CH694661A5 - A method of connecting at least two existing plastic pipe and / or wall elements. - Google Patents

A method of connecting at least two existing plastic pipe and / or wall elements. Download PDF

Info

Publication number
CH694661A5
CH694661A5 CH00718/00A CH7182000A CH694661A5 CH 694661 A5 CH694661 A5 CH 694661A5 CH 00718/00 A CH00718/00 A CH 00718/00A CH 7182000 A CH7182000 A CH 7182000A CH 694661 A5 CH694661 A5 CH 694661A5
Authority
CH
Switzerland
Prior art keywords
laser
plastic
wall elements
pipe
transition region
Prior art date
Application number
CH00718/00A
Other languages
German (de)
Inventor
Hermann Van Laak
Ludwig Stamm
Original Assignee
Plasticon Germany Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7904499&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CH694661(A5) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Plasticon Germany Gmbh filed Critical Plasticon Germany Gmbh
Publication of CH694661A5 publication Critical patent/CH694661A5/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L47/00Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
    • F16L47/02Welded joints; Adhesive joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/116Single bevelled joints, i.e. one of the parts to be joined being bevelled in the joint area
    • B29C66/1162Single bevel to bevel joints, e.g. mitre joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1222Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1224Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5344Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially annular, i.e. of finite length, e.g. joining flanges to tube ends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53465Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat said single flat elements being provided with holes facing the tube ends, e.g. for making heat-exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/545Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles one hollow-preform being placed inside the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/61Joining from or joining on the inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/61Joining from or joining on the inside
    • B29C66/612Making circumferential joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

A laser-welding method for plastic tubes and/or wall elements, especially for containers, apparatus, housings and conduits, in which the contact surfaces in the tubular transition zone are in the form of a cylinder or truncated cone, held together by applied pressure while heat is supplied to a laser-absorbing plastic by laser irradiation from the laser-transparent side. An Independent claim is also included for a joint between at least two plastic tubes and/or wall elements, in which the plastic facing the laser is transparent to laser radiation and the plastic on the side away from the laser contains laser-absorbing particles, the contact surfaces are as described above, the elements are bonded by laser action and the weld seam is in the hidden part of the transition zone between the elements.

Description

       

  



   Die Erfindung betrifft ein Verfahren und die daraus resultierende  Verbindung mindestens zweier aus Kunststoff bestehender Rohr- und/oder  Wandelemente durch Wärmeeinwirkung im Übergangsbereich für insbesondere  Behälter, Apparate, Gehäuse und Leitungskanäle zur Aufnahme und/oder  zum Transport von gasförmigen oder flüssigen Medien, wobei ein lasertransparenter  Kunststoff mit einem Laserstrahlen absorbierenden Kunststoff durch  Lasereinwirkung verschweisst wird. 



   Zum Transportieren, Lagern und Ab- oder Weiterleiten von hochkorrosiven  Gasen oder Flüssigkeiten werden Behälter, Container und entsprechende  Verbindungskanäle benötigt, die eine gas- und flüssigkeitsdichte  und korrosionsbeständige Verbindung aufweisen. Derartige hochkorrosive  Gase oder Flüssigkeiten stammen in der Regel von Microchipfabriken,  Chemikalienproduzenten und -distributoren sowie Kraftwerken, Müllverbrennungsanlagen  und zahlreichen industriellen Prozessanlagen. Für die Behälter und  Verbindungskanäle werden in der Regel Kunststoffe eingesetzt, die  miteinander verschweisst werden. Hierbei werden Verfahrenstechniken,  wie das Warmgasziehschweissen, das Heizelementkontaktschweissen,  das Infrarotschweissen und das Elektromuffenschweissen angewendet.                                                             



   Nachteile des Warmgasziehschweissens bestehen beispielsweise darin,  dass sehr grosse Schmelzquerschnitte erforderlich sind und zu einer  zeit- und kostenintensiven Verarbeitung führen. Ferner sind präzise  Nahtvorbereitungen und eine lange Schweissnahtfixierung beim Abkühlen  erforderlich, so dass bei rohrförmigen Fügebereichen das Schweissverfahren  unwirtschaftlich wird. Ferner wird bei diesem Schweiss verfahren  Schweissmaterial zusätzlich erforderlich, welches die Produktionskosten  weiterhin verteuert. 



   Das handelsübliche Heizelementkontaktschweissen ist hingegen bei  hochfluorierten Thermoplasten wie z. B. PFA, FEP, MFA, in der Regel  nicht anwendbar. Das Elektromuffenschweissen benötigt für den Schweissvorgang  eine Schweiss   muffe und wird ebenfalls bislang nicht bei hochfluorierten  Thermoplasten eingesetzt. Das Infrarotschweissen ist für hochfluorierte  Thermoplaste ebenfalls nur bedingt einsetzbar. 



   Für alle vorgenannten Schweissverfahren ergibt sich im Weiteren ein  Nachteil dadurch, dass eine aufwendige Fixierung der zu verbindenden  Teile notwendig ist, um einen Verzug in der Abkühlphase zu vermeiden.  Des Weiteren werden aufgrund der grossen Schmelzvolumen relativ grosse  Zykluszeiten zum Aufheizen, Verbinden und Abkühlen benötigt. Insbesondere  bei kleinen Wandstärken ist es sehr schwierig, eine sichere Schweissnaht  mit den herkömmlichen Schweisstechniken zu erzielen. 



   Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine  Schweissverbindung aufzuzeigen, welche sich durch wesentlich verkürzte  Montage- und Schweisszeiten auszeichnet und darüber hinaus eine betriebssichere  gas- und flüssigkeitsdichte Schweissverbindung ermöglicht. 



   Erfindungsgemäss ist zur Lösung der Verfahrensaufgabe vorgesehen,  dass zur Verbindung mindestens zweier aus Kunststoff bestehender  Rohr- und/oder Wandelemente, die sich berührenden Flächen der Rohr-  und/oder Wandelemente im Übergangsbereich aus der Mantelfläche eines  Zylinders oder Kegelstumpfes bestehen und im Zeitraum der Wärmeeinwirkung  durch einen aufzubringenden Anpressdruck zusammengehalten werden  und die Lasereinwirkung von der lasertransparenten Kunststoffseite  her erfolgt. 



   Bei der erfindungsgemässen Laserschweissung durchdringt der Laserstrahl  eine lasertransparente Schicht, um in einer mit entsprechenden Additiven  versehenen Schicht absorbiert zu werden. Durch die frei werdende  Wärme wird an der Oberfläche der laserabsorbierenden Fläche ein dünner  Schmelzfilm von beispielsweise 0,1 bis 0,2 mm Dicke gebildet. Durch  die lokale Wärmeentwicklung wird der sich in Kontakt befindliche  Verbindungspartner ebenfalls erwärmt und an der Oberfläche leicht  angeschmolzen, so dass die Oberflächen gewissermassen verschmelzen  und nach der Abkühlung sehr fest miteinander verbunden sind. Die  an den Oberflächen bzw. Kontaktflächen gebildete Schmelzmasse ist  so gering, dass gegenüber herkömmlichen Schweissverfahren eine wesentlich  reduzierte Aufwärmphase, Schweiss- und Abkühlzeit erforderlich ist.

