CH537807A - Insulating mat - Google Patents

Insulating mat

Info

Publication number
CH537807A
CH537807A CH708572A CH708572A CH537807A CH 537807 A CH537807 A CH 537807A CH 708572 A CH708572 A CH 708572A CH 708572 A CH708572 A CH 708572A CH 537807 A CH537807 A CH 537807A
Authority
CH
Switzerland
Prior art keywords
adhesive
state
cover sheet
insulating mat
adhesives
Prior art date
Application number
CH708572A
Other languages
German (de)
Inventor
Palmkvist Nielsen Verner
Original Assignee
Rockwool As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rockwool As filed Critical Rockwool As
Publication of CH537807A publication Critical patent/CH537807A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/04Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/593Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives to layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/74Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/7654Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings
    • E04B1/7658Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings comprising fiber insulation, e.g. as panels or loose filled fibres
    • E04B1/7662Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings comprising fiber insulation, e.g. as panels or loose filled fibres comprising fiber blankets or batts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/14Mineral wool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2471/00Floor coverings
    • B32B2471/04Mats
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/244Structural elements or technologies for improving thermal insulation using natural or recycled building materials, e.g. straw, wool, clay or used tires

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Paper (AREA)
  • Thermal Insulation (AREA)
  • Building Environments (AREA)
  • Nonwoven Fabrics (AREA)

Description

       

  
 



   Die Erfindung betrifft eine Isoliermatte, die eine aus nebeneinanderliegenden Streifen aus Mineralwollfasern zusammengesetzte Isolierschicht, ein Deckblatt und einen die Isolierschicht und das Deckblatt verbindenden Klebstoff aufweist. Der Ausdruck  Mineralwollfasern  steht hier als eine Gattungsbezeichnung, die Fasern aus Stein, Schlacke, Glas oder anderen minderalischen Rohstoffen oder Mischungen davon umfasst.



   Eine Isoliermatte der oben genannten Art ist aus der norwegischen Patentschrift 72 983 und der dänischen Patentschrift 90 219 bekannt. Eine solche Matte wird hergestellt, indem aus vorrückendem Mineralwollenfilz Streifen längs oder quer zur   Vorrtickbewegung    des Filzes geschnitten werden, wobei die Schnittebene im wesentlichen rechtwinklig zur Hauptebene des Filzes liegt. Danach werden die Streifen um   90     gedreht und so nebeneinandergelegt, dass deren Schnittkanten in derselben Ebene liegen. Schlussendlich werden die Streifen mittels Klebstoff mit dem Deckblatt, welches aus einem mit Klebstoff bestrichenen Blatt Papier besteht, verbunden.



   Der Mineralwollenfilz kann hergestellt werden, indem in Luft schwebende Mineralwollfasern über eine gasdurchlässige Bearbeitungsfläche, wie z. B. ein mit Löchern versehenes Förderband, gebracht werden, um dort eine hochporöse Faserschicht von etwa 1 m Dicke zu bilden. Die Faserschicht wird dann in einer oder zwei Stufen in einer oder mehreren Walzengruppen zusammengedrückt, woraus ein Filz von etwa 0,1 m Dicke entsteht. Während des Zusammendrückens werden die Fasern so gerichtet, dass sie hauptsächlich in Ebenen parallel zum Förderband liegen. Der Mineralwollenfilz, der auf diese Art hergestellt wird, ist widerstandsfähiger gegen seitliche Drücke als gegen rechtwinklig zur Oberfläche des Filzes ausgeübte Drücke.



   Eine aus Mineralwollstreifen bestehende Filzisolierschicht, bei der die Schnittkanten gegen das Deckblatt gerichtet sind, ist gegen rechtwinklig zur Oberfläche gerichtete Drücke widerstandsfähig, wegen den rechtwinklig zur Oberfläche des Endproduktes gerichteten Fasern.



   Es entstanden aber ernsthafte Probleme, als man eine zu   friedenstellende    Kohäsion der Schnittkanten der Mineralwollstreifen mit dem Deckblatt mittels herkömmlicher Klebstoffe zu erreichen suchte.



   An der Schnittkante sind nur verhältnismässig wenig Fasern so gerichtet, dass sie rechtwinklig zum Deckblatt stehen.



