heat-affected zone results in a significantly shorter weld seam fixation, whereby the production rate can be increased and the production costs can be reduced.
A special weld preparation is not required during laser welding and there are no welding additives needed, so that the costs are reduced and the handling is further simplified. By reducing the cooling times also larger quantities can be processed economically and fed to an automation process with a high reproducibility.
As a particular advantage of the welding method according to the invention, a significantly reduced emission of environmentally and health-damaging gases is of importance for highly fluorinated plastics due to the lower energy transfer and the low welding volume.
Another advantage of the laser welding is that the use is also possible with highly fluorinated thermoplastics. Due to the lower heat affected zones, distortion of the plastic parts to be joined is minimized, so that no complex and long fixing of the parts is necessary, whereby the cycle times, such as heating, bonding and cooling, can be substantially reduced. The laser welding method according to the invention is also advantageously applicable to thin wall thicknesses due to the comparatively small heat-affected zones.
To generate a necessary contact pressure between the pipe and / or wall elements to be joined, for example, the resilience of a previously thermally deformed pipe and / or wall element can be used or alternatively it is possible to generate by mechanical action the corresponding contact pressure. In order to apply the necessary contact pressure, for example, a bore or a recess can be introduced in the flat workpiece, the edge region of which is heated so that the tubular workpiece can be pressed in with simultaneous widening of the bore or the aperture. During the cooling process, therefore, the material of the first workpiece engages tightly against the tubular second workpiece, with simultaneous application of a corresponding contact pressure.
The subsequent welding by means of laser technology thus leads to a particularly durable and gas-tight connection of the two workpieces.
The indicated laser welding method is characterized in particular by the usability with identical or similar plastic materials, which may be provided by plastic-compatible fillers, such as glass, carbon aramid fibers or the like, or by platelet-shaped fillers, such as. Talc or others, can be reinforced.
Conventional solid state lasers, gas lasers or semiconductor lasers are suitable for the application of the laser welding process in order to carry out the heat input.
A connection of at least two plastic pipe and / or wall elements produced by the laser welding method is characterized in that the contacting surfaces of the pipe and / or wall elements in the transition region consist of the lateral surface of a cylinder or truncated cone and the pipe and / or or wall elements are welded by laser action, wherein the laser-facing plastic is formed laser-transparent and the laser facing away from the plastic plastic laser-absorbing particles, so-called additives containing.
Due to the special design of the transition region between the elements to be connected with a lateral surface of a cylinder or truncated cone, a large-area transition region is formed, which can be connected in an advantageous manner by means of laser welding technology together gas and liquid tight.
In this case, the transitional regions can in particular consist of tube ends, tube sections, fitting ends or foil necklaces. The use of identical or similar plastics for the elements to be joined expands the field of application of laser welding technology. Advantageously, fluoroplastics, e.g. PFA, MFA, FEP, PTFE, ECTFE, PVDF, with the indicated laser welding process, which optionally by Kunststoffübliche fillers, such as glass, carbon, aramid fibers or the like, or by platelet-like fillers, such as. Talc or others, reinforced.
For application of the laser welding method, the plastic facing the laser is made laser-transparent and the plastic remote from the laser is mixed with absorbing particles which preferably absorb a wavelength of 400 to 2000 nm. For example, color pigments in the form of carbon black particles can be used as additives. The welding can be carried out by means of solid state, gas or semiconductor lasers, which generate laser beams of appropriate wavelength.
The laser-absorbing plastics can be transparent or non-transparent in the optical or non-optical wavelength range, with the use of colored non-transparent plastics these are very easy to recognize in the assembly under the transparent plastics, so that the two pipe and / or Wall elements can be positioned clearly visible and the laser device can be used accurately and verifiable in the transition region of the vorbindenden elements.
The laser welding method is used for tubular elements made of solid plastic, steel-coated plastic, or plastic-coated steel tubes and wall elements made of load-bearing or non-load-bearing plastic walls or container linings.
Various construction examples of connections between pipe and / or wall elements are shown in FIGS. 1 to 6
FIG. 1 shows a welded connection between a tubular element and a cured foil; FIG. FIG. 2 shows a welded connection between a plastic-coated steel tube and a cured foil; FIG. 3 shows a welded connection in the case of two coaxially arranged tubular elements; 5 shows a welded connection of a tubular element with flange collar on a container wall and a corrosion protection foil, and FIG. 6 shows a welded connection of a tubular element to a wall element or with a corrosion protection foil by means of a shaped piece.
