CH678433A5 - - Google Patents

Download PDF

Info

Publication number
CH678433A5
CH678433A5 CH289/89A CH28989A CH678433A5 CH 678433 A5 CH678433 A5 CH 678433A5 CH 289/89 A CH289/89 A CH 289/89A CH 28989 A CH28989 A CH 28989A CH 678433 A5 CH678433 A5 CH 678433A5
Authority
CH
Switzerland
Prior art keywords
sep
tube
blow candle
preparation
filaments
Prior art date
Application number
CH289/89A
Other languages
German (de)
Inventor
Hans Linz
Original Assignee
Schweizerische Viscose
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schweizerische Viscose filed Critical Schweizerische Viscose
Priority to CH289/89A priority Critical patent/CH678433A5/de
Publication of CH678433A5 publication Critical patent/CH678433A5/de

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes

Abstract

The invention concerns a device for cooling filaments by blowing gas over the filaments from a centrally located nozzle (4). Disposed between the nozzle (4) and the preparation device (6) is a closed tube (5) with a length of 200 to 2000 mm. The design proposed by the invention cools the fibrils to an extent such that the orientation of the molecules within the individual filaments is uniform, thus giving an extremely regular filament.

Description

       

  
 



  Die vorliegende Erfindung betrifft eine Vorrichtung zum Abkühlen, Stabilisieren und Präparieren von schmelzgesponnenen Filamenten, bestehend aus einer auf das Zentrum eines ringförmigen Spinndüsenpakets ausgerichteten Blaskerze und einer Präparationseinrichtung. 



  Bekannt ist eine poröse Blaskerze, die von unten in das Zentrum eines ringförmigen Fibrillenbündels eingefahren wird und die das Fibrillenbündel mit einem Gasstrom radialsymmetrisch von innen nach aussen durchsetzt, CH-A 667 676. Dadurch wird die Wärme aus dem Schmelzestrahl hinreichend effizient abgeführt. Die Fibrillen können so unmittelbar unterhalb der Blaskerze mit einer Präparation beaufschlagt und anschliessend zu einem geschlossenen Bündel zusammengefasst werden. Verklebungen zwischen den einzelnen Fibrillen treten nicht auf. 



  Es hat sich jedoch gezeigt, dass diese bekannte Vorrichtung nicht für alle Fälle anwendbar ist. Beim Erspinnen von Multifilamentgarnen, z.B. aus PET, mit gröberem Einzelfasertiter, insbesondere bei Spinngeschwindigkeiten von 2000 m/min und mehr, werden Garne erhalten, welche sich nicht in der gewohnten Weise weiterverarbeiten, insbesondere verstrecken lassen. Der Streckprozess wird durch das Auftreten von untolerierbar vielen Filament brüchen so stark gestört, dass kein Garn mit hinreichenden mechanischen Eigenschaften erzeugt werden kann. 



  Es hat sich gezeigt, dass die so ersponnenen Multifilamentgarne sehr grosse Unregelmässigkeiten in ihrer molekularen Struktur aufweisen. Die ermittelten Werte für die optische Doppelbrechung, als Mass für die molekulare Orientierung, sind sowohl von Fibrille zu Fibrille als auch längs der einzelnen Fibrillen ungewöhnlich grossen Streuungen unterworfen und decken jeweils einen sehr breiten Bereich ab. 



  Nun sind aber die Anforderung an die Regelmässigkeit eines endlosen Multifilaments so hoch, dass, z.B. im Falle von Filamenten aus Polyethylenterphthalat, der Wertebereich für die optische Doppelbrechung nicht breiter als 10% vom gefundenen Mittelwert sein sollte. Beim Verstrecken von Filamenten mit mehr als 10% treten untolerierbar viele Filamentbrüche auf. Im übrigen ergeben derartig unregelmässige Filamente für den textilen Einsatz beim Anfärben Anlass zu sehr unbefriedigender Farbegalität. 



  Es wurde gefunden, dass Unregelmässigkeiten in der molekularen Orientierung nicht auftreten, sofern das Produkt aus der Spinnabzugsgeschwindigkeit und der Quadratwurzel aus dem Fibrillentiter, v.SQR(dpf), einen bestimmten Wert nicht überschreitet. 



  Aufgabe der vorliegenden Erfindung ist es, ein schmelzgesponnenes Multifilament so abzukühlen und zu verfestigen, dass die molekulare Orientierung innerhalb der einzelnen Filamente gleichmässig ist. 



  Eine weitere Aufgabe liegt in grösseren Schmelzedurchsätzen pro Fibrille, bzw. höheren Geschwindigkeiten, was besonders für den Einsatz in der Produktion von Endlosfäden von erheblichem Interesse ist. 



  Die Aufgabe wird erfindungsgemäss nach Anspruch 1 dadurch gelöst, dass zwischen der Blaskerze und der Präparationseinrichtung ein geschlossenes Rohr angeordnet ist. 



  Durch das Einfügen eines geschlossenen Rohres wird die Distanz zwischen der Blaskerze und der Auftragsvorrichtung für das Präparationsmittel erhöht. Das hat den Vorteil, dass für das Abkühlen eines schmelzgesponnenen Filamentes eine grössere Zeitspanne zur Verfügung steht. Dies ist umso wichtiger, je dicker die einzelnen Filamente und je höher die Spinnabzugsgeschwindigkeit ist. Es ist daher zweckmässig, dass der Ort, an welchem das frisch gesponnene Filament zum ersten Mal in mechanischen Kontakt mit einem Fadenleitorgan irgendwelcher Art kommt, umso weiter von der Spinndüse angeordnet ist, je grösser der Filamenttiter bzw. je höher die Abzugsgeschwindigkeit ist. Hierbei ist derjenige Titer von Bedeutung, den das Filament während der Abkühlphase besitzt. 