  Darum muss in diesen Streifen Klebstoff bis zu einer Tiefe von 0,5 bis 1 mm eingebracht werden, um eine genügend grosse Zahl von Fasern fest mit dem Deckblatt zu verbinden.



   Klebstoffe, welche nach Verdampfen eines Lösungsmittels erhärten und wirken, erlauben eine befriedigende Kohäsion.



  Die Verdampfung dieses Lösungsmittels gibt aber ernste Komplikationen bei der Herstellung von Filzen mit solchen Klebestoffen.



   Es wurde schon versucht, Schmelzen, wie z. B. verdünnte Bitumen und Harze, als Klebstoffe für diese Isoliermatte zu verwenden. Solche Klebstoffe härten langsam aus, wenn die flüssigen Stoffe abkühlen und vom flüssigen Zustand in einen teigigen Zustand übergehen. Solche geschmolzene Klebstoffe müssen einen Temperaturunterschied von 100 bis   1500    C durchlaufen, wenn sie von Temperaturen, bei welchen sie genügend dünnflüssig sind, um in die Mineralwollstreifen zu fliessen, zu einer Temperatur, bei welcher sie hart genug sind, um die Streifen fest mit dem Deckblatt zu verbinden, abkühlen.



   Demzufolge müssen solche Klebstoffe auf 150 bis   200     C erwärmt werden, bevor die Streifen mit den mit Klebstoff bestrichenen Deckblättern verleimt werden können.



   Eine solche Erwärmung des Klebstoffs stellt schwere Probleme an die Herstellung von Mineralwollfilzen. Bei solch hohen Temperaturen wird der Klebstoff von den aus porösem Material, wie z. B. Papier, bestehenden Deckblättern absorbiert. Ferner verursachen so heisse Klebstoffe störende Gerüche und Dämpfe. Ein weiterer Nachteil solcher Klebstoffe besteht darin, dass sie fest an den Walzen, die den Klebstoff auf die Deckblätter streichen, kleben bleiben. Wenn also der zur Herstellung solcher Isolierwatten verwendete Apparat gestoppt wird, bleiben die Deckblätter an den Walzen kleben und können brechen, wenn die Produktion wieder aufgenommen wird. Als weiterer Nachteil solcher Klebstoffe ist die Tatsache aufzuführen, dass sie Fäden ziehen, wenn sie von ihrer Anwendung zum Bestreichen der Deckblätter in irgendeiner Weise gehandhabt werden.



   Es ist das Ziel dieser Erfindung, die vorerwähnten Nachteile zu vermeiden, zumindest zu verringern, und somit eine verbesserte Isoliermatte zu schaffen.



   Die erfindungsgemässe Isoliermatte ist dadurch gekennzeichnet, dass der Klebstoff ein Wachsprodukt ist, welches beim Abkühlen den Aggregatzustand vom flüssigen Zustand in den festen Zustand in einem Temperaturbereich zwischen 20 und   90"    C wechselt, wobei jener Aggregatzustandswechsel während einer Temperaturspanne von mindestens   1"    C vor sich geht.



   Entgegen den normalerweise verwendeten Schmelzen von Klebstoffen ändert Wachs den Aggregatzustand beim Abkühlen. Darum kann das Aushärten des Klebstoffes durch Abkühlen über einen engen Temperaturbereich bewirkt werden.



  Der verwendete Klebstoff ändert seinen Zustand vorzugsweise innerhalb eines Temperaturbereiches von etwa   10     C.



  Ein Klebstoff, wie z. B. reines Wachs, welches beim Abkühlen plötzlich den Zustand ändert, d. h. in einem Temperaturbereich von   1"    C oder weniger aushärtet, bildet grosse Kristalle und daher brüchige Verbindungen.



   Überraschenderweise wurde festgestellt, dass Wachsprodukte enthaltende Klebstoffe Bindungen von zufriedenstellender Festigkeit bilden, so dass ein Produkt mit denselben Festigkeitseigenschaften wie bei der bekannten Herstellung von Isoliermatten mit dem bekannten geschmolzenen Klebstoff entsteht.