    Beispielsweise wird für das Laserschweissen gegenüber dem Warmgasziehschweissen  nur 1/15 der Energie benötigt. Der Zeitaufwand für den    Schweissvorgang  reduziert sich auf zirka 1/4 der beim Warmgasziehschweissen benötigten  Zeit. Durch die reduzierten Bearbeitungszeiten ist somit eine schnellere  Montage möglich. Ferner wird die Belastung des Kontaktbereiches beim  erfindungsgemässen Schweissverfahren durch Scherung bei unterschiedlichen  Abkühlungsgeschwindigkeiten der miteinander verbundenen Kunststoffe  wesentlich verringert. Durch die kleinere Wärmeeinflusszone ergibt  sich des Weiteren eine wesentlich kürzere Schweissnahtfixierung,  wodurch die Produktionsrate erhöht und die Fertigungskosten gesenkt  werden können.

   Eine besondere Schweissnahtvorbereitung ist beim Laserschweissen  nicht erforderlich und es werden auch keine Schweisszusatzstoffe  benötigt, so dass die Kosten verringert und die Handhabung im weiteren  vereinfacht wird. Durch die Verringerung der Abkühlzeiten können  ferner grössere Stückzahlen wirtschaftlich verarbeitet und einem  Automatisationsprozess mit einer hohen Reproduzierbarkeit zugeführt  werden. 



   Als besonderer Vorteil des erfindungsgemässen Schweissverfahrens  ist bei hochfluorierten Kunststoffen durch den geringeren Energieübertrag  und das geringe Schweissvolumen eine erheblich reduzierte Emission  von umwelt- und gesundheitschädlichen Gasen von Bedeutung. 



   Ein weiterer Vorteil des Laserschweissens besteht darin, dass der  Einsatz auch bei hochfluorierten Thermoplasten möglich ist. Aufgrund  der geringeren Wärmeeinflusszonen ist ein Verzug der zu verbindenden  Kunststoffteile minimiert, so dass keine aufwendige und lange Fixierung  der Teile notwendig ist, wodurch die Zykluszeiten, wie Aufheizen,  Verbinden und Abkühlen, wesentlich reduziert werden können. Das erfindungsgemässe  Laserschweissverfahren ist ferner durch die verhältnismässig kleinen  Wärmeeinflusszonen in vorteilhafter Weise bei dünnen Wandstärken  anwendbar. 



   Zur Erzeugung eines notwendigen Anpressdruckes zwischen den zu verbindenden  Rohr- und/oder Wand-elementen kann beispielsweise das Rückstellvermögen  eines zuvor thermoplastisch verformten Rohr- und/oder Wandelementes  eingesetzt werden oder alternativ besteht die Möglichkeit durch mechanische  Einwirkung den entsprechenden Anpressdruck zu erzeugen. Um den notwendigen  Anpressdruck aufzubringen kann beispielsweise in dem flachen Werkstück  eine Bohrung oder eine Ausnehmung eingebracht werden, deren Randbereich  so erwärmt wird, dass das rohrförmige Werkstück unter gleichzeitiger  Aufweitung der Bohrung bzw. des Durchbruchs eingedrückt werden kann.  Während    des Abkühlprozesses legt sich somit das Material des ersten  Werkstücks dicht an das rohrförmige zweite Werkstück an, unter gleichzeitiger  Aufbringung eines entsprechenden Anpressdrucks.

   Die nachträglich  vorgenommene Schweissung mittels Lasertechnik führt somit zu einer  besonders haltbaren und gasdichten Verbindung der beiden Werkstücke.                                                           



   Das aufgezeigte Laserschweissverfahren zeichnet sich insbesondere  durch die Verwendbarkeit bei identischen oder artgleichen Kunststoffmaterialien  aus, welche ggf. durch kunststoffübliche Füllstoffe, wie beispielsweise  Glas-, Kohle-Aramidfasern oder dergleichen, oder durch plättchenförmige  Füllstoffe, wie z.B. Talkum oder andere, verstärkt sein können. 



   Für die Anwendung des Laserschweissverfahrens eignen sich herkömmliche  Festkörperlaser, Gaslaser oder Halbleiterlaser, um den Wärmeeintrag  vorzunehmen. 



   Eine nach dem Laserschweissverfahren hergestellte Verbindung mindestens  zweier aus Kunststoff bestehender Rohr- und/oder Wandelemente zeichnet  sich dadurch aus, dass die sich berührenden Flächen der Rohr- und/oder  Wandelemente im Übergangsbereich aus der Mantelfläche eines Zylinders  oder Kegelstumpfes bestehen und die Rohr- und/oder Wandelemente durch  Lasereinwirkung verschweisst sind, wobei der dem Laser zugewandte  Kunststoff lasertransparent ausgebildet ist und der dem Laser abgewandte  Kunststoff Laserstrahlen absorbierende Partikel, sogenannte Additive,  enthält.

   Durch die besondere Ausbildung des Übergangsbereiches zwischen  den zu verbindenden Elementen mit einer Mantelfläche eines Zylinders  oder Kegelstumpfes wird ein grossflächiger Übergangsbereich gebildet,  der in vorteilhafter Weise mittels der Laserschweisstechnik miteinander  gas- und flüssigkeitsdicht verbunden werden kann. 



   Die Übergangsbereiche können hierbei insbesondere aus Rohrenden,  Schlauchabschnitten, Fittingenden oder Folienaushalsungen bestehen.  Die Verwendung von identischen oder artgleichen Kunststoffen für  die zu verbindenden Elemente erweitert den Anwendungsbereich der  Laserschweisstechnik. In vorteilhafter Weise sind Fluorkunststoffe,  wie z.B. PFA, MFA, FEP, PTFE, ECTFE, PVDF, mit dem aufgezeigten Laserschweissverfahren  miteinander zu verbinden, welche ggf. durch kunststoffübliche Füllstoffe,  wie beispielsweise Glas-, Kohle-, Aramidfasern oder dergleichen,  oder durch plättchenförmige Füllstoffe, wie z.B. Talkum oder andere,  verstärkt ausgeführt sind.