Fig. 1 shows a first construction example of a laser welding between a tubular element 1 and a ausgehalsten foil 2. The Aushalsung the film consists of an annularly applied to the tubular element 1 Aushalsung 3, which is flush with the tubular element 1. The transition region 4 of the two elements 1, 2 to be connected consists of a cylindrical surface, which is connected by a laser welding, as characterized by the indicated lightning arrows, by a fusion of the two plastics. The merging surface 5 is located centrally in the transition region 4 and is achieved by the inventive energy input of the laser.
While the right half of the figure shows a tube element 1 with laser-absorbing particles and a fiber-transparent foil 2, a laser-transparent tube element 1 and a laser-absorbing foil 2 are shown in the left half of the figure. The laser welding process takes place in both variants of the laser-transparent element ago. To produce the contact pressure is provided according to the invention that, for example, in a flat workpiece, a bore or a recess is introduced, the edge region is heated so that the tubular workpiece can be pressed from below or above with simultaneous expansion of the bore or the opening.
During the cooling process, the material of the first workpiece lays tight against the tubular second workpiece, whereby a corresponding contact pressure is generated. The subsequent welding by means of laser technology leads to a particularly durable and gas-tight connection of the two workpieces.
FIG. 2 shows a steel pipe element 10 which has a plastic coating 11. The steel tube element 10 is also connected to a ausgehalsten film 12 by a laser welding. The annular merging surface 13 is again located centrally in the transition region 14 of the elements 11, 12 to be joined
Fig. 3 shows a connection between two coaxially telescoped tube elements 20, 21, which have an overlapping transition region 22 which is formed in the longitudinal direction and approximately centrally has an annular merger surface 23. The right half of the figure of Fig. 3 shows a laser-transparent inner tubular element 21 and a laser-absorbing outer tubular element 20, while the left half of the figure shows a reverse arrangement.
4 shows two frusto-conical tubular elements 30, 31, which likewise have an overlapping transition region 32, which is connected to one another by an annular fusion surface 33. The two halves of the figures show an embodiment with an internal laser-transparent tube element 31 and one with a laser-absorbing inner tube element 31 and the respectively associated outer tube elements 30.
5 shows a tubular element 40 formed with a flange collar, which is received in the edge region or in a bore 41 of a wall or base plate 43. The right-hand half of the figure of FIG. 5 further shows a film 44 welded onto the flange collar 42, wherein the film 44 consists of a transparent plastic and the tubular element 40 or the flange collar 42 consists of a laser-absorbent plastic. In the left half of the figure, by contrast, a welding of the flange collar 42 is shown with the wall or bottom plate 43, wherein the flange collar 42 is formed as a laser-transparent material and the wall or bottom plate 43 as a laser-absorbing material. In both welding processes, the laser action is again carried out by the laser-transparent material side.
FIG. 6 shows a tubular element 50 which has a wall or base plate 51 arranged at right angles in the right half of the figure and a welded-on foil 52 in the left half of the figure. The tubular element 50 is connected to the wall or bottom plate 51 or the foil 52 by means of an annular shaped piece 53. In the right half of the figure, both the tubular member 50 and the wall or bottom plate 51 are made of a laser absorbing material and the fitting 53 is made in a laser-transparent material, while in the left half of the figure, the tubular member 50 and the foil 52 are laser-transparent material and the fitting 53 is designed as a laser-absorbing material.
The welding of the molded piece 53 with the tubular element 50 or the wall or bottom plate 51 and the film 52 takes place here by means of two annular laser welds, which to a merger surface 54 between the tubular member 50 and the fitting 53 and a merger surface 55 between the fitting 53rd and the wall or bottom plate 51 and the film 52 lead.
The design examples shown in FIGS. 1 to 6 illustrate the versatility of the laser welding technique in the connection of two identical or identical plastics, one of which is designed as a laser-transparent material and one as a laser-absorbing material. The elements to be connected can in this case be welded together on the end faces or peripheral surfaces in the transition regions. In this case, only a small input of energy into the plastic parts to be joined is required by the applied laser welding method according to the invention, so that no long cooling times are required and therefore only a short-term fixation of the elements to be connected is necessary.
In order to produce a gas- and liquid-tight connection between the pipe and / or wall elements, in this case a continuous over the circumference weld seam is drawn.
The thermoplastic method for generating a contact pressure can also be applied to exclusively round or conically shaped workpieces, if appropriate Massunter- or -überschreitungen present and by heating a widening is made before the laser welding process is applied after cooling.