   Da festgestellt wurde, dass die Kohäsion unter den Fasern innerhalb der Mineralwollfilze normalerweise so niedrig ist, dass die Isolationsschicht von Hand in Stücke zerbrochen werden kann, hat es keinen Sinn, einen Klebstoff zu verwenden, welcher eine starke Bindung zwischen den Streifen und den Deckblättern bildet. Auf diese Weise wurde aber nunmehr festgestellt, dass Produkte, welche zuerst als ungeeignet als Klebstoffe galten, nun eine zufriedenstellende Bindung zwischen den Fasern und dem Deckblatt herstellen, da ja die Festigkeit des Endproduktes hauptsächlich von der Zugkraft der Isolationsschicht selbst abhängt.



   Die Bestimmung der Temperatur, bei welcher der   Über-    gang vom einen Aggregatzustand in den anderen stattfindet, kann mit dem Dalican-Apparat, welchen H. P. Kaufmann in  Analyse der Fette und Fettprodukte  1958 Band 1 Seite 655 beschreibt, vorgenommen werden. Ein dünnflüssiges Schmelzprodukt wird in den Apparat gegeben und bei ständigem Umrühren abgekühlt. Die Temperatur des sich abkühlenden Produkts wird an einem Thermometer abgelesen, und die Werte werden auf einem Diagramm in Funktion der Zeit eingetragen. Ein Phasenübergang ergibt sich anhand einer Kurve in Form eines in die Länge gezogenen S, das infolge der eingetragenen Punkte entstand. Diese Form entsteht durch das Freiwerden der latenten Phasenänderungswärme.

 

   Es wird vorzugsweise ein Klebstoff verwendet, der im Temperaturbereich zwischen   75"    C bis   90"    C schmilzt, um eine günstige Wärmezone für das Bestreichen der Oberflächen mit Klebstoff zu erhalten.



   Um ein schnelles Aushärten des Klebstoffes unter norma  len Abkühlbedingungen zu erhalten, sollte die Phasenänderung vorzugsweise bei einer Temperatur von   55"    C abgeschlossen sein.



   Ein Beispiel eines für das Blattmaterial geeigneten Wachses ist das ARCO Wachs 7220 G der ARCO Raffinerie AG, Hamburg, Deutschland. Dieses Wachs ist bei   90"    C flüssig und hat dann 3,15 Poise. Die Änderung des Aggregatzustandes, die mit dem Dalican-Apparat bestimmt wird, beginnt bei   69,5"    C und zeigt sich deutlich durch eine Trübung in der Schmelze an. Während des weiteren Abkühlens sinkt die Temperatur nicht mehr so schnell, verglichen mit dem ersten Teil des Abkühlprozesses, infolge der Entstehung der latenten Wärme der Änderung des Aggregatzustandes. Gleichzeitig wird das Umrühren der Schmelze immer schwieriger.



  Wenn dann die Temperatur unter   64,6     C gefallen ist, sinkt sie wieder mit der gleichen Geschwindigkeit wie während der ersten Abkühlungsphase. Die Änderung des Aggregatzustandes ist also bei   64,5     C abgeschlossen, und der   Übergangsbe-    reich ist demzufolge etwa   4,9     C.

 

   Falls das Deckblatt aus Papier oder einem anderen absorbierenden Material ist, sollte es überzogen sein, um eben diese Absorption zu verringern. Das Papier kann mit Poly äthylen oder Polyvinylchlorid (PVC) überzogen werden. Solche Überzüge schmelzen beim Gebrauch von üblichen Klebstoffen und werden vom Papier absorbiert, wenn aber ein Klebstoff nach der Erfindung verwendet wird, bleibt der Überzug fest.



   Durch die Erfindung wird die Anzahl der für die Herstellung von Isoliermatten geeigneten Klebstoffe bedeutend vergrössert, weil die Anforderungen an die Bindekräfte verringert werden. Ein weiterer Vorteil ist, dass die Klebstoffe nicht oder weniger als die bekannten Klebstoffe an den Walzen hängen bleiben. 



  
 



   The invention relates to an insulating mat which has an insulating layer composed of adjacent strips of mineral wool fibers, a cover sheet and an adhesive connecting the insulation layer and the cover sheet. The term mineral wool fibers is used here as a generic name that includes fibers made of stone, slag, glass or other minor raw materials or mixtures thereof.