  Es ist von Vorteil, wenn die Distanz zwischen dem Beginn der Anblasung und dem Ort des Präparationsauftrags wenigstens 950 mm beträgt. Da die Auftragseinrichtung aus konstruktiven Gründen selbst 220 mm über die Stelle hinausragt, an welcher die Präparation eigentlich aufgetragen wird, ist es zweckmässig, zwischen der Blaskerze und der Präparationseinrichtung ein Rohr von mindestens 200 mm Länge vorzusehen. 



  Es ist von Vorteil, wenn das Rohr von einem kegelförmigen Mantel umgeben ist. Dadurch wird die Kühlluft quantitativ  stetitg und turbulenzfrei aus dem Innern des zylindrischen Fibrillenbündels nach aussen geleitet. 



  Je nach Art des Polymers, des Titers und der Geschwindigkeit des gesponnenen Filaments sollte die Länge dieses Rohres zwischen 200 bis 2000 mm, insbesondere zwischen 200 und 1780 mm, bevorzugt zwischen 200 und 1160 mm betragen. 



  Gröbere Filamenttiter und höhere Spinngeschwindigkeiten verlangen grössere Distanzen zwischen der Blaskerze und dem Ort des Präparationsauftrags als geringere. Das gleiche gilt für Substanzen mit höherem Wärmeinhalt. Dies führt u.U. zu Rohrlängen, bei welchen die mechanische Stabilisierung des zylinderförmigen Fibrillenbündels problematisch wird. Es ist bekannt, dass ein freies Fibrillenbündel umso stärker von äusseren Lufteinflüssen gestört wird, je länger es ist. 



  Da aber einerseits die Abkühlbedingungen gewisse Minimallängen erfordern, muss anderseits durch geeignete Massnahmen dafür gesorgt werden, dass der störende Einfluss von äusseren Luftströmungen eliminiert oder zumindest auf ein erforderliches Mass reduziert wird. Es ist daher zweckmässig, die Anblaseinrichtung mit einem ortsfesten Mantel zu umgeben, welcher in einer bevorzugten Ausführung aus einem zylindrischen Lochblech besteht. Dieser Mantel reicht von der Unterkante des Spinndüsenpakets oder Heizkragens, sofern vorhanden, bis in den Bereich der Präparationseinrichtung. Es kann sowohl am oberen als auch am unteren Ende dieses Mantels ein definierter Abstand zum Spinndüsenpaket oder Heizkragen oder zur Präparationseinrichtung vorgesehen werden, um die Möglichkeit zu einem kontrollierten Luftaustausch mit der Umgebung zu schaffen. 



  Der Mantel ist zweckmässig so ausgestaltet, dass sowohl ein Teil davon nach hinten als auch ein Teil nach vorn aufgeklappt werden kann. Ersteres ist erforderlich, um der Anblaskerze den erforderlichen Weg freizugeben, den die Einrichtung beim Ausfahren aus der Betriebsstellung zurücklegt. Letzteres dient zum \ffnen des Spinnschachtes für das Bedienungspersonal, um z.B. im Falle des Anspinnens den Faden vom Spinnstock in den darunter befindlichen Raum mit der Abzugsvorrichtung hinunterzugeben. 



   Es ist zweckmässig auf der Blaskerze einen Zentrierdorn vorzusehen, der in eine im Zentrum des Spinndüsenpakets angebrachte Bohrung eingreift. Dadurch erhält die ganze Blaseinrichtung einen zusätzlichen Fixpunkt und ist damit unabhängig von der Standfläche, welche bei verschiedener Bodenbelastung variiert. 



  Zur Durchführung des Verfahrens mit der erfindungsgemässen Vorrichtung ist es zweckmässig, dass das Produkt aus der Spinngeschwindigkeit v (in m/min) und der Quadratwurzel aus dem Filamenttiter (in dtex) zwischen 5000 und 20 000, bevorzugt zwischen 5270 und 11 000 liegt. 



  Das hat den Vorteil, dass die schmelzgesponnenen Filamente hinreichend Zeit zum Abkühlen erhalten, bevor sie in mechanischen Kontakt mit der Auftragseinrichtung für die Spinnpräparation gelangen. 



  Die erfindungsgemässe Vorrichtung soll anhand einer Zeichnung erläutert werden. 



  Es zeigen: 
 
   Fig. 1 ein Schema der Abkühlvorrichtung 
   Fig. 2 eine Variante des geschlossenen Rohres nach Fig. 1 
 



  In Fig. 1 ist mit dem Bezugszeichen 1 ein Spinndüsenpaket bezeichnet, welches innerhalb eines Heizkragens 2 angeordnet ist. Das Spinndüsenpaket und der Heizkragen 2 sind von einer Isolation 15 umgeben. Eine poröse Blaskerze 4 ist gasdicht mit einem über seine ganze Länge geschlossenen Rohr 5 mit annähernd gleichem Durchmesser verbunden. 



  Am unteren Ende des Rohrs 5 ist eine ringförmige Präparationseinrichtung 6 konzentrisch angeordnet, welche zum Auftragen einer Spinnpräparation auf ein Filamentbündel 3 dient. Die Blaskerze 4, das geschlossene Rohr 5 und die Präparationseinrichtung 6 werden von einem Rohrkonus 9 getragen, welcher seinerseits über einen schmalen Anschlusskanal 10 und ein weiteres geschlossenes Rohr 11 mit dem Gebäude in einer nicht gezeichneten Weise beweglich verbunden ist. Die gesamte Einrichtung ist vollständig aus dem Fadenweg heraus fahrbar angeordnet. 