   Zur Anwendung des Laserschweissverfahrens  wird der dem Laser zugewandte Kunststoff    lasertransparent ausgeführt  und der dem Laser abgewandte Kunststoff mit absorbierenden Partikeln  versetzt, welche vorzugsweise eine Wellenlänge von 400 bis 2000 nm  absorbieren. Beispielsweise können Farbpigmente in Form von Russteilchen  als Additive eingesetzt werden. Das Verschweissen kann mittels Festkörper-,  Gas- oder Halbleiterlaser erfolgen, die Laserstrahlen entsprechender  Wellenlänge erzeugen. 



   Die Laserstrahlen absorbierenden Kunststoffe können im optischen  oder nichtoptischen Wellenlängenbereich transparent oder nichttransparent  ausgebildet sein, wobei bei der Verwendung von eingefärbten nichttransparenten  Kunststoffen diese bei der Montage unter den transparenten Kunststoffen  sehr gut zu erkennen sind, so dass die beiden miteinander zu verbindenden  Rohr- und/oder Wandelemente gut sichtbar positioniert werden können  und das Lasergerät exakt und überprüfbar im Übergangsbereich der  zu vorbindenden Elemente eingesetzt werden kann. 



   Zur Anwendung kommt das Laserschweiss verfahren bei Rohrelementen  aus Vollkunststoff, stahlummanteltem Kunststoff, oder kunststoffbeschichteten  Stahlrohren und Wandelementen aus tragenden oder nicht tragenden  Kunststoffwänden oder Behälterauskleidungen. 



   Verschiedene Konstruktionsbeispiele von Verbindungen zwischen Rohr-  und/oder Wandelementen sind aus den Fig. 1 bis 6 ersichtlich 



   Es zeigt      Fig. 1 eine Schweissverbindung zwischen einem Rohrelement  und einer ausgehalsten Folie;     Fig. 2 eine Schweissverbindung  zwischen einem kunststoffbeschichteten Stahlrohr und einer ausgehalsten  Folie;     Fig. 3 eine Schweissverbindung bei zwei koaxial angeordneten  Rohrelementen;     Fig. 4 eine Schweissverbindung bei einem kegelstumpfartigen  Übergangsbereich zweier Rohrelemente,       Fig. 5 eine Schweissverbindung  eines Rohrelementes mit Flanschkragen an einer Behälterwandung und  einer Korrosionsschutzfolie und     Fig. 6 eine Schweissverbindung  eines Rohrelementes an einem Wandelement bzw. mit einer Korrosionsschutzfolie  mittels Formstück.  



   Fig. 1 zeigt ein erstes Konstruktionsbeispiel einer Laserverschweissung  zwischen einem Rohrelement 1 und einer ausgehalsten Folie 2. Die  Aushalsung der Folie besteht aus einer ringförmig an dem Rohrelement  1 anliegenden Aushalsung 3, welche bündig mit dem Rohrelement 1 abschliesst.  Der Übergangsbereich 4 der beiden zu verbindenden Elemente 1, 2 besteht  aus einer Zylinderfläche, welche durch eine Laserschweissung, wie  durch die angedeuteten Blitzpfeile charakterisiert, durch eine Verschmelzung  der beiden Kunststoffe verbunden ist. Die Verschmelzungsfläche 5  liegt mittig im Übergangsbereich 4 und wird durch den erfindungsgemässen  Energieeintrag des Laser erzielt.

   Während die rechte Figurenhälfte  ein Rohrelement 1 mit laserabsorbierenden Partikeln und einer fasertransparenten  Folie 2 zeigt, ist in der linken Figurenhälfte ein lasertransparentes  Rohrelement 1 und eine Laserstrahlen absorbierende Folie 2 gezeigt.  Der Laserschweissvorgang findet bei beiden Ausführungsvarianten von  dem lasertransparenten Element her statt. Zur Erzeugung des Anpressdrucks  ist erfindungsgemäss vorgesehen, dass beispielsweise in einem flachen  Werkstück eine Bohrung oder eine Ausnehmung eingebracht wird, deren  Randbereich so erwärmt wird, dass das rohrförmige Werkstück von unten  oder oben unter gleichzeitiger Aufweitung der Bohrung bzw. des Durchbruchs  eingedrückt werden kann.

   Während des Abkühlprozesses legt sich das  Material des ersten Werkstücks dicht an das rohrförmige zweite Werkstück  an, wodurch ein entsprechender Anpressdruck erzeugt wird. Die nachträglich  vorgenommene Schweissung mittels Lasertechnik führt im Weiteren zu  einer besonders haltbaren und gasdichten Verbindung der beiden Werkstücke.                                                     



   Fig. 2 zeigt ein Stahlrohrelement 10, welches eine Kunststoffbeschichtung  11 aufweist. Das Stahlrohr-element 10 ist ebenfalls mit einer ausgehalsten  Folie 12 durch eine Laserschweissung verbunden. Die ringförmige Verschmelzungsfläche  13 befindet sich wiederum mittig im Übergangsbereich 14 der zu verbindenden  Elemente 11, 12 



     Fig. 3 zeigt eine Verbindung zwischen zwei koaxial ineinander  geschobenen Rohrelementen 20, 21, welche einen sich überlappenden  Übergangsbereich 22 aufweisen, der in Längsrichtung ausgebildet ist  und annähernd mittig eine ringförmige Verschmelzungsfläche 23 aufweist.  Die rechte Figurenhälfte der Fig. 3 zeigt ein lasertransparentes  innenliegendes Rohrelement 21 und ein laserabsorbierendes äusseres  Rohrelement 20, während die linke Figurenhälfte eine umgekehrte Anordnung  zeigt. 



   Fig. 4 zeigt zwei kegelstumpfartige Rohrelemente 30, 31, welche ebenfalls  einen überlappenden Übergangsbereich 32 aufweisen, der durch eine  ringförmige Verschmelzungsfläche 33 miteinander verbunden ist. Die  beiden Figurenhälften zeigen eine Ausführung mit innenliegendem lasertransparenten  Rohrelement 31 und eine solche mit laserabsorbierenden innenliegenden  Rohrelement 31 und den jeweils zugehörigen aussenliegenden Rohrelementen  30. 



   Fig. 5 zeigt ein mit einem Flanschkragen ausgebildetes Rohrelement  40, welches im Randbereich oder in einer Bohrung 41 einer Wand- oder  Bodenplatte 43 aufgenommen ist. Die rechte Figurenhälfte der Fig.  5 zeigt im Weiteren eine auf dem Flanschkragen 42 angeschweisste  Folie 44, wobei die Folie 44 aus einem transparenten Kunststoff und  das Rohrelement 40 bzw. der Flanschkragen 42 aus einem laser-absorbierenden  Kunststoff besteht. In der linken Figurenhälfte wird demgegenüber  eine Verschweissung des Flanschkragens 42 mit der Wand- oder Bodenplatte  43 gezeigt, wobei der Flanschkragen 42 als lasertransparentes Material  und die Wand- oder Bodenplatte 43 als laserabsorbierendes Material  ausgebildet ist. Bei beiden Schweissvorgängen wird wiederum die Lasereinwirkung  von der lasertransparenten Materialseite her vorgenommen. 