   An insulating mat of the type mentioned above is known from Norwegian patent specification 72,983 and Danish patent specification 90,219. Such a mat is made by cutting strips of advancing mineral wool felt along or across the advancing movement of the felt, the cutting plane being substantially perpendicular to the main plane of the felt. Then the strips are turned by 90 and placed next to one another so that their cut edges lie in the same plane. Finally, the strips are bonded to the cover sheet, which consists of a sheet of paper coated with adhesive, by means of adhesive.



   The mineral wool felt can be produced by floating mineral wool fibers over a gas-permeable processing surface, such as e.g. B. a perforated conveyor belt are brought to form a highly porous fiber layer there about 1 m thick. The fiber layer is then compressed in one or two stages in one or more groups of rollers, resulting in a felt about 0.1 m thick. During the compression process, the fibers are directed so that they lie mainly in planes parallel to the conveyor belt. The mineral wool felt produced in this way is more resistant to lateral pressures than to pressures exerted at right angles to the surface of the felt.



   A felt insulation layer consisting of mineral wool strips, in which the cut edges are directed against the cover sheet, is resistant to pressures directed at right angles to the surface, because of the fibers directed at right angles to the surface of the end product.



   However, serious problems arose when the attempt was made to achieve satisfactory cohesion between the cut edges of the mineral wool strips and the cover sheet by means of conventional adhesives.



   At the cut edge, only relatively few fibers are oriented so that they are at right angles to the cover sheet.



  This is why adhesive must be applied to a depth of 0.5 to 1 mm in this strip in order to connect a sufficiently large number of fibers firmly to the cover sheet.



   Adhesives, which harden and work after evaporation of a solvent, allow a satisfactory cohesion.



  However, the evaporation of this solvent creates serious complications in the manufacture of felts with such adhesives.



   Attempts have already been made to melt such. B. diluted bitumen and resins to be used as adhesives for this insulating mat. Such adhesives cure slowly as the liquid substances cool and change from a liquid state to a doughy state. Such melted adhesives must pass through a temperature difference of 100 to 1500 C when they go from temperatures at which they are sufficiently thin to flow into the mineral wool strips to a temperature at which they are hard enough to hold the strips firmly to the cover sheet to connect, cool down.



   Accordingly, such adhesives have to be heated to 150 to 200 C before the strips can be glued to the cover sheets coated with adhesive.



   Such heating of the adhesive poses serious problems for the manufacture of mineral wool felts. At such high temperatures, the adhesive is made of porous material such. B. paper, existing cover sheets absorbed. Furthermore, such hot adhesives cause unpleasant odors and vapors. Another disadvantage of such adhesives is that they stick firmly to the rollers that apply the adhesive to the cover sheets. So if the equipment used to make such insulating wadding is stopped, the cover sheets will stick to the rollers and may break when production is resumed. Another disadvantage of such adhesives is the fact that they pull threads when they are handled in any way from their application for coating the cover sheets.



   The aim of this invention is to avoid, or at least reduce, the aforementioned disadvantages, and thus to create an improved insulating mat.



   The insulating mat according to the invention is characterized in that the adhesive is a wax product which, when it cools, changes the state of aggregation from the liquid state to the solid state in a temperature range between 20 and 90 "C, with that change of state during a temperature range of at least 1" C before it goes.



   Contrary to the normally used melts of adhesives, wax changes its physical state when it cools. Therefore, the curing of the adhesive can be brought about by cooling over a narrow temperature range.



  The adhesive used changes its state preferably within a temperature range of about 10 C.



  An adhesive such as B. pure wax, which suddenly changes state on cooling, d. H. hardens in a temperature range of 1 "C or less, forms large crystals and therefore fragile compounds.



   Surprisingly, it has been found that adhesives containing wax products form bonds of satisfactory strength, so that a product is produced with the same strength properties as in the known production of insulating mats with the known molten adhesive.



   Since it has been found that the cohesion among the fibers within the mineral wool felts is normally so low that the insulation layer can be broken into pieces by hand, there is no point in using an adhesive which forms a strong bond between the strips and the cover sheets . In this way, however, it has now been found that products that were initially considered unsuitable as adhesives now produce a satisfactory bond between the fibers and the cover sheet, since the strength of the end product depends mainly on the tensile force of the insulation layer itself.