  Am oberen Ende der Blaskerze 4 befindet sich ein Dorn 12, welcher in der Betriebsstellung der Einrichtung in eine entsprechende Bohrung 13 im Zentrum des Spinndüsenpakets 1 eingreift. Unterhalb des Rohrkonus 9 befindet sich, ebenfalls in konzentrischer Anordnung, ein Spinnrohr 8, an dessen oberen Ende eine Konvergenzeinrichtung 7 angebracht ist. Die Blaskerze 4, das geschlossene Rohr 5 und die Präparationseinrichtung 6 sind von einem Mantel 14 umgeben, welcher in einer bevorzugten Ausführung aus einem Lochblech geformt ist. Das Rohr 5 kann in einer Variante von einem kegelförmigen Mantel 16 umgeben sein. 



  Die Blaskerze 4 kann auch, soweit dies technisch möglich ist, bis in die unmittelbare Nähe der Spinndüsenplatte positioniert werden. Ferner kann zum Zwecke eines kontrollierten Luftaustausches mit der Umgebung sowohl am oberen als auch am unteren Ende des Mantels 14 ein defi nierter Abstand zu Spinndüsenplatte bzw. Heizkragen oder zur Präparationseinrichtung vorgesehen werden. 



  Im Betrieb wird die Blaskerze 4 über die Rohrleitung 11, den Anschlusskanal 10, den Rohrkonus 9, durch die Präparationseinrichtung 6 und das Rohr 5 mit der erforderlichen Kühlluft versorgt, welche radial symmetrisch aus der porösen Oberfläche der Blaskerze 4 entweicht. Die Präparationseinrichtung 6 wird über eine nicht gezeigte Leitung, welche innerhalb des Rohres 11, des Anschlusskanals 10 und des Rohrkonus 9 verlegt ist, mit der entsprechenden Präparation versorgt. 



  Die zu verspinnende Polymerschmelze wird in bekannter Weise durch auf konzentrischen Kreisen angeordnete Spinndüsenbohrungen ausgetragen. Sie passiert zunächst in freiem Fall die Heizkragenzone 2 und gelangt dann in den Bereich der Blaskerze 4, wo sie durch die austretende Kühlluft abgekühlt und zu Filamenten 3 verfestigt wird. 



  Nach dem Passieren einer weiteren durch das geschlossene Rohr 5 definierten Strecke werden die Filamente 3 mittels der Präparationseinrichtung 6 mit einer Spinnpräparation versehen. Anschliessend werden die einzelnen Filamente mit Hilfe des Konvergenzfadenführers 7 kegelförmig zu einem geschlossenen Filamentbündel 3 min  vereinigt und durch das Spinnrohr 8 der ebenfalls nicht gezeigten Fadenabzugseinrichtung zugeführt. 



  Die Wirkungsweise der Erfindung soll anhand der folgenden Beispiele und den in der Tabelle aufgelisteten Resulaten erläutert werden. Diese Beispiele beziehen sich auf den Einsatz einer solchen Zentralanblasung beim Schmelzspinnen von Polyethylenterephthalat. 


 Beispiel 1 
 



  Polyethylenterephthalat Granulat mit einer Lösungsviskosität von 114 Einheiten, bestimmt nach ISO-Norm Nr. 1628/5-1986 (E), wurde in einem Extruder aufgeschmolzen und bei einer Schmelzetemperatur von 289 DEG C durch eine Spinndüse mit 128 auf zwei konzentrischen Kreisen angeordneten Bohrungen zu einem Multifilament versponnen. 



  Die austretende Schmelze wurde mit der erfindungsgemässen Zentralanblasung unter dem Einsatz von 600 cbm/h Luft von 35 DEG C gekühlt. Die Blaskerze 4 war 530 mm lang bei einem Durchmesser von 95 mm. Das geschlossene Rohr 5 zwischen der Blaskerze 4 und der Auftragsvorrichtung 6 für die Präparation war 200 mm lang. Demzufolge befand sich der Ort für den Auftrag der Präparation 420 mm unterhalb der Blaskerze. 



  Das verfestigte Multifilament wurde mit einer Geschwindigkeit von 3100 m/min aus dem Spinnschacht abgezogen. Der Schmelzedurchsatz wurde so gewählt, dass die einzelnen Filamente einen Titer von 3.6 dtex aufwiesen. Die an diesem Multifilament gemessenen Werte der optischen Doppelbrechung lagen im Bereich zwischen 0.048 und 0.053. Die molekulare Orientierung des Multifilaments war somit hinreichend regelmässig, dass eine gute Weiterverarbeitung möglich war. 


 Beispiele 2 bis 4 
 



  Polyethylenterephthalat wie in Beispiel 1 wurde auf die gleiche Weise versponnen und abgekühlt. Jedoch betrug bei diesen Beispielen die Länge des Rohres 5 1160 mm, d.h. die Auftragseinrichtung für die Spinnpräparation 6 befand sich 1380 mm unterhalb der Blaskerze. Der Schmelzedurchsatz pro Spinndüsenbohrung wurde dergestalt variiert, dass bei einer Abzugsgeschwindigkeit von 3100 m/min Mul tifilamente resultierten, deren Einzelfibrillentiter zwischen 4.5 und 11.5 dtex lag. Auch bei diesen Multifilamenten lagen die Werte für die optische Doppelbrechung innerhalb eines schmalen Bereichs von 0.006 Einheiten. 