   Fig. 6 zeigt ein Rohrelement 50, welches in der rechten Figurenhälfte  eine rechtwinklig angeordnete Wand- oder Bodenplatte 51 und in der  linken Figurenhälfte eine angeschweisste Folie 52 aufweist. Das Rohrelement  50 ist mit der Wand- oder Bodenplatte 51 bzw. der Folie 52 mittels  eines ringförmigen Formstückes 53 verbunden. In der rechten Figurenhälfte  besteht sowohl das Rohrelement 50 als auch die Wand- oder Bodenplatte  51 aus einem laserabsorbierenden Material und das Formstück 53 wurde  in einem lasertransparenten Material gefertigt, während in der linken  Figurenhälfte das Rohrelement 50 und die Folie 52 als lasertransparentes  Material und das Formstück 53 als laserabsorbierendes Material ausgestaltet  ist.

   Die Verschweissung des Formstückes 53 mit dem Rohrelement 50  bzw. der Wand- oder Bodenplatte 51 und    der Folie 52 erfolgt hierbei  mittels zweier ringförmiger Laserschweissnähte, welche zu einer Verschmelzungsfläche  54 zwischen dem Rohrelement 50 und dem Formstück 53 und zu einer  Verschmelzungsfläche 55 zwischen dem Formstück 53 und der Wand- oder  Bodenplatte 51 bzw. der Folie 52 führen. 



   Die in den Fig. 1 bis 6 gezeigten Konstruktionsbeispiele verdeutlichen  die Vielseitigkeit der Laserschweisstechnik bei der Verbindung zweier  gleichartiger oder identischer Kunststoffe, von denen einer als lasertransparentes  Material und einer als laserabsorbierendes Material ausgebildet ist.  Die zu verbindenden Elemente können hierbei auf den Stirnflächen  bzw. Umfangsflachen in den Übergangsbereichen miteinander verschweisst  werden. Hierbei wird durch das angewendete erfindungsgemässe Laserschweissverfahren  nur ein geringer Energieeintrag in die zu verbindenden Kunststoffteile  notwendig, so dass keine langen Abkühlzeiten erforderlich sind und  demzufolge eine nur kurzzeitige Fixierung der zu verbindenden Elemente  notwendig ist.

   Um eine gas- und flüssigkeitsdichte Verbindung zwischen  den Rohr- und/oder Wandelementen herzustellen, wird hierbei eine  über den Umfang durchgehende Schweissnaht gezogen. 



   Das thermoplastische Verfahren zum Erzeugen eines Anpressdruckes  kann ebenso bei ausschliesslich runden oder kegelig geformten Werkstücken  angewendet werden, wenn entsprechende Massunter- oder -überschreitungen  vorliegen und durch die Erwärmung eine Aufweitung vorgenommen wird,  bevor nach der Abkühlung das Laserschweissverfahren angewendet wird.

    Bezugszeichenliste         1 Rohrelement     2 Folie     3 Aushalsung     4 Übergangsbereich     5 Verschmelzungsfläche     10 Stahlrohrelement     11 Beschichtung     12 Folie     13 Verschmelzungsfläche     14 Übergangsbereich     20 Rohrelement     21 Rohrelement     22 Übergangsbereich     23 Verschmelzungsfläche     30 Rohrelement     31 Rohrelement     32 Übergangsbereich     33 Verschmelzungsfläche     40 Rohrelement     41 Bohrung     42 Flanschkragen     43 Wand- oder Bodenplatte     44 Folie     50 Rohrelement     51 Wand- oder Bodenplatte     52 Folie  <>f     53 Formstück     54 Verschmelzungsfläche     55 Verschmelzungsfläche



  



   The invention relates to a method and the resulting compound of at least two existing plastic pipe and / or wall elements by heat in the transition region for particular containers, apparatus, housings and ducts for receiving and / or transport of gaseous or liquid media, wherein a laser-transparent Plastic is welded with a laser-absorbing plastic by laser action.



   For transporting, storing and discharging highly corrosive gases or liquids containers, containers and corresponding connecting channels are required which have a gas- and liquid-tight and corrosion-resistant connection. Such highly corrosive gases or liquids typically come from microchip factories, chemical producers and distributors, as well as power plants, waste incinerators, and numerous industrial process equipment. For the containers and connecting channels plastics are usually used, which are welded together. In this process techniques, such as hot gas drawing welding, Heizelementkontaktschweissen, infrared welding and electric socket welding are applied.



   Disadvantages of Warmgasziehschweissens, for example, that very large cross-sections are required and lead to a time and cost intensive processing. Furthermore, precise seam preparations and a long welding seam fixation during cooling are required, so that in tubular joint areas, the welding process is uneconomical. Furthermore, in this welding process welding material is additionally required, which continues to increase the cost of production.



   The commercial Heizelementkontaktschweissen, however, is highly fluorinated thermoplastics such. As PFA, FEP, MFA, usually not applicable. The electric socket welding requires a welding sleeve for the welding process and is also not previously used in highly fluorinated thermoplastics. Infrared welding is also of limited use for highly fluorinated thermoplastics.



   For all the above-mentioned welding methods, a further disadvantage results in that a complex fixation of the parts to be joined is necessary in order to avoid a delay in the cooling phase. Furthermore, due to the large melt volume, relatively long cycle times are required for heating, bonding and cooling. Especially with small wall thicknesses, it is very difficult to achieve a secure weld with conventional welding techniques.



   The invention has for its object to provide a method and a welded connection, which is characterized by significantly reduced assembly and welding times and also enables a reliable gas and liquid-tight welded connection.



   According to the invention is provided to solve the process task that for connecting at least two plastic existing pipe and / or wall elements, the contacting surfaces of the pipe and / or wall elements in the transition region from the lateral surface of a cylinder or truncated cone and in the period of heat through a contact pressure to be applied are held together and the laser action takes place from the laser-transparent plastic side.



   In the case of the laser welding according to the invention, the laser beam penetrates a laser-transparent layer in order to be absorbed in a layer provided with appropriate additives. As a result of the heat released, a thin melt film of, for example, 0.1 to 0.2 mm thickness is formed on the surface of the laser-absorbing surface. Due to the local heat development of the contact partner in contact is also heated and slightly melted on the surface, so that the surfaces merge to some extent and are very firmly connected to each other after cooling. The melt mass formed on the surfaces or contact surfaces is so small that, compared to conventional welding methods, a significantly reduced warm-up phase, welding time and cooling time are required.