   The temperature at which the transition from one state of aggregation to the other takes place can be determined with the Dalican apparatus, which H. P. Kaufmann describes in Analysis of Fette and Fat Products 1958, Volume 1, page 655. A thin liquid melt product is placed in the apparatus and cooled while stirring continuously. The temperature of the cooling product is read on a thermometer and the values are plotted on a graph as a function of time. A phase transition results from a curve in the form of an elongated S, which arose as a result of the entered points. This shape is created by the release of the latent heat of phase change.

 

   An adhesive is preferably used which melts in the temperature range between 75 "C to 90" C in order to obtain a favorable heat zone for coating the surfaces with adhesive.



   In order to obtain rapid curing of the adhesive under normal cooling conditions, the phase change should preferably be completed at a temperature of 55 ° C.



   An example of a wax suitable for the sheet material is ARCO Wachs 7220 G from ARCO Raffinerie AG, Hamburg, Germany. This wax is liquid at 90 "C and then has 3.15 poise. The change in the physical state, which is determined using the Dalican apparatus, begins at 69.5" C and is clearly indicated by a cloudiness in the melt. During the further cooling, the temperature no longer drops as quickly compared to the first part of the cooling process, due to the development of latent heat from the change in the state of aggregation. At the same time, stirring the melt becomes more and more difficult.



  When the temperature has dropped below 64.6 C, it will drop again at the same rate as during the first cooling phase. The change in the state of aggregation is thus completed at 64.5 C, and the transition range is accordingly around 4.9 C.

 

   If the cover sheet is made of paper or some other absorbent material, it should be coated to reduce this absorption. The paper can be coated with polyethylene or polyvinyl chloride (PVC). Such coatings melt with the use of conventional adhesives and are absorbed by the paper, but when an adhesive according to the invention is used the coating remains solid.



   The invention significantly increases the number of adhesives suitable for the production of insulating mats, because the requirements for the binding forces are reduced. Another advantage is that the adhesives do not get stuck on the rollers, or less so than the known adhesives.


    

Claims (1)

PATENTANSPRUCH PATENT CLAIM Isoliermatte, die eine aus nebeneinanderliegenden Streifen aus Mineralwollfasern zusammengesetzte Isolierschicht, ein Deckblatt und einen die Isolierschicht und das Deckblatt verbindenden Klebstoff aufweist, dadurch gekennzeichnet, dass der Klebstoff ein Wachsprodukt ist, welches beim Abkühlen den Aggregatzustand vom flüssigen Zustand in den festen Zustand in einem Temperaturbereich zwischen 20 und 90" C wechselt, wobei jener Aggregatzustandswechsel während einer Temperaturspanne von mindestens 1" C vor sich geht. An insulating mat which has an insulating layer composed of adjacent strips of mineral wool fibers, a cover sheet and an adhesive connecting the insulating layer and the cover sheet, characterized in that the adhesive is a wax product which, when cooled, changes its physical state from a liquid state to a solid state in a temperature range changes between 20 and 90 "C, whereby that change of state takes place during a temperature range of at least 1" C. UNTERANSPRÜCHE 1. Isoliermatte gemäss Patentanspruch, dadurch gekennzeichnet, dass das Klebemittel im Temperaturbereich zwischen 75 und 90" C flüssig ist. SUBCLAIMS 1. Insulating mat according to claim, characterized in that the adhesive is liquid in the temperature range between 75 and 90 "C. 2. Isoliermatte gemäss Patentanspruch, dadurch gekennzeichnet, dass die Aggregatzustandsänderung bei 55" C abgeschlossen ist. 2. Insulating mat according to claim, characterized in that the change in physical state at 55 "C is completed. 3. Isoliermatte gemäss Patentanspruch, dadurch gekennzeichnet, dass das Deckblatt mit einem Kunststoffüberzug versehen ist. 3. Insulating mat according to claim, characterized in that the cover sheet is provided with a plastic coating.
CH708572A 1971-05-12 1972-05-12 Insulating mat CH537807A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DK228471AA DK128412B (en) 1971-05-12 1971-05-12 Mineral wool mat for heat and cold insulation.