 Beispiel 5 
 



   Polyethylenterephthalat wurde wie in Beispiel 1 versponnen und unter den gleichen Bedingungen abgekühlt und verfestigt. Die Länge des Rohres 5 betrug 200 mm. Die Abzugsgeschwindigkeit lag bei 2000 m/min. Der Schmelzedurchsatz wurde so gewählt, dass ein Multifilament mit 8.5 dtex Einzelfibrillentiter resultierte. Die an diesen Filamenten gefundenen Werte für die optische Doppelbrechung lagen innerhalb eines Bereichs zwischen 0.024 und 0.045. 


 Beispiel 6 
 



  Polyethylenterephthalat wurde wie in Beispiel 1 versponnen, abgekühlt und verfestigt. Jedoch wurde bei 3100 m/min ein Multifilament mit 5.6 dtex Einzelfibrillentiter produziert. Hierbei wurden Werte für die optische Doppelbrechung gefunden, welche innerhalb eines Bereichs von 0.048 bis 0.110 lagen. 



  Die Versuchsergebnisse der Beispiele sind in der folgenden Tabelle zusammengefasst. 
<tb><TABLE> Columns=7 
<tb>Title: Tabelle 
<tb>Head Col 01 AL=L: Beispiel Nr. 
<tb>Head Col 02 AL=L: 1 
<tb>Head Col 03 AL=L: 2 
<tb>Head Col 04 AL=L: 3 
<tb>Head Col 05 AL=L: 4 
<tb>Head Col 06 AL=L: 5 
<tb>Head Col 07 AL=L: 6 
<tb> <SEP>Spinngeschwindigkeit [m/min] <SEP>3100 <SEP>3100 <SEP>3100 <SEP>3100 <SEP>2000 <SEP>3100 
<tb> <SEP>Filamenttiter [dpf] <SEP>3.6 <SEP>4.5 <SEP>8.8 <SEP>11.5 <SEP>8.5 <SEP>5.6 
<tb> <SEP>v .

  SQR (dpf) <SEP>5881 <SEP>6576 <SEP>9196 <SEP>10 513 <SEP>5831 <SEP>7336 
<tb> <SEP>Rohrlänge [mm] <SEP>200 <SEP>1160 <SEP>1160 <SEP>1160 <SEP>200 <SEP>200 
<tb> <SEP>Distanz Blaskerze - Präparation [mm] <SEP>420 <SEP>1380 <SEP>1380 <SEP>1380 <SEP>420 <SEP>420 
<tb> <SEP>DB . 10^<3> Minimalwert <SEP>48 <SEP>50.1 <SEP>51.1 <SEP>48.8 <SEP>23.9 <SEP>48.3 
<tb> <SEP>DB . 10^<3> Maximalwert <SEP>53 <SEP>55.5 <SEP>55.6 <SEP>55.1 <SEP>45.8 <SEP>110.2 
<tb></TABLE> 



  Fäden gemäss den Beispielen 1-4 können gut weiterverarbeitet, insbesondere verstreckt werden. Bei den Fäden gemäss den Beispielen 5 und 6 treten beim Verstrecken untolerierbar viele Filamentbrüche auf. 



   Mit der erfindungsgemässen Vorrichtung ist es erstmals gelungen, Filamente aus PET bei Geschwindigkeiten von 2000 m/min und mehr mit einem Fibrillentiter von bis zu 11.5 dtex herzustellen, die so regelmässig sind, dass sie störungsfrei weiterverabeitet werden können. 



  Das erfindungsgemässe Verfahren lässt sich mit allen bekannten thermoplastischen Polymeren durchführen, insbesondere mit Polyestern wie Polyethylenterephthalat, Polyamiden wie Polycaprolactam, Polyhexamethylenadipinsäureamid und ähnlichen im textilen Bereich verwendeten Polyamiden, Polyethylen, Polypropylen und deren Verwandten. Hierbei ist zu beachten, dass bei Anwendungen der Erfindung auf andere Polymere Rohrlängen bis 2000 mm erforderlich sein können. 



  
 



  The present invention relates to a device for cooling, stabilizing and preparing melt-spun filaments, consisting of a blow candle aligned with the center of an annular spinneret packet and a preparation device.



  A porous blow candle is known, which is inserted from below into the center of an annular bundle of fibrils and which penetrates the bundle of fibrils with a gas stream in a radially symmetrical manner from the inside out, CH-A 667 676. As a result, the heat is dissipated from the melt jet with sufficient efficiency. The fibrils can thus be subjected to a preparation immediately below the blow candle and then combined into a closed bundle. There is no sticking between the individual fibrils.



  However, it has been shown that this known device cannot be used in all cases. When spinning multifilament yarns, e.g. from PET, with coarser single-fiber titer, especially at spinning speeds of 2000 m / min and more, yarns are obtained which cannot be further processed, in particular stretched, in the usual way. The stretching process is so severely disturbed by the occurrence of an intolerable number of filament breaks that no yarn with sufficient mechanical properties can be produced.



  It has been shown that the multifilament yarns spun in this way have very large irregularities in their molecular structure. The values determined for the optical birefringence, as a measure of the molecular orientation, are subject to unusually large scattering both from fibril to fibril and along the individual fibrils and each cover a very wide range.