    For example, only 1/15 of the energy is needed for the laser welding compared to the hot gas drawing welding. The time required for the welding process is reduced to about 1/4 of the time required for hot gas drawing welding. Due to the reduced processing times, a faster assembly is thus possible. Furthermore, the stress on the contact area in the welding method according to the invention is substantially reduced by shearing at different cooling rates of the interconnected plastics. Furthermore, the smaller heat-affected zone results in a significantly shorter weld seam fixation, whereby the production rate can be increased and the production costs can be reduced.

   A special weld preparation is not required during laser welding and there are no welding additives needed, so that the costs are reduced and the handling is further simplified. By reducing the cooling times also larger quantities can be processed economically and fed to an automation process with a high reproducibility.



   As a particular advantage of the welding method according to the invention, a significantly reduced emission of environmentally and health-damaging gases is of importance for highly fluorinated plastics due to the lower energy transfer and the low welding volume.



   Another advantage of the laser welding is that the use is also possible with highly fluorinated thermoplastics. Due to the lower heat affected zones, distortion of the plastic parts to be joined is minimized, so that no complex and long fixing of the parts is necessary, whereby the cycle times, such as heating, bonding and cooling, can be substantially reduced. The laser welding method according to the invention is also advantageously applicable to thin wall thicknesses due to the comparatively small heat-affected zones.



   To generate a necessary contact pressure between the pipe and / or wall elements to be joined, for example, the resilience of a previously thermally deformed pipe and / or wall element can be used or alternatively it is possible to generate by mechanical action the corresponding contact pressure. In order to apply the necessary contact pressure, for example, a bore or a recess can be introduced in the flat workpiece, the edge region of which is heated so that the tubular workpiece can be pressed in with simultaneous widening of the bore or the aperture. During the cooling process, therefore, the material of the first workpiece engages tightly against the tubular second workpiece, with simultaneous application of a corresponding contact pressure.

   The subsequent welding by means of laser technology thus leads to a particularly durable and gas-tight connection of the two workpieces.



   The indicated laser welding method is characterized in particular by the usability with identical or similar plastic materials, which may be provided by plastic-compatible fillers, such as glass, carbon aramid fibers or the like, or by platelet-shaped fillers, such as. Talc or others, can be reinforced.



   Conventional solid state lasers, gas lasers or semiconductor lasers are suitable for the application of the laser welding process in order to carry out the heat input.



   A connection of at least two plastic pipe and / or wall elements produced by the laser welding method is characterized in that the contacting surfaces of the pipe and / or wall elements in the transition region consist of the lateral surface of a cylinder or truncated cone and the pipe and / or or wall elements are welded by laser action, wherein the laser-facing plastic is formed laser-transparent and the laser facing away from the plastic plastic laser-absorbing particles, so-called additives containing.

   Due to the special design of the transition region between the elements to be connected with a lateral surface of a cylinder or truncated cone, a large-area transition region is formed, which can be connected in an advantageous manner by means of laser welding technology together gas and liquid tight.



   In this case, the transitional regions can in particular consist of tube ends, tube sections, fitting ends or foil necklaces. The use of identical or similar plastics for the elements to be joined expands the field of application of laser welding technology. Advantageously, fluoroplastics, e.g. PFA, MFA, FEP, PTFE, ECTFE, PVDF, with the indicated laser welding process, which optionally by Kunststoffübliche fillers, such as glass, carbon, aramid fibers or the like, or by platelet-like fillers, such as. Talc or others, reinforced.

   For application of the laser welding method, the plastic facing the laser is made laser-transparent and the plastic remote from the laser is mixed with absorbing particles which preferably absorb a wavelength of 400 to 2000 nm. For example, color pigments in the form of carbon black particles can be used as additives. The welding can be carried out by means of solid state, gas or semiconductor lasers, which generate laser beams of appropriate wavelength.



   The laser-absorbing plastics can be transparent or non-transparent in the optical or non-optical wavelength range, with the use of colored non-transparent plastics these are very easy to recognize in the assembly under the transparent plastics, so that the two pipe and / or Wall elements can be positioned clearly visible and the laser device can be used accurately and verifiable in the transition region of the vorbindenden elements.



   The laser welding method is used for tubular elements made of solid plastic, steel-coated plastic, or plastic-coated steel tubes and wall elements made of load-bearing or non-load-bearing plastic walls or container linings.



   Various construction examples of connections between pipe and / or wall elements are shown in FIGS. 1 to 6



   FIG. 1 shows a welded connection between a tubular element and a cured foil; FIG. FIG. 2 shows a welded connection between a plastic-coated steel tube and a cured foil; FIG. 3 shows a welded connection in the case of two coaxially arranged tubular elements; 5 shows a welded connection of a tubular element with flange collar on a container wall and a corrosion protection foil, and FIG. 6 shows a welded connection of a tubular element to a wall element or with a corrosion protection foil by means of a shaped piece.



   Fig. 1 shows a first construction example of a laser welding between a tubular element 1 and a ausgehalsten foil 2. The Aushalsung the film consists of an annularly applied to the tubular element 1 Aushalsung 3, which is flush with the tubular element 1. The transition region 4 of the two elements 1, 2 to be connected consists of a cylindrical surface, which is connected by a laser welding, as characterized by the indicated lightning arrows, by a fusion of the two plastics. The merging surface 5 is located centrally in the transition region 4 and is achieved by the inventive energy input of the laser.

   While the right half of the figure shows a tube element 1 with laser-absorbing particles and a fiber-transparent foil 2, a laser-transparent tube element 1 and a laser-absorbing foil 2 are shown in the left half of the figure. The laser welding process takes place in both variants of the laser-transparent element ago. To produce the contact pressure is provided according to the invention that, for example, in a flat workpiece, a bore or a recess is introduced, the edge region is heated so that the tubular workpiece can be pressed from below or above with simultaneous expansion of the bore or the opening.

   During the cooling process, the material of the first workpiece lays tight against the tubular second workpiece, whereby a corresponding contact pressure is generated. The subsequent welding by means of laser technology leads to a particularly durable and gas-tight connection of the two workpieces.



   FIG. 2 shows a steel pipe element 10 which has a plastic coating 11. The steel tube element 10 is also connected to a ausgehalsten film 12 by a laser welding. The annular merging surface 13 is again located centrally in the transition region 14 of the elements 11, 12 to be joined



     Fig. 3 shows a connection between two coaxially telescoped tube elements 20, 21, which have an overlapping transition region 22 which is formed in the longitudinal direction and approximately centrally has an annular merger surface 23. The right half of the figure of Fig. 3 shows a laser-transparent inner tubular element 21 and a laser-absorbing outer tubular element 20, while the left half of the figure shows a reverse arrangement.



   4 shows two frusto-conical tubular elements 30, 31, which likewise have an overlapping transition region 32, which is connected to one another by an annular fusion surface 33. The two halves of the figures show an embodiment with an internal laser-transparent tube element 31 and one with a laser-absorbing inner tube element 31 and the respectively associated outer tube elements 30.