Publications (1)

Publication Number Publication Date
CH537807A true CH537807A (en) 1973-06-15

Family

ID=8111319

Family Applications (1)

Application Number Title Priority Date Filing Date
CH708572A CH537807A (en) 1971-05-12 1972-05-12 Insulating mat

Country Status (13)

Country Link
AT (1) AT314411B (en)
BE (1) BE783379A (en)
CH (1) CH537807A (en)
DE (1) DE2223101C3 (en)
DK (1) DK128412B (en)
ES (1) ES402663A1 (en)
FI (1) FI55983C (en)
FR (1) FR2137805B1 (en)
GB (1) GB1386018A (en)
IT (1) IT955420B (en)
NL (1) NL169909C (en)
NO (1) NO132939C (en)
SE (1) SE388164B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69421062T3 (en) * 1993-11-11 2004-08-26 Isover Saint-Gobain MINERAL WOOL PRODUCT AND METHOD FOR THE PRODUCTION THEREOF
CA2166166C (en) 1995-01-12 2006-07-18 Roy E. Shaffer Insulation assembly and method for applying adhesive thereto
NL1011603C2 (en) * 1999-03-19 2000-09-27 Rockwool Lapinus Bv Self-adhesive insulation blanket.

Also Published As

Publication number Publication date
DK128412B (en) 1974-04-29
NL169909B (en) 1982-04-01
SE388164B (en) 1976-09-27
FR2137805A1 (en) 1972-12-29
AT314411B (en) 1974-04-10
NO132939C (en) 1976-02-04
GB1386018A (en) 1975-03-05
NO132939B (en) 1975-10-27
DE2223101B2 (en) 1980-01-17
NL169909C (en) 1982-09-01
DE2223101C3 (en) 1980-09-11
NL7206406A (en) 1972-11-14
DE2223101A1 (en) 1973-01-25
FI55983B (en) 1979-07-31
IT955420B (en) 1973-09-29
ES402663A1 (en) 1975-04-01
FR2137805B1 (en) 1976-08-06
FI55983C (en) 1979-11-12
BE783379A (en) 1972-09-01

Similar Documents

Publication Publication Date Title
WO2010022864A1 (en) Method for manufacturing wood fiber insulating boards
DE3824842C2 (en)
DE2121424C3 (en)
DE2117794B2 (en) Corrugated board and process for their manufacture
DE2227533C3 (en) Process for the production of filter bodies from activated carbon grains and a finely divided thermoplastic binder
DE2307577C3 (en) Process for the production of flat mineral wool panels and system for carrying out the process
DE2104817B2 (en) PRESSURE-SENSITIVE ADHESIVE TAPE WITH A THERMOPLASTIC FILM AS A CARRIER
DE1808286A1 (en) Bound structures
DE2611361C3 (en) Method and device for the production of composite panels
DE1760919C3 (en) Process for the production of spherical heads on the protruding thread ends of a surface zipper provided between two fabric surfaces
CH537807A (en) Insulating mat
DE2056831A1 (en) Non-woven material and process for its manufacture
DE1504097C2 (en) PROCESS FOR MANUFACTURING SHEETS OR PANELS FROM PREFERABLY TRANSPARENT THERMOPLASTIC PLASTICS WITH EMBEDDED REINFORCING INSERTS
DE2146309B2 (en)
DE2311856A1 (en) FIBERGLASS REINFORCED THERMOPLASTIC SHEETS AND THE METHOD OF MANUFACTURING THEM
CH363961A (en) Process for the continuous joining of soft foam sheets with carrier sheets
AT227927B (en) Process for the production of reinforced sheets and pipes from thermoplastic material and device for carrying out the process
AT394810B (en) METHOD FOR PRODUCING A RUNNING COMPONENT FOR SKIS AND SKI WITH A RUNNING COMPONENT PRODUCED BY THIS PROCESS
AT204766B (en) Process for the continuous joining of soft foam sheets
DE900271C (en) Process for making a sheet abrasive article
DE3324302A1 (en) DEVICE FOR PRODUCING MULTI-LAYER LAMINATE PANELS
AT208483B (en) Process for covering solid objects with firmly adhering plastic overlay
DE1629604B2 (en) METHOD AND DEVICE FOR APPLYING A TEAR-RESISTANT EDGE TO FIBERGLASS RIBBON AND USING THE SAME
DE2236286B2 (en) Non-woven reinforced paper with an open network reinforcement
AT277139B (en) Process for the production of nonwovens

Legal Events

Date Code Title Description
PL Patent ceased