  However, the requirements for the regularity of an endless multifilament are so high that, e.g. in the case of filaments made of polyethylene terephthalate, the range of values for the optical birefringence should not be wider than 10% of the mean found. When filaments are stretched by more than 10%, an intolerable number of filament breaks occur. Incidentally, such irregular filaments for textile use in dyeing give rise to very unsatisfactory color levelness.



  It was found that irregularities in the molecular orientation do not occur if the product of the spinning take-off speed and the square root of the fibril titer, v.SQR (dpf), does not exceed a certain value.



  The object of the present invention is to cool and solidify a melt-spun multifilament in such a way that the molecular orientation within the individual filaments is uniform.



  Another task lies in larger melt throughputs per fibril, or higher speeds, which is of particular interest for use in the production of continuous filaments.



  The object is achieved according to the invention in that a closed tube is arranged between the blow candle and the preparation device.



  By inserting a closed tube, the distance between the blow candle and the application device for the preparation agent is increased. This has the advantage that a longer period of time is available for cooling a melt-spun filament. This is all the more important the thicker the individual filaments and the higher the spinning take-off speed. It is therefore expedient that the location at which the freshly spun filament comes into mechanical contact with a thread guide member of any kind is located further from the spinneret, the larger the filament titer or the higher the take-off speed. The titer that the filament has during the cooling phase is important here.



  It is advantageous if the distance between the start of the blowing and the location of the preparation job is at least 950 mm. Since the application device itself protrudes 220 mm beyond the point at which the preparation is actually applied, it is expedient to provide a tube of at least 200 mm in length between the blow candle and the preparation device.



  It is advantageous if the tube is surrounded by a conical jacket. As a result, the cooling air is routed quantitatively outwards and without turbulence from the inside of the cylindrical fibril bundle.



  Depending on the type of polymer, the titer and the speed of the spun filament, the length of this tube should be between 200 and 2000 mm, in particular between 200 and 1780 mm, preferably between 200 and 1160 mm.



  Coarser filament titers and higher spinning speeds require larger distances between the blow candle and the location of the preparation job than shorter distances. The same applies to substances with a higher heat content. This may result in to tube lengths at which the mechanical stabilization of the cylindrical fibril bundle becomes problematic. It is known that the longer a fibril bundle is disturbed by external air influences, the longer it is.



  Since, on the one hand, the cooling conditions require certain minimum lengths, on the other hand, suitable measures must be taken to ensure that the disruptive influence of external air currents is eliminated or at least reduced to the required extent. It is therefore expedient to surround the blowing device with a stationary jacket, which in a preferred embodiment consists of a cylindrical perforated plate. This jacket extends from the lower edge of the spinneret pack or heating collar, if present, to the area of the preparation device. A defined distance from the spinneret package or heating collar or from the preparation device can be provided both at the upper and at the lower end of this jacket, in order to create the possibility of a controlled exchange of air with the surroundings.



  The jacket is expediently designed such that both a part of it can be opened to the rear and a part to the front. The former is necessary in order to enable the blow-on candle to travel the required distance that the device travels when it exits the operating position. The latter is used to open the spinning shaft for the operating personnel, e.g. in the case of spinning the thread down from the spinning stick into the space below with the take-off device.



   It is expedient to provide a centering mandrel on the blow candle, which engages in a bore made in the center of the spinneret pack. This gives the entire blowing device an additional fixed point and is therefore independent of the footprint, which varies with different floor loads.



  To carry out the process with the device according to the invention, it is expedient for the product of the spinning speed v (in m / min) and the square root of the filament titer (in dtex) to be between 5000 and 20,000, preferably between 5270 and 11,000.



  This has the advantage that the melt-spun filaments are given sufficient time to cool down before they come into mechanical contact with the application device for the spin preparation.



  The device according to the invention will be explained with reference to a drawing.



  Show it:
 
   Fig. 1 is a diagram of the cooling device
   FIG. 2 shows a variant of the closed tube according to FIG. 1
 



  In Fig. 1, the reference numeral 1 denotes a spinneret pack, which is arranged within a heating collar 2. The spinneret pack and the heating collar 2 are surrounded by insulation 15. A porous blow candle 4 is gas-tightly connected to a tube 5 of approximately the same diameter which is closed over its entire length.



  At the lower end of the tube 5, an annular preparation device 6 is arranged concentrically, which is used to apply a spin preparation to a filament bundle 3. The blow candle 4, the closed tube 5 and the preparation device 6 are carried by a tube cone 9, which in turn is movably connected to the building in a manner not shown via a narrow connecting channel 10 and a further closed tube 11. The entire device is arranged to be completely movable out of the thread path.



  At the upper end of the blow candle 4 there is a mandrel 12 which, in the operating position of the device, engages in a corresponding bore 13 in the center of the spinneret pack 1. Below the tube cone 9 there is, likewise in a concentric arrangement, a spinning tube 8, at the upper end of which a convergence device 7 is attached. The blow candle 4, the closed tube 5 and the preparation device 6 are surrounded by a jacket 14, which in a preferred embodiment is formed from a perforated plate. In one variant, the tube 5 can be surrounded by a conical jacket 16.



  The blow candle 4 can, as far as this is technically possible, be positioned up to the immediate vicinity of the spinneret plate. Furthermore, a defined distance to the spinneret plate or heating collar or to the preparation device can be provided for the purpose of controlled air exchange with the environment both at the upper and at the lower end of the jacket 14.