   5 shows a tubular element 40 formed with a flange collar, which is received in the edge region or in a bore 41 of a wall or base plate 43. The right-hand half of the figure of FIG. 5 further shows a film 44 welded onto the flange collar 42, wherein the film 44 consists of a transparent plastic and the tubular element 40 or the flange collar 42 consists of a laser-absorbent plastic. In the left half of the figure, by contrast, a welding of the flange collar 42 is shown with the wall or bottom plate 43, wherein the flange collar 42 is formed as a laser-transparent material and the wall or bottom plate 43 as a laser-absorbing material. In both welding processes, the laser action is again carried out by the laser-transparent material side.



   FIG. 6 shows a tubular element 50 which has a wall or base plate 51 arranged at right angles in the right half of the figure and a welded-on foil 52 in the left half of the figure. The tubular element 50 is connected to the wall or bottom plate 51 or the foil 52 by means of an annular shaped piece 53. In the right half of the figure, both the tubular member 50 and the wall or bottom plate 51 are made of a laser absorbing material and the fitting 53 is made in a laser-transparent material, while in the left half of the figure, the tubular member 50 and the foil 52 are laser-transparent material and the fitting 53 is designed as a laser-absorbing material.

   The welding of the molded piece 53 with the tubular element 50 or the wall or bottom plate 51 and the film 52 takes place here by means of two annular laser welds, which to a merger surface 54 between the tubular member 50 and the fitting 53 and a merger surface 55 between the fitting 53rd and the wall or bottom plate 51 and the film 52 lead.



   The design examples shown in FIGS. 1 to 6 illustrate the versatility of the laser welding technique in the connection of two identical or identical plastics, one of which is designed as a laser-transparent material and one as a laser-absorbing material. The elements to be connected can in this case be welded together on the end faces or peripheral surfaces in the transition regions. In this case, only a small input of energy into the plastic parts to be joined is required by the applied laser welding method according to the invention, so that no long cooling times are required and therefore only a short-term fixation of the elements to be connected is necessary.

   In order to produce a gas- and liquid-tight connection between the pipe and / or wall elements, in this case a continuous over the circumference weld seam is drawn.



   The thermoplastic method for generating a contact pressure can also be applied to exclusively round or conically shaped workpieces, if appropriate Massunter- or -überschreitungen present and by heating a widening is made before the laser welding process is applied after cooling.

    LIST OF REFERENCE NUMERALS 1 Pipe element 2 Film 3 Neck 4 Transition region 5 Fusion surface 10 Steel tube element 11 Coating 12 Film 13 Melting surface 14 Transition region 20 Pipe element 21 Pipe element 22 Transition region 23 Melting surface 30 Pipe element 31 Pipe element 32 Transition region 33 Melting surface 40 Pipe element 41 Bore 42 Flange collar 43 Wall or bottom plate 44 Film 50 Tube element 51 Wall or base plate 52 Foil <> f 53 Fitting 54 Fusion surface 55 Fusion surface


    

Claims (13)