LIST OF REFERENCE NUMERALS 1 Pipe element 2 Film 3 Neck 4 Transition region 5 Fusion surface 10 Steel tube element 11 Coating 12 Film 13 Melting surface 14 Transition region 20 Pipe element 21 Pipe element 22 Transition region 23 Melting surface 30 Pipe element 31 Pipe element 32 Transition region 33 Melting surface 40 Pipe element 41 Bore 42 Flange collar 43 Wall or bottom plate 44 Film 50 Tube element 51 Wall or base plate 52 Foil <> f 53 Fitting 54 Fusion surface 55 Fusion surface
Claims (13)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19916786A DE19916786C2 (en) | 1999-04-14 | 1999-04-14 | Method for connecting at least two plastic pipe and / or wall elements |
Publications (1)
Publication Number | Publication Date |
---|---|
CH694661A5 true CH694661A5 (en) | 2005-05-31 |
Family
ID=7904499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CH00718/00A CH694661A5 (en) | 1999-04-14 | 2000-04-11 | A method of connecting at least two existing plastic pipe and / or wall elements. |
Country Status (2)
Country | Link |
---|---|
CH (1) | CH694661A5 (en) |
DE (1) | DE19916786C2 (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10034678A1 (en) * | 2000-07-17 | 2002-01-31 | Bayerische Motoren Werke Ag | Arrangement for the integral connection of plastic parts by means of laser welding |
DE10101240A1 (en) * | 2001-01-11 | 2002-07-18 | Basf Ag | Process for the production of laser-welded composite molded parts and these composite molded parts |
DE10151847A1 (en) | 2001-10-24 | 2003-05-08 | Bayer Ag | Laser absorbing soot molding compounds |
US20030150844A1 (en) * | 2002-02-14 | 2003-08-14 | Siemens Vdo Automotive, Inc. | Method and apparatus for laser welding hoses in an air induction system |
DE10245355A1 (en) | 2002-09-27 | 2004-04-08 | Degussa Ag | pipe connection |
DE10345105B4 (en) * | 2002-10-02 | 2015-02-19 | Siemens Vdo Automotive Inc. | Cone closure for laser welding seam on a component of an air intake |
DE10302256A1 (en) * | 2003-01-22 | 2004-08-05 | Hydac Technology Gmbh | Method of making a bladder |
DE10304071B4 (en) * | 2003-01-31 | 2005-06-23 | Gather Industrie Gmbh | A method of attaching a magnetic mount to a gear driving shaft of a magnetically coupled gear pump |
DE10322090A1 (en) * | 2003-05-15 | 2004-12-23 | Siemens Ag | connection |
EP1440784A1 (en) * | 2003-05-30 | 2004-07-28 | Leister Process Technologies | Method and apparatus for joining plastic parts with a laser beam |
DE10326906B4 (en) | 2003-06-14 | 2008-09-11 | Varta Automotive Systems Gmbh | Accumulator and method for producing a sealed contact terminal bushing |
DE10342921B4 (en) * | 2003-09-15 | 2014-05-08 | Plasticon Germany Gmbh | Process for welding plastics and a welding agent required for this purpose |
EP1754923A1 (en) * | 2005-08-20 | 2007-02-21 | LuK Lamellen und Kupplungsbau Beteiligungs KG | Plastic conduit |
DE102005052825A1 (en) * | 2005-11-05 | 2007-05-10 | Rehau Ag + Co. | Pressure resistant plastic tube and connector assembly manufacture involves alignment of fibers in melt flow direction in intended welding area of connector during molding stage |
GB2446385A (en) * | 2007-02-12 | 2008-08-13 | Inbev Sa | Laser welding valve assembly to beer keg |
DE102007038578A1 (en) | 2007-08-16 | 2009-02-19 | Evonik Degussa Gmbh | Method of decorating surfaces |
CN100553931C (en) * | 2008-03-31 | 2009-10-28 | 邵泰清 | Production technology of the steel skeleton plastic clad pipe of band plastics termination and products thereof |
JP5342286B2 (en) * | 2008-05-16 | 2013-11-13 | 日東電工株式会社 | Manufacturing method of sheet joined body and sheet joined body |
CN101814534B (en) * | 2009-02-24 | 2012-02-29 | 苏州中来光伏新材股份有限公司 | Radiation modification fluorine resin film, preparation process and solar flexible battery |
CN103170184B (en) * | 2013-04-12 | 2015-02-25 | 武汉纺织大学 | Preparation method of glass fiber membrane filter material |
CN103640212B (en) * | 2013-12-21 | 2016-05-11 | 厦门建霖工业有限公司 | Cross water assembly laser welding process |
DE102014114249A1 (en) * | 2014-09-30 | 2016-03-31 | Illinois Tool Works Inc. | Connector and connector |