  In operation, the blow candle 4 is supplied with the required cooling air via the pipeline 11, the connecting duct 10, the pipe cone 9, the preparation device 6 and the pipe 5, which air escapes radially symmetrically from the porous surface of the blow candle 4. The preparation device 6 is supplied with the corresponding preparation via a line, not shown, which is laid within the tube 11, the connecting channel 10 and the tube cone 9.



  The polymer melt to be spun is discharged in a known manner through spinneret bores arranged on concentric circles. It first passes in a free fall the heating collar zone 2 and then reaches the area of the blow candle 4, where it is cooled by the emerging cooling air and solidified into filaments 3.



  After passing a further distance defined by the closed tube 5, the filaments 3 are provided with a spin preparation by means of the preparation device 6. The individual filaments are then conically combined with the aid of the convergence thread guide 7 to form a closed filament bundle for 3 minutes and fed through the spinning tube 8 to the thread take-off device, also not shown.



  The mode of operation of the invention will be explained using the following examples and the results listed in the table. These examples relate to the use of such a central blowing in melt spinning polyethylene terephthalate.


 example 1
 



  Polyethylene terephthalate granules with a solution viscosity of 114 units, determined in accordance with ISO standard No. 1628 / 5-1986 (E), were melted in an extruder and added at a melt temperature of 289 ° C. through a spinneret with 128 holes arranged on two concentric circles spun on a multifilament.



  The emerging melt was cooled with the central blower according to the invention using 600 cbm / h of air at 35 ° C. The blow candle 4 was 530 mm long with a diameter of 95 mm. The closed tube 5 between the blow candle 4 and the application device 6 for the preparation was 200 mm long. As a result, the location for the application of the preparation was 420 mm below the blow candle.



  The consolidated multifilament was withdrawn from the spinning shaft at a speed of 3100 m / min. The melt throughput was chosen so that the individual filaments had a titer of 3.6 dtex. The optical birefringence values measured on this multifilament were in the range between 0.048 and 0.053. The molecular orientation of the multifilament was therefore sufficiently regular that good further processing was possible.


 Examples 2 to 4
 



  Polyethylene terephthalate as in Example 1 was spun and cooled in the same manner. However, in these examples, the length of the pipe 5 was 1160 mm, i.e. the application device for the spin preparation 6 was 1380 mm below the blow candle. The melt throughput per spinneret bore was varied in such a way that multifilaments resulted with a take-off speed of 3100 m / min, the individual fibril titers of which were between 4.5 and 11.5 dtex. With these multifilaments, too, the values for the optical birefringence were within a narrow range of 0.006 units.


 Example 5
 



   Polyethylene terephthalate was spun as in Example 1 and cooled and solidified under the same conditions. The length of the tube 5 was 200 mm. The take-off speed was 2000 m / min. The melt throughput was chosen so that a multifilament with 8.5 dtex single fibril titer resulted. The optical birefringence values found on these filaments were within a range between 0.024 and 0.045.


 Example 6
 



  Polyethylene terephthalate was spun, cooled and solidified as in Example 1. However, a multifilament with 5.6 dtex single fibril titer was produced at 3100 m / min. Optical birefringence values were found which were within a range from 0.048 to 0.110.



  The test results of the examples are summarized in the following table.
<tb> <TABLE> Columns = 7
<tb> Title: table
<tb> Head Col 01 AL = L: Example no.
<tb> Head Col 02 AL = L: 1
<tb> Head Col 03 AL = L: 2
<tb> Head Col 04 AL = L: 3
<tb> Head Col 05 AL = L: 4
<tb> Head Col 06 AL = L: 5
<tb> Head Col 07 AL = L: 6
<tb> <SEP> spinning speed [m / min] <SEP> 3100 <SEP> 3100 <SEP> 3100 <SEP> 3100 <SEP> 2000 <SEP> 3100
<tb> <SEP> filament titer [dpf] <SEP> 3.6 <SEP> 4.5 <SEP> 8.8 <SEP> 11.5 <SEP> 8.5 <SEP> 5.6
<tb> <SEP> v.

  SQR (dpf) <SEP> 5881 <SEP> 6576 <SEP> 9196 <SEP> 10 513 <SEP> 5831 <SEP> 7336
<tb> <SEP> tube length [mm] <SEP> 200 <SEP> 1160 <SEP> 1160 <SEP> 1160 <SEP> 200 <SEP> 200
<tb> <SEP> Distance from blow candle to preparation [mm] <SEP> 420 <SEP> 1380 <SEP> 1380 <SEP> 1380 <SEP> 420 <SEP> 420
<tb> <SEP> DB. 10 ^ <3> Minimum value <SEP> 48 <SEP> 50.1 <SEP> 51.1 <SEP> 48.8 <SEP> 23.9 <SEP> 48.3
<tb> <SEP> DB. 10 ^ <3> Maximum value <SEP> 53 <SEP> 55.5 <SEP> 55.6 <SEP> 55.1 <SEP> 45.8 <SEP> 110.2
<tb> </TABLE>



  Threads according to Examples 1-4 can be processed well, in particular drawn. With the threads according to Examples 5 and 6, an intolerable number of filament breaks occur during stretching.



   With the device according to the invention, it was possible for the first time to produce filaments from PET at speeds of 2000 m / min and more with a fibril titer of up to 11.5 dtex, which are so regular that they can be further processed without problems.



  The process according to the invention can be carried out with all known thermoplastic polymers, in particular with polyesters such as polyethylene terephthalate, polyamides such as polycaprolactam, polyhexamethylene adipamide and similar polyamides, polyethylene, polypropylene and their relatives used in the textile sector. It should be noted here that tube lengths of up to 2000 mm may be required when the invention is applied to other polymers.