1. Verfahren zur Verbindung mindestens zweier aus Kunststoff bestehender Rohr- und/oder Wand-elemente (1, 10, 20, 21, 30, 31, 40, 50) durch Wärmeeinwirkung im Übergangsbereich (4, 14, 22, 32) für insbesondere Behälter, Apparate, Gehäuse und Leitungskanäle zur Aufnahme und/oder zum Transport von gasförmigen oder flüssigen Medien, wobei ein lasertransparenter Kunststoff mit einem Laserstrahlen absorbierenden Kunststoff durch Lasereinwirkung verschweisst wird, dadurch gekennzeichnet, dass die sich berührenden Flächen der Rohr- und/oder Wandelemente (1, 10, 20, 21, 30, 31, 40, 50) im rohrförmigen Übergangsbereich (4, 14, 22, 32) 1. A method for connecting at least two existing plastic pipe and / or wall elements (1, 10, 20, 21, 30, 31, 40, 50) by heat in the transition region (4, 14, 22, 32) for in particular Containers, apparatus, housings and ducts for receiving and / or transporting gaseous or liquid media, wherein a laser-transparent plastic is welded to a laser-absorbing plastic by laser action, characterized in that the contacting surfaces of the pipe and / or wall elements ( 1, 10, 20, 21, 30, 31, 40, 50) in the tubular transition region (4, 14, 22, 32) aus der Mantelfläche eines Zylinders oder Kegelstumpfes bestehen und für den Zeitraum der Wärmeeinwirkung durch einen aufzubringenden Anpressdruck zusammengehalten werden und die Lasereinwirkung von der lasertransparenten Kunststoffseite her im Übergangsbereich (4, 14, 22, 32) erfolgt.  consist of the lateral surface of a cylinder or truncated cone and are held together for the period of heat by an applied pressure and the laser action of the laser-transparent plastic side in the transition region (4, 14, 22, 32). 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Anpressdruck beispielsweise durch das Rückstellvermögen eines zuvor thermoplastisch verformten Rohr- und/oder Wandelements (1, 10, 20, 21, 30, 31, 40, 50) erzielt wird oder durch mechanische Einwirkung, beispielsweise durch Gegenspannen oder eine Druckblase, erzeugt wird. 2. The method according to claim 1, characterized in that the contact pressure, for example, by the resilience of a previously thermoformed pipe and / or wall element (1, 10, 20, 21, 30, 31, 40, 50) is achieved or by mechanical action , For example, by opposing spans or a pressure bubble is generated. 3. Third Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass identische oder artgleiche Kunststoffe, welche ggf. durch kunststoffübliche Füllstoffe, wie beispielsweise Glas-, Kohle-, Aramidfasern oder durch plättchenförmige Füllstoffe, wie z.B. Talkum verstärkt ausgeführt sind, verwendet werden.  A method according to claim 1 or 2, characterized in that identical or similar plastics, which optionally by Kunststoffübliche fillers, such as glass, carbon, aramid fibers or by platelet-like fillers, such as. Talc reinforced are used. 4. Verfahren nach einem der Ansprüche 1, 2 oder 3, dadurch gekennzeichnet, dass Festkörperlaser, Gaslaser oder Halbleiterlaser für die Wärmeeinwirkung verwendet werden. 4. The method according to any one of claims 1, 2 or 3, characterized in that solid-state lasers, gas lasers or semiconductor lasers are used for the action of heat. 5. 5th Verbindung mindestens zweier aus Kunststoff bestehender Rohr- und/oder Wandelemente (1, 10, 20, 21, 30, 31, 40, 50) hergestellt nach dem Verfahren nach einem der Ansprüche 1 bis 4, wobei der dem Laser zugewandte Kunststoff lasertransparent ausgebildet ist und der dem Laser abgewandte Kunststoff Laserstrahlen absorbierende Partikel enthält, dadurch gekennzeichnet, dass die sich berührenden Flächen der Rohr- und/oder Wandelemente (1, 10, 20, 21, 30, 31, 40, 50) im rohrförmigen Übergangsbereich (4, 14. 22, 32) aus der Mantelfläche eines Zylinders oder Kegelstumpfes bestehen und die Rohr- und/oder Wandelemente (1, 10, 20, 21, 30, 31, 40, 50) durch Lasereinwirkung verschweisst sind und die Schweissnaht im verdeckt liegenden Übergangsbereich (4, 14, 22, 32) der Rohr- und/oder Wandelemente (1, 10, 20, 21, 30, 31, 40, 50) angeordnet ist.  Connection of at least two existing plastic pipe and / or wall elements (1, 10, 20, 21, 30, 31, 40, 50) produced by the method according to any one of claims 1 to 4, wherein the laser-facing plastic is formed laser-transparent and the plastic remote from the laser contains laser-absorbing particles, characterized in that the contacting surfaces of the tube and / or wall elements (1, 10, 20, 21, 30, 31, 40, 50) in the tubular transition region (4, 14 22, 32) consist of the lateral surface of a cylinder or truncated cone and the tube and / or wall elements (1, 10, 20, 21, 30, 31, 40, 50) are welded by laser action and the weld in the concealed transition region ( 4, 14, 22, 32) of the pipe and / or wall elements (1, 10, 20, 21, 30, 31, 40, 50) is arranged. 6. 6th Verbindung nach Anspruch 5, dadurch gekennzeichnet, dass die Übergangsbereiche (4, 14, 22, 32) aus Rohrenden, Schlauchabschnitte, Fittingenden oder Folienaushalsungen bestehen.  A compound according to claim 5, characterized in that the transition regions (4, 14, 22, 32) consist of pipe ends, hose sections, fitting ends or Folienaushalsungen. 7. Verbindung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Rohrelemente (1,10, 20, 21, 30, 31, 40, 50) aus Vollkunststoff, aus stahlummantelten Kunststoff oder aus kunststoffbeschichteten Stahlrohren und die Wandelemente (42, 51) aus tragenden oder nichttragenden Kunststoffwänden oder Behälterauskleidungen bestehen. 7. A compound according to claim 5 or 6, characterized in that the tubular elements (1,10, 20, 21, 30, 31, 40, 50) of solid plastic, steel-coated plastic or plastic-coated steel pipes and the wall elements (42, 51) consist of load-bearing or non-load-bearing plastic walls or container linings. 8. Verbindung nach Anspruch 5, 6 oder 7, dadurch gekennzeichnet, dass identische oder artgleiche Kunststoffe für die zu verbindenden Rohr- und/oder Wandelemente (1, 10, 20, 21, 30, 31, 40, 50) einsetzbar sind. 8. A compound according to claim 5, 6 or 7, characterized in that identical or similar plastics for the pipe and / or wall elements to be connected (1, 10, 20, 21, 30, 31, 40, 50) are used. 9. 9th Verbindung nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass für die Rohr- und/oder Wandelemente (1, 10, 20, 21, 30, 31, 40, 50) oder deren Übergangsbereiche (4, 14, 22, 32) vorzugsweise hochfluorierte Kunststoffe, z.B. PFA, MFA, FEP, PTFE oder fluorierte Kunststoffe, z.B. ECTFE, PVDF, aber auch schwer schweissbare Kunststoffe, wie z.B. PE-X oder PE-UHMW einsetzbar sind.  Connection according to one of claims 5 to 8, characterized in that for the pipe and / or wall elements (1, 10, 20, 21, 30, 31, 40, 50) or their transition areas (4, 14, 22, 32) preferably highly fluorinated plastics, eg PFA, MFA, FEP, PTFE or fluorinated plastics, e.g. ECTFE, PVDF, but also difficult to weld plastics such. PE-X or PE-UHMW can be used. 10. Verbindung nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass die verwendeten Kunststoffe durch kunststoffübliche Füllstoffe, wie beispielsweise Glas-, Kohle, Aramidfasern oder durch plättchenförmige Füllstoffe, wie z.B. Talkum verstärkt ausgeführt sind. 10. A compound according to any one of claims 5 to 9, characterized in that the plastics used by Kunststoffübliche fillers, such as glass, carbon, aramid fibers or by platelet-shaped fillers, such as. Talc reinforced are executed. 11. Verbindung nach Anspruch 5, dadurch gekennzeichnet, dass die laserabsorbierenden Partikel Licht der Wellenlänge 400 bis 2000 nm absobieren. 11. A compound according to claim 5, characterized in that the laser-absorbing particles absorb light of wavelength 400 to 2000 nm. 12. 12th Verbindung nach einem der Ansprüche 5 bis 11, dadurch gekennzeichnet, dass als Partikel Farbpigmente, wie z.B. Russteilchen einsetzbar sind.  A compound according to any one of claims 5 to 11, characterized in that as pigments color pigments, such as e.g. Russteilchen are used. 13. Verbindung hergestellt nach dem Verfahren nach Anspruch 4 dadurch gekennzeichnet, dass die Rohr- und/oder Wandelemente (1,10, 20, 21, 30, 31, 40, 50) durch Festkörperlaser, Gaslaser oder Halbleiterlaser verschweisst sind. 13. A compound prepared by the method according to claim 4, characterized in that the tube and / or wall elements (1,10, 20, 21, 30, 31, 40, 50) are welded by solid state lasers, gas lasers or semiconductor lasers.
CH00718/00A 1999-04-14 2000-04-11 A method of connecting at least two existing plastic pipe and / or wall elements. CH694661A5 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19916786A DE19916786C2 (en) 1999-04-14 1999-04-14 Method for connecting at least two plastic pipe and / or wall elements

Publications (1)

Publication Number Publication Date
CH694661A5 true CH694661A5 (en) 2005-05-31

Family

ID=7904499

Family Applications (1)

Application Number Title Priority Date Filing Date
CH00718/00A CH694661A5 (en) 1999-04-14 2000-04-11 A method of connecting at least two existing plastic pipe and / or wall elements.