DE102017011354A1 (en) * | 2017-12-07 | 2019-06-13 | Kocher-Plastik Maschinenbau Gmbh | Method and device for connecting at least two plastic parts |
CN113543746A (en) * | 2019-03-11 | 2021-10-22 | Dlh鲍尔斯公司 | Dual spray nozzle tip assembly |
CN110594516A (en) * | 2019-09-11 | 2019-12-20 | 长春亚大汽车零件制造有限公司 | Connecting structure of plastic corrugated pipe and plastic connector |
CN114375378B (en) * | 2019-09-24 | 2024-02-09 | 大金工业株式会社 | Welded body |
NL2024972B1 (en) * | 2020-02-21 | 2021-10-06 | Heineken Supply Chain Bv | Method for joining a fluid conduit and a connection hub. |
DE102023101643A1 (en) * | 2023-01-24 | 2024-07-25 | Norma Germany Gmbh | Fluid line |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE792903A (en) * | 1971-12-30 | 1973-06-18 | American Can Co | LASER BEAM WELDING PLASTIC TUBES |
CH679383A5 (en) * | 1989-08-31 | 1992-02-14 | Fischer Ag Georg | |
US5893959A (en) * | 1994-03-31 | 1999-04-13 | Marquardt Gmbh | Workpiece of plastic and production process for such a workpiece |
-
1999
- 1999-04-14 DE DE19916786A patent/DE19916786C2/en not_active Expired - Fee Related
-
2000
- 2000-04-11 CH CH00718/00A patent/CH694661A5/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
DE19916786A1 (en) | 2000-10-19 |
DE19916786C2 (en) | 2002-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CH694661A5 (en) | A method of connecting at least two existing plastic pipe and / or wall elements. | |
US20020100540A1 (en) | Simultaneous butt and lap joints | |
US6596122B1 (en) | Simultaneous butt and lap joints | |
DE102005000160B4 (en) | Method for the positive connection of two components | |
JPS6249850B2 (en) | ||
DE102006060056A1 (en) | Joining of lightweight components by sticking for use in an automotive industry, a machine- and an aircraft construction, comprises applying inorganic and/or organic adhesives on surfaces to be joined and joining the surfaces | |
WO2017170518A1 (en) | Joint structure | |
DE10303534B4 (en) | Method for connecting at least two existing plastic pipe and / or wall elements | |
CN111085780A (en) | Laser welding method for metal container | |
DE19954440C2 (en) | Process for producing a hollow body | |
DE10120351A1 (en) | Holding jig for laser welding thermoplastics has a partly open vacuum chamber closed by the joint components that are being supported | |
DE19860357A1 (en) | Fluid filter for vehicle has two housing sections forming interior chamber with receiving filter media and two circumscribing flanges in abutting relationship, and a laser weld bead for coupling the flanges | |
DE69503756T2 (en) | METHOD FOR CONNECTING LONG HOLLOW BODIES | |
DE102014110908A1 (en) | Thermoplastic joining system and method | |
Brodhun et al. | Laser transmission welding of thermoplastic fasteners: Influence of temperature distribution in a scanning based process | |
DE10342921B4 (en) | Process for welding plastics and a welding agent required for this purpose | |
DE19911284C2 (en) | Process for producing a socket connection for cross-linked polyethylene pipes (PE-X pipes) by rotary friction welding | |
EP0995535B1 (en) | Laser welding method of oil filters for automatic gearbox | |
EP3505260A1 (en) | Method and device for sealing a gap | |
EP2194303A1 (en) | Medium-lead component for steering a media flow | |
DE10359912A1 (en) | Composite component, comprises an inner plastic layer and an outer mantle layer, connected via an intermediate layer which absorbs electromagnetic radiation | |
DE3708705A1 (en) | METHOD AND DEVICE FOR WELDING TUBULAR PLASTIC PARTS | |
DE19912099A1 (en) | Welding of thermoplastic components, involves use of thermoplastic filler part containing metal particles suitable for induction heating | |
JPS60212330A (en) | Joining of heterogeneous synthetic resin materials | |
DE69112464T2 (en) | Process for welding enamelled objects and product therefor. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PFA | Name/firm changed |
Owner name: PLASTICON GERMANY GMBH Free format text: KTD-PLASTICON-KUNSTSTOFFTECHNIK DINSLAKEN GMBH#DIESELSTRASSE 10#46539 DINSLAKEN (DE) -TRANSFER TO- PLASTICON GERMANY GMBH#DIESELSTRASSE 10#46539 DINSLAKEN (DE) |
|
PL | Patent ceased |