    

Claims (6)

1. Vorrichtung zum Abkühlen, Stabilisieren und Präparieren von schmelzgesponnenen Filamenten, bestehend aus einer auf das Zentrum eines ringförmigen Spinndüsenpakets (1) ausgerichteten Blaskerze (4) und einer Präparationseinrichtung (6), dadurch gekennzeichnet, dass zwischen der Blaskerze (4) und der Präparationseinrichtung (6) ein geschlossenes Rohr (5) angeordnet ist.       1. Device for cooling, stabilizing and preparing melt-spun filaments, consisting of a blow candle (4) aligned with the center of an annular spinneret pack (1) and a preparation device (6), characterized in that between the blow candle (4) and the preparation device (6) a closed tube (5) is arranged. 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Rohr (5) eine Länge von 200 bis 2000 mm aufweist. 2. Device according to claim 1, characterized in that the tube (5) has a length of 200 to 2000 mm. 3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass das Rohr (5) von einem kegelförmigen Mantel (16) umgeben ist. 3. Device according to claim 2, characterized in that the tube (5) is surrounded by a conical jacket (16). 4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Blaskerze (4) mit einem Zentrierdorn (12) versehen ist, der in die Bohrung (13) im Zentrum des Spinndüsenpakets (1) eingreift. 4. The device according to claim 1, characterized in that the blow candle (4) is provided with a centering mandrel (12) which engages in the bore (13) in the center of the spinneret pack (1). 5. 5. Vorrichtung nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die Blaskerze (4), das Rohr (5) und die Präparationseinrichtung (6) von einem Mantel aus einem zylindrischen Lochblech (14) umgeben sind.  Device according to claims 1 to 4, characterized in that the blow candle (4), the tube (5) and the preparation device (6) are surrounded by a jacket made of a cylindrical perforated plate (14). 6. Verfahren zum Betrieb der Vorrichtung gemäss den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass das Produkt aus der Spinnabzugsgeschwindigkeit v und der Quadratwurzel aus dem Filamenttiter, v.SQR (dpf), zwischen 5000 und 20 000 EMI11.1 liegt. 1. Vorrichtung zum Abkühlen, Stabilisieren und Präparieren von schmelzgesponnenen Filamenten, bestehend aus einer auf das Zentrum eines ringförmigen Spinndüsenpakets (1) ausgerichteten Blaskerze (4) und einer Präparationseinrichtung (6), dadurch gekennzeichnet, dass zwischen der Blaskerze (4) und der Präparationseinrichtung (6) ein geschlossenes Rohr (5) angeordnet ist. 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Rohr (5) eine Länge von 200 bis 2000 mm aufweist. 3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass das Rohr (5) von einem kegelförmigen Mantel (16) umgeben ist. 4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Blaskerze (4) mit einem Zentrierdorn (12) versehen ist, der in die Bohrung (13) im Zentrum des Spinndüsenpakets (1) eingreift. 5. 6. Method for operating the device according to claims 1 to 5, characterized in that the product of the spinning take-off speed v and the square root of the filament titer, v.SQR (dpf), between 5000 and 20,000 EMI11.1   lies.       1. Device for cooling, stabilizing and preparing melt-spun filaments, consisting of a blow candle (4) aligned with the center of an annular spinneret pack (1) and a preparation device (6), characterized in that between the blow candle (4) and the preparation device (6) a closed tube (5) is arranged. 2. Device according to claim 1, characterized in that the tube (5) has a length of 200 to 2000 mm. 3. Device according to claim 2, characterized in that the tube (5) is surrounded by a conical jacket (16). 4. The device according to claim 1, characterized in that the blow candle (4) is provided with a centering mandrel (12) which engages in the bore (13) in the center of the spinneret pack (1). 5. Vorrichtung nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die Blaskerze (4), das Rohr (5) und die Präparationseinrichtung (6) von einem Mantel aus einem zylindrischen Lochblech (14) umgeben sind. 6. Verfahren zum Betrieb der Vorrichtung gemäss den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass das Produkt aus der Spinnabzugsgeschwindigkeit v und der Quadratwurzel aus dem Filamenttiter, v.SQR (dpf), zwischen 5000 und 20 000 EMI11.1 liegt.  Device according to claims 1 to 4, characterized in that the blow candle (4), the tube (5) and the preparation device (6) are surrounded by a jacket made of a cylindrical perforated plate (14). 6. Method for operating the device according to claims 1 to 5, characterized in that the product of the spinning take-off speed v and the square root of the filament titer, v.SQR (dpf), between 5000 and 20,000 EMI11.1   lies.  
CH289/89A 1989-01-30 1989-01-30 CH678433A5 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH289/89A CH678433A5 (en) 1989-01-30 1989-01-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH289/89A CH678433A5 (en) 1989-01-30 1989-01-30
PCT/CH1991/000050 WO1992015732A1 (en) 1991-03-04 1991-03-04 Device for cooling melt-extruded filaments

Publications (1)

Publication Number Publication Date
CH678433A5 true CH678433A5 (en) 1991-09-13

Family

ID=4547207

Family Applications (1)

Application Number Title Priority Date Filing Date
CH289/89A CH678433A5 (en) 1989-01-30 1989-01-30

Country Status (7)

Country Link
EP (1) EP0527134B1 (en)
JP (1) JP2809878B2 (en)
BR (1) BR9106417A (en)
CH (1) CH678433A5 (en)
DE (1) DE59105531D1 (en)
ES (1) ES2075430T3 (en)
WO (1) WO1992015732A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536157A (en) * 1991-03-04 1996-07-16 Ems-Inventa Ag.G. Apparatus for cooling melt-spun filaments
WO1999067450A1 (en) * 1998-06-22 1999-12-29 Barmag Ag Spinner for spinning a synthetic thread