Country Status (2)

Country Link
CH (1) CH694661A5 (en)
DE (1) DE19916786C2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10034678A1 (en) * 2000-07-17 2002-01-31 Bayerische Motoren Werke Ag Arrangement for the integral connection of plastic parts by means of laser welding
DE10101240A1 (en) * 2001-01-11 2002-07-18 Basf Ag Process for the production of laser-welded composite molded parts and these composite molded parts
DE10151847A1 (en) 2001-10-24 2003-05-08 Bayer Ag Laser absorbing soot molding compounds
US20030150844A1 (en) * 2002-02-14 2003-08-14 Siemens Vdo Automotive, Inc. Method and apparatus for laser welding hoses in an air induction system
DE10245355A1 (en) 2002-09-27 2004-04-08 Degussa Ag pipe connection
DE10345105B4 (en) * 2002-10-02 2015-02-19 Siemens Vdo Automotive Inc. Cone closure for laser welding seam on a component of an air intake
DE10302256A1 (en) * 2003-01-22 2004-08-05 Hydac Technology Gmbh Method of making a bladder
DE10304071B4 (en) * 2003-01-31 2005-06-23 Gather Industrie Gmbh A method of attaching a magnetic mount to a gear driving shaft of a magnetically coupled gear pump
DE10322090A1 (en) * 2003-05-15 2004-12-23 Siemens Ag connection
EP1440784A1 (en) * 2003-05-30 2004-07-28 Leister Process Technologies Method and apparatus for joining plastic parts with a laser beam
DE10326906B4 (en) * 2003-06-14 2008-09-11 Varta Automotive Systems Gmbh Accumulator and method for producing a sealed contact terminal bushing
DE10342921B4 (en) * 2003-09-15 2014-05-08 Plasticon Germany Gmbh Process for welding plastics and a welding agent required for this purpose
EP1754923A1 (en) * 2005-08-20 2007-02-21 LuK Lamellen und Kupplungsbau Beteiligungs KG Plastic conduit
DE102005052825A1 (en) * 2005-11-05 2007-05-10 Rehau Ag + Co. Pressure resistant plastic tube and connector assembly manufacture involves alignment of fibers in melt flow direction in intended welding area of connector during molding stage
GB2446385A (en) * 2007-02-12 2008-08-13 Inbev Sa Laser welding valve assembly to beer keg
DE102007038578A1 (en) 2007-08-16 2009-02-19 Evonik Degussa Gmbh Method of decorating surfaces
CN100553931C (en) * 2008-03-31 2009-10-28 邵泰清 Production technology of the steel skeleton plastic clad pipe of band plastics termination and products thereof
JP5342286B2 (en) * 2008-05-16 2013-11-13 日東電工株式会社 Manufacturing method of sheet joined body and sheet joined body
CN101814534B (en) * 2009-02-24 2012-02-29 苏州中来光伏新材股份有限公司 Radiation modification fluorine resin film, preparation process and solar flexible battery
CN103170184B (en) * 2013-04-12 2015-02-25 武汉纺织大学 Preparation method of glass fiber membrane filter material
CN103640212B (en) * 2013-12-21 2016-05-11 厦门建霖工业有限公司 Cross water assembly laser welding process
DE102014114249A1 (en) * 2014-09-30 2016-03-31 Illinois Tool Works Inc. Connector and connector
DE102017011354A1 (en) * 2017-12-07 2019-06-13 Kocher-Plastik Maschinenbau Gmbh Method and device for connecting at least two plastic parts
CN113543746A (en) * 2019-03-11 2021-10-22 Dlh鲍尔斯公司 Dual spray nozzle tip assembly
CN110594516A (en) * 2019-09-11 2019-12-20 长春亚大汽车零件制造有限公司 Connecting structure of plastic corrugated pipe and plastic connector
KR102620420B1 (en) * 2019-09-24 2024-01-03 다이킨 고교 가부시키가이샤 weld body
NL2024972B1 (en) 2020-02-21 2021-10-06 Heineken Supply Chain Bv Method for joining a fluid conduit and a connection hub.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE792903A (en) * 1971-12-30 1973-06-18 American Can Co LASER BEAM WELDING PLASTIC TUBES
CH679383A5 (en) * 1989-08-31 1992-02-14 Fischer Ag Georg
EP0751865B2 (en) * 1994-03-31 2004-07-14 Marquardt GmbH Plastic workpiece and process for producing it

Also Published As

Publication number Publication date
DE19916786C2 (en) 2002-11-07
DE19916786A1 (en) 2000-10-19

Similar Documents

Publication Publication Date Title
CH694661A5 (en) A method of connecting at least two existing plastic pipe and / or wall elements.
US20020100540A1 (en) Simultaneous butt and lap joints
US6596122B1 (en) Simultaneous butt and lap joints
DE102005000160B4 (en) Method for the positive connection of two components
JPS6249850B2 (en)
DE102006060056A1 (en) Joining of lightweight components by sticking for use in an automotive industry, a machine- and an aircraft construction, comprises applying inorganic and/or organic adhesives on surfaces to be joined and joining the surfaces
EP2159037A1 (en) Connection or branching element for connecting with a tube end section using the laser radiation method and laser head and connection method
WO2017170518A1 (en) Joint structure
DE10303534B4 (en) Method for connecting at least two existing plastic pipe and / or wall elements
CN111085780A (en) Laser welding method for metal container
DE10120351A1 (en) Holding jig for laser welding thermoplastics has a partly open vacuum chamber closed by the joint components that are being supported
DE19954440A1 (en) Production of cylindrical moldings for use as pipes or in tanks comprises bending flat plastic sheet to form tube of desired diameter then using laser to weld edges together
DE19860357A1 (en) Fluid filter for vehicle has two housing sections forming interior chamber with receiving filter media and two circumscribing flanges in abutting relationship, and a laser weld bead for coupling the flanges
Brodhun et al. Laser transmission welding of thermoplastic fasteners: Influence of temperature distribution in a scanning based process
DE10342921B4 (en) Process for welding plastics and a welding agent required for this purpose
EP0995535B1 (en) Laser welding method of oil filters for automatic gearbox
EP2194303A1 (en) Medium-lead component for steering a media flow
DE19911284C2 (en) Process for producing a socket connection for cross-linked polyethylene pipes (PE-X pipes) by rotary friction welding
DE10359912A1 (en) Composite component, comprises an inner plastic layer and an outer mantle layer, connected via an intermediate layer which absorbs electromagnetic radiation
US3708864A (en) Method of forming a weld fitting
EP1609555B1 (en) Welding device for tubular plastic parts
DE3708705A1 (en) METHOD AND DEVICE FOR WELDING TUBULAR PLASTIC PARTS
JPS60212330A (en) Joining of heterogeneous synthetic resin materials
EP1238781B1 (en) Process for welding thermoplastic joining parts using laser diode radiation
EP1475219B1 (en) Tool provided with a laserbeam for joining synthetic materials by the use of a filler material

Legal Events

Date Code Title Description
PFA Name/firm changed

Owner name: PLASTICON GERMANY GMBH

Free format text: KTD-PLASTICON-KUNSTSTOFFTECHNIK DINSLAKEN GMBH#DIESELSTRASSE 10#46539 DINSLAKEN (DE) -TRANSFER TO- PLASTICON GERMANY GMBH#DIESELSTRASSE 10#46539 DINSLAKEN (DE)

PL Patent ceased