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19653451C2 (en) * 1996-12-20 1998-11-26 Inventa Ag Process for the production of a polyester multifilament yarn
DE19800636C1 (en) * 1998-01-09 1999-07-29 Inventa Ag Spin finish application to melt spun filaments arranged in a circle
DE19821778B4 (en) * 1998-05-14 2004-05-06 Ems-Inventa Ag Device and method for producing microfilaments of high titer uniformity from thermoplastic polymers
US6288157B1 (en) 1999-05-11 2001-09-11 3M Innovative Properties Company Alkylated fluorochemical oligomers and use thereof
US6525127B1 (en) 1999-05-11 2003-02-25 3M Innovative Properties Company Alkylated fluorochemical oligomers and use thereof in the treatment of fibrous substrates
DE10105440A1 (en) * 2001-02-07 2002-08-08 Neumag Gmbh & Co Kg Device for melt spinning and cooling a filament sheet
EP1491663A1 (en) * 2003-06-23 2004-12-29 Nan Ya Plastics Corporation Manufacturing method of polyester fine denier multifilament and polyester fine denier multifilament yarns
JP4760441B2 (en) * 2006-02-23 2011-08-31 東レ株式会社 Melt spinning apparatus and melt spinning method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL271547A (en) * 1960-11-18
GB957534A (en) * 1962-01-18 1964-05-06 British Nylon Spinners Ltd Improvements in or relating to melt-spinning synthetic polymer filaments
US4288207A (en) * 1980-06-30 1981-09-08 Fiber Industries, Inc. Apparatus for producing melt-spun filaments
JPS56169805A (en) * 1980-05-30 1981-12-26 Toray Ind Inc Melt spinning method
CH667676A5 (en) * 1985-09-18 1988-10-31 Inventa Ag DEVICE FOR COOLING AND PREPARING MELT-SPONNED SPINNING MATERIAL.
DE3822571A1 (en) * 1988-07-04 1990-02-01 Hoechst Ag SPINNING METHOD AND DEVICE FOR IMPLEMENTING THEREOF

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536157A (en) * 1991-03-04 1996-07-16 Ems-Inventa Ag.G. Apparatus for cooling melt-spun filaments
WO1999067450A1 (en) * 1998-06-22 1999-12-29 Barmag Ag Spinner for spinning a synthetic thread
US6572798B2 (en) 1998-06-22 2003-06-03 Barmag Ag Apparatus and method for spinning a multifilament yarn

Also Published As

Publication number Publication date
EP0527134A1 (en) 1993-02-17
ES2075430T3 (en) 1995-10-01
BR9106417A (en) 1993-05-04
DE59105531D1 (en) 1995-06-22
WO1992015732A1 (en) 1992-09-17
EP0527134B1 (en) 1995-05-17
JPH05505427A (en) 1993-08-12
JP2809878B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
EP0937791B1 (en) Process and apparatus for the spinning of a multifilament yarn
DE19929709C2 (en) Process for the production of essentially endless fine threads and use of the device for carrying out the process
EP1102878B1 (en) Spinning device and method for spinning a synthetic thread
DE19821778B4 (en) Device and method for producing microfilaments of high titer uniformity from thermoplastic polymers
DE3708168C2 (en)
EP1079008A1 (en) Process and apparatus for the spinning of a multifilament yarn
WO1999067450A1 (en) Spinner for spinning a synthetic thread
EP0527134B1 (en) Device for cooling melt-extruded filaments
DE102007031755A1 (en) Process and assembly to cool extruded hotmelt polymer fibers in cooling duct delivering warm ambient air
DE4219658C3 (en) Process for the production of cellulose fiber filaments and films by the dry-wet extrusion process
EP0530652B1 (en) Device for the high-speed spinning of multifilament yarns and its use
DE2201519A1 (en) Method and device for melt spinning
DE19653451C2 (en) Process for the production of a polyester multifilament yarn
EP1228268B1 (en) Method for fusion spinning
EP0455897B1 (en) Apparatus for the preparation of very fine fibres
DE3941824A1 (en) METHOD AND SPINNING DEVICE FOR PRODUCING MICROFILAMENTS
DE10109838A1 (en) Cooling system for synthetic filaments, includes annular permeable ducts promoting transverse cooling flow immediately following spinneret
EP0961844A1 (en) Drawing device and method for producing drawn synthetic filaments
CH702007B1 (en) Method and apparatus for melt spinning, treating and winding a synthetic yarn.
WO2002053814A1 (en) Method for spin stretching extruded threads
DE10116294A1 (en) Melt-spinning thermoplastic filament bundles from nozzles to form composite thread, employs separate cooling for each bundle to differentiate crystallization
DE19716394C1 (en) Cooling control unit, for thermoplastic filament bundle from spinneret(s)
DE19959532C1 (en) Method and device for the production of filtration-active fibers
EP0466868B1 (en) Process for the high-speed spinning of monofilaments, and monofilaments thus manufactured
DE10005664A1 (en) Melt spinning assembly has larger spinneret drillings for the outer filaments which shroud the inner filaments in the cooling station but with a constant flow throughput of the molten polymer

Legal Events

Date Code Title Description
PUE Assignment

Owner name: EMS-INVENTA AG PATENTABTEILUNG

PL Patent ceased